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Simple Summary: The crucial immune stimulatory functions exerted by Type I Interferons (IFNs) in
cancer settings have been not only widely demonstrated during the last fifty years but also recently
harnessed for therapy. However, depending on the dose and timing, and the downstream induced
signatures, Type I IFNs can and do foster cancer progression and immune evasion. Dysregulations of
Type I IFN signaling cascade are more and more frequently found in the tumor microenvironment,
representing critical determinants of therapeutic innate and adaptive resistance to several anticancer
treatments. Understanding when and through which genetic signatures Type I IFNs control or pro-
mote cancer growth is extremely urgent in order to prevent and by-pass the deleterious clinical effects
and develop optimized innovative (combinatorial) strategies for an effective cancer management.

Abstract: Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense
against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunol-
ogy have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral
responses, while leading immune dysfunction and disease progression. This dichotomy relies on
the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated
genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving
relationship between the host immune system and cancer, as we offer a view of the therapeutic
strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in
inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network
of Type I IFN triggered molecular pathways will help find a timely and immune“logical” way to
exploit these cytokines for anticancer therapy.
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1. Introduction

In the 1990s, the “danger theory” proposed by Polly Matzinger and colleagues upset
the traditional view of immunity as response to solely alien microbes and molecules [1].
Henceforth, it seemed clear that immune responses can be triggered by alarm signals
released by the body’s own cells following changes in tissue and organ homeostasis or
integrity, as it happens during cancer and viral infection. Intriguingly, antiviral and
antitumor immunity share common cell-autonomous responses driven by the emission
of danger signals, best known as damage-associated molecular patterns (DAMPs), which
actively contribute to the establishment of a productive and long-lasting immune response
allowing to clear cancer cells and viral invaders [2]. Among the many DAMPs, cell free
nucleic acids emerge as key players in the orchestration of both innate and adaptive
immune responses [3,4]. Indeed, during cancer cell immunogenic cell death, cell free RNAs
were shown to trigger an acute production of Type I Interferons (IFNs) by dying cancer cells.
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Type I IFNs then activate an autocrine and paracrine circuit that leads to the production of
a plethora of interferon stimulating genes (ISGs), among which the CXC-chemokine ligand
10 (CXCL10) acts as a potent chemoattractant for immune cells. Such Type I IFN signature,
so-called “viral mimicry”, on cancer cells was considered a hallmark for the full-blown
efficacy of various anticancer treatments [3].

IFNs are a family of pleiotropic immunomodulatory cytokines originally identified as
factors capable of interfering with viral replication [5]. Over the years, IFNs were endowed
with a plethora of other activities, encompassing a detrimental involvement in autoimmune
diseases, metabolic syndromes, and cancer, which make the study of IFN biology crucial
for human health and disease. So far, three classes of IFNs (i.e., Type I, Type II, and Type
III) were described and distinguished on the basis of upstream stimuli, producer cell type,
molecular structure, cognate receptor, signaling complex, and molecular function [6].

Type I IFNs constitute the largest IFN class [7]. The human genome encodes 17
different Type I IFNs, including 13 subtypes of partially (about 70–80%) homologous
IFN-α, and single IFN-β, IFN-ε, IFN-κ, and IFN-ω with lower homology (30–50%) [8,9].
Type I IFN subtypes are produced by all nucleated cells in the body and bind the same
heterodimeric cell-surface receptor termed IFN-α/β receptor (IFNAR), formed by the
IFNAR1 and IFNAR2 chains, thus triggering the expression of hundreds-to-thousands
ISGs [10,11]. Type II IFN family has only one member, IFN-γ, a cytokine that is primarily
produced by immune cells, specifically innate-like lymphocyte populations, such as natural
killer (NK) cells and innate lymphoid cells (ILCs), and adaptive immune cells, such as T
helper 1 (TH1) cells and CD8+ cytotoxic T lymphocytes (CTLs). IFN-γ signals through the
IFN-γ receptor (IFNGR) consisting of the IFNGR1 and IFNGR2 subunits and expressed
on most, and almost all, cell types [12]. Type III IFNs are the latest class to be described
and include up to four members in humans: IFN-λ1, IFN-λ2, and IFN-λ3, also known as
interleukin (IL)-29, IL28-A, and IL-28B, respectively, and IFN-λ4 [13]. Their peculiarity is
to be structurally similar to IFN-γ but functionally identical to IFN-α/β. Type III IFNs
essentially exert their biological activities on epithelial and immune cells by engaging
a receptor complex composed of the IFNLR1 (also known as IL-28AR) and the IL-10R2
chains [14].

In this review, we focus on Type I IFNs. We first provide a global description of Type I
IFN production and signaling pathways and then we explore their dual and complex role
in the evolving tumor-host relationship, while summarizing the use and the function of
Type I IFNs in oncology and emphasizing the ability of these cytokines to induce cancer
adaptive resistance and immune evasion.

2. Type I IFNs: A Complex Signaling Network

Type I IFNs are considered as the core IFN species in all vertebrates. Evolutionary
pressure has so deeply shaped these cytokines that genes encoding for Type I IFNs and their
receptors were extensively duplicated, and, especially in mammals, they have gradually
lost intronic regions [15]. It is well documented that Type I IFNs constitute the heart of a
complex cell signaling system made up of upstream and downstream components and
instructed to provide an effective forward line of cell-autonomous defense against foreign
pathogens and inner dangers (e.g., cancer cells).

2.1. Upstream Triggers of Type I IFNs

As reported above, Type I IFNs are universally produced in the body. More specif-
ically, IFN-β is released by all nucleated cell types, whereas IFN-α is primarily secreted
by a unique subset of immune cells, known as plasmacytoid dendritic cells (pDCs) [16].
Under physiological conditions, small amounts of Type I IFNs are constitutively released.
This results in a low tonic IFN signaling responsible for tissue homeostasis and “readi-
ness” to tackle environmental challenges [17,18]. In the face of danger signals, as during
viral infection and cancer, Type I IFN production rapidly increases following the stimu-
lation of a wide array of innate immune sensors, known as pattern recognition receptors



Biology 2021, 10, 856 3 of 28

(PRRs), which recognize and respond to exogenous pathogen-associated molecular pat-
terns (PAMPs) and autologous DAMPs, thus providing a first line of host defense and
preserving homeostasis [19–21]. Currently identified PRRs reside in different subcellular
compartments of immune and non-immune cells, such as the plasma membrane, and the
cytosol or endosomal compartments [22], and include Toll-like receptors (TLRs), Retinoic
acid-inducible gene I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs), and different DNA sensors [23]. PRR structures and
signaling pathways were recently and extensively reviewed elsewhere [24]. Although viral
or autologous nucleic acids (sensed by cytosolic and endosomal PRRs) are the key inducers
of Type I IFNs, a minority of other molecules, e.g., bacterial lipopolysaccharide (LPS),
viral proteins, lipoproteins, peptidoglycans, and mislocalized or misprocessed endogenous
proteins, are also recognized via surface PRRs [22,25,26] and lead to Type I IFN-related
innate immune responses [23,24].

Briefly, at the cell surface, TLR1, TLR2, TLR4, TLR5, and TLR6 sense bacterial cell
wall components, such as lipoproteins, LPS, and flagellin [27–30]. Within the endoso-
mal compartment, Type I IFN production is mainly evoked via TLR3, TLR7, TLR8, and
TLR9 responding to double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and
unmethylated CpG DNA, respectively [31–34]. Noteworthy, among the cytosolic RNA
sensors capable of eliciting Type I IFNs, there are the DExD/H box RNA helicases RIG-I
and melanoma differentiation-associated gene (protein) 5 (MDA5, also known as interferon-
induced helicase C domain-containing protein 1 (IFIH1)) and the NOD-containing protein
2 (NOD2). RIG-I and MDA5 are RLRs primarily sensing dsRNA or 5’ppp-RNA [35–37],
whereas NOD2 is a NLR that recognizes ssRNA [38,39]. Immune sensing of cytosolic DNA
(being either xenogeneic from intracellular pathogens, exogenous from dying cells, or en-
dogenous resulting from mitochondrial breakdown, DNA damage, and replication stress)
is driven by a multitude of cytoplasmic sensors, including the Z-DNA binding protein 1
(ZBP1; also known as DAI) [40] and the nucleotidyltransferase cyclic GMP-AMP (cGAMP)
synthase (cGAS) [41–43]. Several other proteins described to respond to cytoplasmic DNA
encompass the PYHIN family members absent in melanoma 2 (AIM2) [44,45] and IFN-γ–
inducible protein 16 (IFI16) [46,47], DExH-box helicase 9 (DHX9) [48], DEAH-box helicase
36 (DHX36) [49], and the DEAD-box helicase 41 (DDX41) [50], as well as the nucleases
MRE11 homolog, double strand break repair nuclease (MRE11) [51], and the three prime
repair exonuclease 1 (TREX1) [52], all elegantly described in Reference [53].

Overall, once activated, these receptors engage redundant signal transduction cascades
that involve adapter proteins and lead to the transcriptional induction of diverse immune
genes, including those encoding for Type I IFNs [24]. Specifically, signaling immediately
downstream of TLRs, RIG-I, MDA5, DHX9, and DHX36 is largely conveyed through
adaptor proteins, such as toll-like receptor adaptor molecule 1 (TICAM1, best known as
TRIF), mitochondrial antiviral signaling adaptor (MAVS), or MYD88 innate immune signal
transduction adaptor (MYD88) [54,55]. At odds, cGAS, DDX41, IFI16, and, at least in some
settings, ZBP1 stimulation activates the stimulator of interferon genes (STING) [24]. The
association of PRRs with their adaptors usually converges in the activation of the IκB kinase-
ε (IKKε) and TANK-binding kinase 1 (TBK1) complex, which, in turn, phosphorylates and
activates key members of the IFN regulatory factor (IRF) family, such as IRF3 and IRF7,
and the transcriptional factors nuclear-factor-κB (NF-κB) and activated protein 1 (AP1) [56].
Once recruited, these transcriptional factors translocate to the nucleus, where IRF3, NF-κB,
and AP1 trigger a first wave of IFN-β production [57–59], commonly observed within 1–4 h
after stimulation, while IRF7 regulates a positive feedback loop leading to a secondary
burst of IFN-α secretion [60]. It is worth considering that Type I IFN genes go through a
tight and context-dependent post-transcriptional regulation via RNA regulatory elements
(e.g., microRNAs) [61]. Hence, production of Type I IFN-coding messenger RNAs (mRNAs)
may not always guarantee their protein level generation [62]. Interestingly, Type I IFN
production can also be contextually induced by cytokines generally produced during
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inflammation, e.g., tumor-necrosis factor (TNF), macrophage colony stimulating factor
(M-CSF), and receptor activator of NF-κB ligand (RANKL) [63,64].

2.2. Downstream Effectors of Type I IFNs

Once released, Type I IFNs act in an autocrine and paracrine manner, and through
the IFNAR receptor, give rise to “canonical” and “non-canonical” signaling pathways
which directly regulate the transcription of a large set of ISGs [65]. While sharing the same
highly evolutionary conserved and ubiquitous receptor, Type I IFN subtypes differ for
their binding affinity, which inevitably affects downstream signaling and gene expression
profiles [66]. More precisely, IFN-α subtypes show low affinity to both IFNAR1 and
IFNAR2 chains (about 1–5 µM and 200 nM affinity, respectively), whereas IFN-β binding is
much tighter (100 nM and 0.2 nM affinity, respectively) [67,68].

Upon Type I IFN binding, IFNAR1 and IFNAR2 get into close proximity and dimer-
ize. This causes the reciprocal trans-phosphorylation and subsequent activation of the
receptor-associated proteins tyrosine kinase 2 (TIK2) and Janus Kinase 1 (JAK1) [69,70]. In
the “canonical” Type I IFN signaling pathway, this results in the generation of docking sites
for the recruitment of cytosolic SH2 domain-containing proteins, particularly the signal
transducer and activator of transcription 1 (STAT1) and 2 (STAT2) [71,72], leading to their
tyrosine phosphorylation and dimerization [73,74]. Phosphorylated STAT1 and STAT2
form the canonical heterodimer (pSTAT1-pSTAT2) that associates to IRF9 to complete the
heterotrimeric transcriptional complex, IFN-stimulated gene factor 3 (ISGF3) [10]. Acti-
vated ISGF3 then moves to the nucleus where it binds to IFN-stimulated response elements
(ISREs) within the promoter regions of ISGs. Thus, ISGs exert the immune-regulatory and
antiviral actions of Type I IFNs [11,75]. As a clear proof of JAK and STAT relevance in Type
I IFN signaling, mutations or loss of function of these components can predispose the host
to infection, autoimmune reactions, cancer, and alterations in therapeutic responses [57].
However, accumulating evidence highlights a far more complex and heterogeneous process
of activation and regulation of ISGs, thus assessing the existence of parallel “non-canonical”
signaling cascades [76]. Indeed, depending on the cell type, Type I IFNs can also activate
distinct STAT isomers (either phosphorylated or not) or even non-STAT pathways [65].
In this regard, following continuous exposure to low levels of IFN-β, unphosphorylated
ISGF3 (U-ISGF3) complex prolonged Type I IFN responses through high intranuclear levels
of U-STAT1, U-STAT2, and IRF9 [77,78]. Along with this, a body of scientific evidence
suggests that transcriptional factors containing IRF9 and either STAT1 or STAT2, but not
both, are implicated in controlling ISG expression [79,80]. In particular, a more recent
study by Platanitis et al. shows that the transcriptional profile of resting-state murine
macrophages is regulated by a preformed STAT2-IRF9 complex, whose generation does not
require signaling by IFNAR receptor [81]. Type I IFN stimulation induces a rapid molecular
switch from STAT2-IRF9 complex to ISGF3, thus “revving-up” the transcription of most
ISGs [81]. Additionally, JAKs can phosphorylate and induce the formation of p-STAT1
and p-STAT3 homodimers, where the former is connected with IFN-γ-mediated signaling
by binding gamma activated sequences (GAS) on DNA, and the latter indirectly inhibits
pro-inflammatory IFN-mediated responses [82–84]. At the same time, Type I IFNs were
also reported to signal via STAT2-STAT3 heterodimers, STAT4, a complex formed by STAT5
and CRK likeproto-oncogene adaptor protein (CrkL) and STAT6 [85–89]. To add further
layers of complexity, Type I IFNs can directly or indirectly activate other signaling factors
while interacting with STAT family members. MAP kinase (MAPK) and phosphoinositide
3-kinases (PI3K)/mammalian target of rapamycin (mTOR) pathways were shown to in-
voke ISG transcriptional activation [90–92]. In this context, Unc-51–like kinase (ULK1) was
recently described to affect ISG production and Type I IFN-induced biological activity in a
STAT-independent manner [93]. Other “non-canonical” molecules include Schlafen (SLFN)
family members and Sirtuins, whose additional effects were examined in various solid
and liquid malignancies [94–96]. In a recent study on glioblastoma, SLFN5 expression was
associated with the negative regulation of STAT1-mediated Type I IFN responses and, thus,



Biology 2021, 10, 856 5 of 28

with the promotion of a malignant phenotype [97]. Even more, in leukemia and lymphoma
cells, SIRT2 was found to induce STAT1 phosphorylation at serine 727 by deacetylating
cyclin-dependent kinase 9 (CDK9) in a Type I IFN-dependent manner [96].

Owing to the importance of Type I IFN-ISG system during virus-related and unrelated
diseases (such as cancer), this signaling cascade is tightly regulated in order to ensure host
protection while limiting inflammation and tissue damage and preventing autoimmune
responses [98,99]. Therefore, multiple layers of positive and negative feedback mechanisms
control the strength and duration of Type I IFN responses. Above all, many components
of upstream PRR pathways, including receptors and IRFs, are ISGs [100] Then, negative
regulation of cytokine-induced signaling relies on the downregulation of cytokine receptors.
Indeed, IFNAR receptors are endocytosed and degraded within minutes of their stimulation
and this occurs via ubiquitination of IFNAR1 and exposure of a Tyr-based endocytic motif
usually masked by Tyk2 in basal conditions [67,101,102]. Yet, when IFNAR1 is expressed
at high levels, its phosphorylation, ubiquitination, and degradation are triggered in an
IFN/JAK-independent manner [103]. A further feedback mechanism involves the Type I
IFN-mediated induction of the ISG ubiquitin specific peptidase 18 (USP18). This protein
endowed with ISG15 (a ubiquitin-like protein)-specific protease activity was shown to not
be required for IFNAR desensitization but, rather, to potently interfere with the recruitment
of IFNAR1 to the ternary complex by binding to IFNAR2 and STAT2, and, thus, to reduce
the responsiveness to Type I IFNs [104–108]. If, on the one hand, lack of USP18 results in a
persistent, strong Type I IFN signal, as shown for mouse brain that developed destructive
interferonopathy [109], on the other hand, reduced USP18 levels can increase antiviral
immunity [110]. Last but not least, Type-I-IFNs are also reported to inhibit their own
signaling by transactivating members of the suppressor of cytokine signaling (SOCS)
family [111], among which SOCS1 represents a potent inhibitor of Tyk2 [112].

All these observations could, at least in part, explain the complex nets regulating ISG
expression and ensuring the broad spectrum of Type I IFN responses during infection,
cancer, and inflammation.

3. Type I IFN-Induced Genetic and Epigenetic Signatures

Depending on their upstream stimuli and cellular source, each Type I IFN subtype
induces unique and partially overlapping patterns of ISG expression, commonly referred
to as “Type I IFN signatures” [11,75]. In their simplest definition, ISGs are all those genes
transcriptionally activated during Type I, II, or III IFN responses, and, in humans, they
approximately constitute the 10% of the genome. These genes undergo up to 100-fold
transcriptional increase depending on the IFN dose, cell lineage, and other endogenous
and exogenous variables in cellular signaling [113].

Although a good portion of ISGs encodes antiviral proteins (e.g., MX1, MX2, MXA,
OAS1, IFI6) [114], a significant one is responsible for the various immune-modulatory activi-
ties of Type I IFNs. It is not surprising that the most notorious ISGs include chemokines (e.g.,
CCL5, CXCL10, CCL3, CCL9,CXCL9, CXCL11) which recruit immune inflammatory cells,
apoptosis inducers or modulators (e.g., FAS and its ligand FASL, XIAP-associated factor
(XAF1), galectin 9, TNF-related apoptosis-inducing ligand (TRAIL), ISG12, death-activating
protein (DAP) kinase, phospholipid scramblase), genes required for major histocompatibil-
ity complex (MHC)-I/II based antigen presentation pathways, anti-angiogenic proteins
(e.g., STAT1, promyelocytic leukemia protein (PML), guanylate-binding protein 1 and 2
(GBP1/2), ISG20), and cluster of differentiation (CD) molecules (e.g., CD40, CD80) [115,116].
A comprehensive list of ISGs is available at http://interferome.org/interferome/home.jspx.
accessed on 1 August 2021).

As is so often the case, the system is still more complex than it seems. Several ISGs are
direct targets of IRF1, IRF3, IRF7, NF-κB, or IL-1 potentially leading to multiple pathways
by which a single ISG can be induced [117]. Another crucial aspect that should not be
neglected is that some ISGs are basally expressed in addition to being IFN-inducible,
while others appear to be expressed only during an IFN response [76]. Yet, although
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we typically consider ISGs as IFN-inducible protein coding mRNAs, it is important to
recognize that IFNs also induce myriad of noncoding RNAs, including long noncoding
RNAs and microRNAs (i.e., micro-RNA-106 or miR-106, miR-16) [118,119]. Moreover, a
fraction of genes is also repressed during Type I IFN stimulation, and these were denoted
as interferon-repressed genes (IRGs or IRepGs) [120,121].

Despite the fact that the nature and the underlying molecular mechanisms of a large
majority of ISGs are still unknown, Type I IFN genetic signatures have been extensively
investigated in the pathogenesis of several autoimmune diseases, including systemic
lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and interferonopathies, in
general [122,123]. Remarkably, as we are going to discuss in detail in the next sections,
these signatures have earned relevant achievements in cancer because of being potentially
associated with favorable patient prognosis [124,125] or paradoxically with therapeutic
tumor resistance [126,127].

Nonetheless, it has now become clear that Type I IFNs can also induce the so-called
“IFN epigenomic signatures” by directly reshuffling chromatin structure and gene ex-
pression [128]. The epigenome or ‘epigenomic landscape’ is defined as the whole and
dynamic genome pattern of histone and DNA modifications, chromatin conformation,
and transcription factor binding that regulates cell-specific gene expression profiles and
responsiveness to environmental stimuli [129]. Emerging scientific evidence suggests that
Type I IFNs induce extensive remodeling of the epigenome by activating new enhancers
(termed latent enhancers), disassembling others, and creating chromatin “bookmarks” that
de facto modulate chromatin accessibility to signal-activated transcription factors and the
whole transcriptional machinery to gene regulatory elements [130,131]. IFN epigenomic
signatures seem to be mediated by IFN-activated STATs and by de novo–induced tran-
scription factors, such as IRFs, which bind gene-regulatory elements and recruit chromatin-
remodeling enzymes [128]. Interestingly, all these changes not only affect ISGs but also
occur at regulatory elements of non-ISGs, including canonical targets of the transcription
factor NF-κB that encode inflammatory molecules involved in the priming of immune cells,
tolerance and the training of innate immune memory [132]. In particular, over the last
few years, the phenomenon of trained immunity or innate immune memory is attracting
increasingly more scientific interest [133]. Accordingly, the engagement of some innate
immune pathways, such as Type I IFNs, can induce a downstream global epigenomic
reprogramming that, although it does not involve permanent genetic changes (such as
mutations and recombinations occurring in adaptive immune responses), sustains changes
in gene expression and cell physiology responsible for mounting resistance and a stronger
secondary reaction to reinfections [133].

Supporting this idea, a comprehensive epigenomic study in human macrophages
showed that Type I IFNs potentiated TNF inflammatory function by “priming” chromatin
and increasing the amount of trimethylated histone H3 Lys 4 (H3K4me3) at the regulatory
elements of genes encoding for inflammatory mediators [132]. The presence of such
altered chromatin states and histone bookmarks that are stable over time was found to
induce the sequential occupancy of these genomic locations by IRFs and NF-κB and,
thus, to enhance their transcription and responsiveness to subsequent environmental
challenges [132]. Accordingly, Kamada and colleagues recently and elegantly demonstrated
that IFN-β stimulation confers transcriptional memory to fibroblasts, which was attributed
to the faster and greater recruitment of p-STAT1 and RNA polymerase II (Pol II) on ISGs
and to the acquisition of chromatin marks by H3.3 and H3K36 trimethylation [131].

Overall, Type I IFN-induced epigenomic changes can last for days to weeks and,
thus, persist beyond the period of Type I IFN expression and upstream JAK–STAT signal-
ing [130,134]. Such persistence confers transcriptional memory and sustains the expression
of ISGs. Conversely, for non-ISGs, although Type I IFN-induced epigenomic changes are
often transcriptionally silent, the current model posits that such bookmarking alters the
way these genes respond to subsequent stimulation [128]. Since a Type I IFN epigenomic
signature can increase and sustain immune inflammatory responses, it seems quite obvious
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that innate immune chromatin reprogramming can have deleterious effects in the patho-
genesis of autoimmune and cancerous diseases [133]. In light of this, further investigations
into Type I IFN genetic and epigenetic signatures for individual cell types are required to
decipher the molecular mechanisms of chromatin modifications and gene expression, in
order to provide novel biomarkers of disease pathogenesis and to develop new powerful
strategies for autoimmune disorder and cancer therapy.

4. Type I IFNs and Cancer: A Troubled Relationship

During the past few decades, the pleiotropic antitumor functions exerted by Type I
IFNs became universally acknowledged [135]. Regardless of their source, Type I IFNs play
a pivotal role in the dynamic relationship between the host immune system and cancer by
directly and indirectly affecting the different aspects of tumor generation, progression, and
treatment. In fact, although generally considered as pro-inflammatory cytokines, Type I
IFNs are reported to either restrain or promote tumor growth, and this depends on the
duration and intensity of the transduced signaling and/or the unleashed ISG profile in the
tumor microenvironment (TME) [136], as further discussed below.

4.1. Type I IFNs and Cancer Immunosurveillance

Type I IFN tumor intrinsic role is well documented in many animal models (see Box 1)
and is associated with the ability of these cytokines to regulate a plethora of biological
processes including cell proliferation, differentiation, survival, and invasion [137]. Specifi-
cally, Type I IFNs can affect cancer cell proliferation and exert a cytostatic action both by
prolonging or blocking the cell cycle [138,139]. Indeed, Type I IFNs are reported to upreg-
ulate the cyclin dependent kinase inhibitors 1A, 1B, and 2B [140] (CDKN1A, CDKN1B,
and CDKN2B, which are best known as p21, p27, and p15, respectively), which lead
to a delay of the G1-S phase transition [138,140–142], and to activate p38 MAPK [143]
or CrkL signaling pathways, the latter, in turn, interacting with the tumor suppressor
RAP1A, member of RAS oncogene family (RAP1A) [89,144]. Type I IFNs can also regulate
apoptosis by modulating both the extrinsic (death receptor-mediated) and the intrinsic
(mitochondrial) routes [145–147]. Accordingly, some of the best known apoptotic-related
genes, such as FAS, FASL, XAF-1, caspase-4, caspase-8, EIF2AK2 (best known as protein
kinase R, PKR), galectin-9, and 2’-5’-oligoadenylate synthetase (OAS), particularly the 9–2
isozyme, are ISGs [148]. Furthermore, a recent breakthrough by Frank and colleagues
established an interesting link between mitotic cell cycle arrest and IFN-β in the promotion
of necroptosis, a programmed form of necrosis, in apoptosis-resistant cancer cells through
the phosphorylation of receptor interacting serine/threonine kinase 3 (RIPK3 also known
as RIP3) [149]. Concerning the direct antitumoral functions of Type I IFNs, the induction
of cell senescence must be mentioned, as well. Indeed, as a result of the strong genomic
instability and DNA damage, often ascribed to cancer cells, Type I IFNs are produced
and drive the development of oncogene-induced senescence [150]. In this context, the
engagement of the cytosolic cGAS-STING signaling pathway seems to be essential for the
establishment of such important tumor-suppressive program [151,152].

Beyond their cytostatic and cytotoxic activities, Type I IFNs play a fundamental role in
coordinating a harmonized immune response against malignant cells. Pioneering studies
performed by Brouty-Boye and colleagues demonstrated that the exogenous administration
of crude Type I IFN preparations increased the survival of mice affected by lymphocytic
leukemia, regardless of the intrinsic sensibility of cancer cells to IFNs [153]. Since then,
multiple studies in both human and mice tumor models highlighted the importance of
these cytokines in influencing each step of the cancer immunity cycle [135,154]. In the early
1990s, Ferrantini’s group performed studies with different IFNα1 gene transduced cancer
cells (Friend leukemia, B16 melanoma, and TS/A mammary carcinoma) in syngeneic
immunocompetent mice and observed an important host-dependent tumor rejection com-
plemented by the development of a robust and protective antitumor immunity mediated
by CD8+ T cells [155,156]. That said, Dunn et al. proved that Type I IFNs intervene in all the
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three phases of the immunoediting process as review in Reference [157], with a prominent
role in the “elimination” stage [158]. By using immunocompetent mice, they specifically
demonstrated that endogenous Type I IFNs were required to reject MCA-induced sarcomas
and to prevent the outgrowth of primary carcinogen-induced tumors. Moreover, they also
observed that several MCA-induced sarcomas from Ifnar1−/− mice were rejected in a T
cell-dependent manner in wild-type (Wt) mice, thus suggesting that tumors arising in the
absence of Type I IFN responses are more immunogenic than tumors growing in IFNAR
competent hosts [157]. Along similar lines, Type I IFNs exert powerful immunoregulatory
effects on multiple cancer cell types (e.g., melanoma, breast, ovarian and colon cancer)
by upregulating the expression of surface tumor-associated antigens [159–162] via upreg-
ulation of MHC-I and -II class molecules [163,164], thus increasing the immunogenicity
of cancer cells and making them more vulnerable to immune-mediated recognition and
destruction. As confirmation of their antineoplastic activity, several important studies
describe Type I IFNs as negative regulators of cancer stemness. Cancer stem cells (CSCs,
also known as tumor-initiating cells) represent a small immature cellular population within
the tumor mass endowed with some unique properties, such as self-renew capacity, multi-
potency, therapy resistance, and tumorigenic and metastatic potential, that are responsible
for tumor progression, recurrence, and poor prognosis [165,166]. A recent study reported
that Type I IFNs limit CSC generation and survival, as demonstrated by the evidence
that chronic abrogation of endogenous Type I IFN signaling leads to the emergence of
more aggressive breast ALDH1+ CSCs in HER2/neu transgenic mice [167]. In accordance,
Doherty et al. obtained similar results when studying the role of IFN-β on triple-negative
breast CSCs [168]. In support of this, already, in 2009, Yuki and colleagues observed how
IFN-β negatively affected proliferation, self-renewal capacity, and tumorigenesis of human
glioma-initiating cells by inducing their terminal differentiation into oligodendrocytes
via STAT3 activation [169]. Another interesting study also underscored the role of Type I
IFNs as repressors of glioma stem-like cells (GSCs) by inhibiting their proliferation and
self-renewal potential [170]. Yet, by downregulating STAT1, GSCs evade the inhibitory
pressure of Type I IFNs in the TME and fuel tumor outgrowth [171]. Moreover, murine lung
cancer cells transduced with Ifnb1 gene showed a significant decrease in their tumorigenic
and metastatic capacity, as compared to control cells [170]. Consistent with these findings,
IFN-α has also been reported to specifically target the side population of ovarian cancer
cells, a subset of cells endowed with stem-like properties [172]. However, as we are going
to explain better in the next paragraph, the contribution of Type I IFN signaling on tumor
heterogeneity and CSC maintenance/induction is still debated and provides opposite and
contradictory results.

To date, Type I IFNs have gained big attention as crucial factors boosting and bridging
innate and adaptive immunity. In this regard, Type I IFNs behave as activators of multiple
immune cells, including DC, macrophages, NK, T, and B cells, to promote antitumor immu-
nity. Briefly, DCs, and particularly conventional DCs, are specialized antigen presenting
cells (APCs) with the unique ability to process exogenously captured antigen for presen-
tation on MHC-I molecules to CD8+ T cells. A substantial number of scientific findings
highlights the importance of Type I IFN signaling in the maturation and activation of DCs
by enhancing their ability to cross-prime and activate tumor-specific CD8+ T cells through
the upregulation of the costimulatory molecules MHC-I, MHC-II, CD40, CD80, CD86 [173]
and the retention of antigenic particles engulfed from apoptotic cells [174]. Indeed, mice
lacking IFNAR1 receptors in DCs are unable to reject highly immunogenic tumor cells,
and DCs from these mice display an impaired antigen cross-presentation ability [175].
Upon tumor antigen presentation, CD8+ CTLs, with the help of CD4+ T cells, acquire the
killing capacity for tumor elimination. Many studies have demonstrated the fundamental
implication of Type I IFN signaling in the generation, proliferation, differentiation and
activity of antigen activated CD8+ T cells [176,177]. Type I IFNs do not only promote CTL
survival by increasing Bcl-XL expression and IL-2 production [178] but also contribute
to their recruitment into the TME through enhanced release of the chemokines CXCL10,
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CXCL9, and CCL5 [179,180]. Type I IFNs also directly enhance CD8+ T cell responsiveness
to cognate antigens [181,182] and stimulate the acquisition of CTL effector function through
activating the STAT3-Granzyme B (GzmB) pathway, thus ensuring tumor suppression [183].
While promoting CD8+ T cell differentiation into GzmB+ effector cells, Type I IFNs con-
currently seem to limit the expansion of the newly identified TCF1+CXCR5+ memory and
stem-like CD8+ T cell compartment, responsible for sustaining the ongoing T cell responses
during chronic viral infections and cancer, and preferentially responding to anti-PD-L1 im-
munotherapy [184–186]. Remarkably, since human lymph nodes are protected from Type I
IFN signaling, they represent the long-term reservoirs for maintenance of memory TCF1high

CD8+ T cells [187]. Type I IFNs were also reported to shape CD4+ T cell differentiation,
expansion and survival and to reinforce the Th1 lineage commitment [188,189]. Notably,
Type I IFNs are known to dampen regulatory T cell (Treg) recruitment and activation,
thus contrasting the generation of an immunosuppressive TME [190–192]. Concerning
their innate immunoregulatory functions, Type I IFNs are responsible for the induction
of NK cell cytotoxicity. Although mature NK cells did not require Type I IFNs for cancer
surveillance [193], the loss of Type I IFN responsiveness negatively impacts on NK cell
antitumor immunity and impairs primary and metastatic tumor clearance in multiple mod-
els of breast cancer [194,195]. As confirmation of their pleiotropic role in the TME, Type I
IFNs also negatively regulate the accumulation and activity of myeloid-derived suppressor
cells (MDSCs) [196,197], while stimulating monocyte differentiation into M1-polarized
pro-inflammatory macrophages [198], and the production of various pro-inflammatory
cytokines (e.g., TNF-α, IL-1, IL-6, IL-8, IL-12, and IL-18) [199]. To establish a more complete
framework, Type I IFNs also promote polarization of tumor-associated neutrophils toward
an anti-tumor N1 phenotype [200], increase the cytotoxicity of γδ T and NKT cells, as ob-
served in leukemia and melanoma settings [201–203], and enhance the antibody-mediated
response by promoting the isotype switching in B cells [204,205].

In addition to a direct impact on immune cells, Type I IFNs have extrinsic effects on
tumors by regulating their metabolism and the angiogenic process [206]. In light of their
ability to impair endothelial cell proliferation and migration, to promote the infiltration
T cells able to remodel the tumor vasculature, and to downregulate the expression of the
vascular endothelial growth factor (VEGF), Type I IFNs have been longtime considered as
inhibitors of angiogenesis [207,208]. Moreover, despite a detailed description is beyond the
scope of this review, Type I IFNs drive the metabolic reprogramming of immune cells in
the TME, thus impacting on their unique functions [209]. To give some examples, Type I
IFNs simultaneously stimulate fatty acid oxidation and glycolysis in pDCs [209,210], while
inhibiting cholesterol synthesis in macrophages in a STING-dependent manner [211].

4.2. Type I IFNs and Cancer Immunoescape

At odds with the benefits of Type I IFNs in tumor control, a substantial number of
scientific studies also describes pro-tumoral properties for these cytokines. Despite being
classically depicted as pro-apoptotic agents, IFN-α and IFN-β can induce cell survival and
protect cancer cells against apoptotic stimuli by activating the NF-κB pathway in a wide
variety of cancer types [212,213]. Type I IFNs also upregulate the survival factors MCL1, the
apoptosis regulator BCL2 family member (MCL1) and interferon alpha inducible protein
6 (IFI6, best known as G1P3) in myeloma and estrogen-receptor positive breast cancer,
respectively, thus promoting poor patient outcome [214,215]. Furthermore, in lung and
head and neck cancers, the interferon induced transmembrane protein 1 (IFITM1) was
shown to enhance in vivo tumor growth and tissue invasion at early stage [216,217].

One of the most important emerging hallmarks of cancer is the ability of cancer cells
to evade immune responses. As already described above, Type I IFNs are involved in
the immunoediting process, and, while intervening in the phase of “elimination”, they
also foster the subsequent stages of “equilibrium” and “escape”. During these phases,
heterogeneous and genetically unstable tumors, initially held in check by the immuno-
surveillance, go through a progressive and constant immune pressure culminating with
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the selection of poor immunogenic cancer cell variants able to evade immune recognition
and/or destruction [158]. Coherently, aggressive tumors escaping immune control present
a consistent dysregulation and, specifically, downregulation of Type I IFN production
and responsiveness [116]. Along with this, Type I IFNs contribute to the generation of an
immunosuppressive TME taking part to a process known as immunosubversion, during
which cancer cells skew immune cells toward dysfunctional or immunosuppressive phe-
notypes [218]. In this scenario, Type I IFNs elicit the suppressive or tolerogenic activity
of monocyte-derived DCs by promoting the expression of indoleamine 2-3’-dioxygenase
(IDO) and the production of IL-10 and other anti-inflammatory mediators, thus ultimately
leading to T cell response attenuation [219–221]. Type I IFNs also trigger tumor intrinsic
IDO production which enhances the immunosuppressive Treg cell activity [222,223] and, as
they were involved in the senescence-associated secretory phenotype [224], potentiate the
expression of IL-6, which high serum levels are strongly correlated with immunosuppres-
sion, accelerated disease progression and poor overall survival in a variety of cancers [225].
Moreover, prolonged Type I IFN signaling could also promote T cell exhaustion and hence
immune resistance by stimulating the upregulation of the immune checkpoint ligand PD-L1
(best known as CD274 molecule) [226,227]. Although this evidence supports the clinical
development of the combination of Type I IFNs or Type I IFN-inducing therapies with
monoclonal antibodies targeting the PD-1/PD-L1 axis [228], a recent study by Jacquelot
and colleagues reported that Type I IFN signaling promotes adaptive resistance to anti
PD-1/PD-L1 immunotherapy by upregulating nitric oxide synthase 2 (NOS2) [229]. Type I
IFNs also regulate the function of immune cells (such as tumor-associated macrophages
(TAMs), neutrophils, and MDSCs) that help form the pre-metastatic niche, thus ensuring a
suitable environment for tumor development and dissemination [230].

Importantly, Type I IFNs and the ISG IFN-α-inducible protein 27 (IFI27) were asso-
ciated with the process of epithelial-to-mesenchymal transition (EMT) in ovarian cancer,
leading to increased cancer stemness, tumor invasiveness, and therapeutic resistance [231].
Therefore, contrarily to the CSC inhibitory role of Type I IFNs previously described, other
studies point to a role of Type I IFN signaling in the generation and/or maintenance of
CSCs. First, IFN-αwas reported to foster stem-like properties in oral squamous cell carci-
noma cells [232] and to affect the invasive potential of pancreatic ductal adenocarcinoma
(PDAC) cells by upregulating CSC markers, such as CD24, CD44, and CD133 [233]. Simi-
larly, IFN-β has also been linked to cancer stemness promotion in PDAC by inducing TAM
ISG15 ubiquitin like modifier (ISG15) secretion [234], which has also been related to CSC
phenotype induction in nasopharyngeal carcinoma [42]. More recently, Qadir et al. found
a robust connection between death receptor CD95/FAS, Type I IFN-dependent phosphory-
lation of STAT1 and stemness in human breast cancer and squamous carcinoma cell lines,
which can, in part, explain the correlation between STAT1 activation and therapy resistance
observed in these cancer cells [235]. Remarkably, the stimulation of TLR3 and RIG-I induces
in somatic cells an innate epigenetic signature which is associated to a process known as
“transflammation” [236], involving chromatin remodeling and subsequent nuclear repro-
gramming, cell plasticity, pluripotency, and even malignant transformation [237,238]. In
line with these data, experiments in breast cancer cells put in evidence that activation of
NF-κB and β-catenin signaling downstream of TLR3 promoted the enrichment of a subset
of cells with a CSC-like phenotype [239]. Similarly, activation of Type I IFN/IRF7 axis is
critical for immunological tumor dormancy in breast cancer, an adaptive and protective
mechanism that malignant cells adopt to survive stress conditions of the TME and to drive
resistance to chemotherapies that preferentially target proliferating cells [240,241].

As previously outlined, a growing body of literature is interested in defining IFN-
related signatures responsible for clinical response to or therapeutic resistance of multiple
cancer types. In this regard, a panel of 8 ISGs (STAT1, MX1, ISG15, OAS1, IFIT1, IFIT3,
IFI44, and USP18), constituting the “IFN-related DNA damage resistance signature” (IRDS),
was associated with cancer cell-intrinsic resistance to various DNA damaging agents
(such as anthracyclines, taxanes, cyclophosphamide, methotrexate, and 5-fluorouracil) and
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radiation therapy, as well as with poor prognosis in a variety of malignancies, including
breast cancer and glioblastoma [126,127]. Notably, IFN-β was endowed with the capability
to directly upregulate the expression of IRDS genes via U-STAT1 and IRF9 and, thus, to
cause resistance to DNA damage and radiotherapy [78].

On the whole, these observations lend further support to the double-edge sword of
Type I IFNs in the context of cancer, exerted by controlling tumor growth and promoting
tumor escape (as summarized in Figure 1). In this regard, abundant hi-profile literature
associated this dichotomy to the duration and intensity of Type I IFN signaling [98,242].
Specifically, acute induction of Type I IFNs, as during immunogenic chemotherapy, induces
strong and productive inflammation [3,243], while chronic Type I IFN production is mainly
responsible for immunosuppression and therapy resistance [167,229]. Indeed, the length
and the strength of Type I IFN signaling are two main factors defining the patterns of ISG
expression [24] and epigenetic modulation [128] and, as such, are two major determinants
of either beneficial or detrimental “imprinting” on cancer and immune cells, which, thus,
tip the balance toward immune control or immune escape, respectively.
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simple visual inspection, palpation and the use of a common caliper, or (ii) orthotopically, which mimics tissue site-
specific pathology, or even (iii) systemically (intraperitoneally or intravenously), which allows to study metastatic dis-
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Figure 1. The yin and yang of Type I IFNs in the TME. Type I IFNs can favor cancer surveillance
or cancer escape by triggering different ISGs and acting on the various cell types constituting the
TME. When the tumor-suppressive genetic signatures prevail, Type I IFNs limit cancer (stem) cell
expansion and angiogenesis, while promoting effective antitumor immune responses. Otherwise,
the onset of tumor-promoting genetic signatures exacerbates the dark sides of Type I IFNs, thus
favoring cancer progression. CSC: cancer stem cell; DC: dendritic cell; GzmB: granzyme B; NK:
natural killer; VEGF: vascular endothelial growth factor, TAM: tumor-associated macrophages; TAN:
tumor-associated neutrophils; Treg: regulatory T; MDSC: myeloid-derived suppressor cell; EMT:
epithelial-to-mesenchymal transition; IDO: indoleamine 2-3’-dioxygenase.
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Big issues that need an urgent solution are when and through which ISGs and epige-
netic signatures, Type I IFNs, do paradoxically favor tumor progression. This knowledge
could help by-pass ineffective and even deleterious clinical outcomes and develop opti-
mized, informed, and hopefully curative chemo-immunotherapies.

Box 1. Mouse models to assess Type I IFN role in cancer: principles and applications.

Current in vivo approaches to assess the relationship between cancer and immune cells, their co-evolution and the signatures
involved in these dynamics, including Type I IFNs, their upstream triggers and downstream effectors, encompass (i) transplantable,
(ii) carcinogen-induced, (iii) genetically engineered, and (iv) humanized mouse models. In transplantable models, inbred mice,
usually from C57Bl/6 or BALB/c strains, are engrafted with histocompatible cancer cell lines either (i) heterotopically, generally
subcute into the lower flank, which facilitates tumor growth monitoring by simple visual inspection, palpation and the use of a
common caliper, or (ii) orthotopically, which mimics tissue site-specific pathology, or even (iii) systemically (intraperitoneally or
intravenously), which allows to study metastatic dissemination [244]. Although displaying many advantages (e.g., synchronous and
fast growth of tumors, reproducibility of data, and low costs), transplantable models are undeniably poorly “realistic” as they lack the
heterogeneous and multi-step development of cancer cell variants with related effects on the parallel evolution of immune responses
as it occurs during “natural” carcinogenesis [244]. Carcinogen-induced models bypass all these limitations. Indeed, these models
allow the development of more realistic tumors through the local treatment with ultraviolet (UV) radiation or chemicals (mainly
7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) and 3’-methylcholanthrene (MCA)) [245].
More advanced technologies of genetic engineering let an improved mimicking of spontaneous tumorigenesis through the transgenic
expression of oncogenes and/or the inactivation of tumor suppressor genes in germline cells, so-called genetically engineered mouse
models (GEMMs), or, in some somatic cells, so-called non-germline GEMM (nGEMM) [246]. These models allow for studying the
mechanisms of oncogenic transformation, cancer evolution and therapeutic responses. At the forefront of preclinical research in
oncoimmunology, humanized mice have become increasingly refined and used as they closely recapitulate disease pathogenesis
and drug testing in humans [247]. On the whole, all these mouse models have provided important insights into the cancer-host
relationship also in association with the removal of essential immune-related genes. Their use have been instrumental in defining and
supporting the dual role of Type I IFNs and their ISGs in cancer promotion and cancer suppression [248]. Indeed, cancer cells deficient
for cardinal elements of Type I IFN production or response could be implanted inmunocompetent or nGEMM histocompatible mice
to assess the cancer cell autonomous role of Type I IFNs [3]. Alternatively, transgenic mice (e.g., Ifnar−/−, Tlr3−/−, among the others)
could be either implanted with Wt cancer cells [3] or treated with carcinogens [248] or genetically engineered to develop spontaneous
tumors [167] to study Type I IFN signaling on immune and even stromal cells.
Therapeutic and prophylactic procedures are the most common experimental settings applied in these models. In the therapeutic
setting, tumors (either Wt or engineered to lack or overexpress a selected gene) are treated with specific drugs (either as monotherapy
or in combination) and local tumor growth, systemic dissemination and mice survival are considered primary endpoints. In the
prophylactic setting (mainly used to assess the immunogenic potential of drugs), in vitro killed cancer cells (either as such or loaded
on syngeneic DCs) are injected in the subcute of mice, and, after a latency period of 10 to 14 days, their ability to prevent or control a
rechallenge with living cancer cells of the same type represents a robust estimate of the elicitation of an adaptive, tumor specific
immune response, i.e., bona fide ICD [249]. In both settings, mice showing long-term disease eradication could be further challenged
to assess the specificity and memory of immune response [249].
Currently, literature is rife with descriptions of novel alternative strategies to in vivo preclinical studies, including ex vivo, in
sitro, and the most innovative immune-oncology chips [250,251], which are out of our scope and have been extensively reviewed
elsewhere [244].

5. Type I IFNs and Cancer Therapy: From Response to Resistance

Type I IFNs have emerged as critical determinants of response and even resistance
to several anticancer therapies, including conventional chemotherapy, radiation therapy,
target therapy and immunotherapy [116,135]. As above comprehensively described, Type
I IFNs exert a plethora of immune stimulatory effects [24], which make these cytokines
pivotal regulators of immune surveillance. However, depending on the dose and timing,
and the downstream induced signatures, Type I IFNs can and do promote tumor progres-
sion and immune evasion [24]. Here, we describe the lab and clinical use of Type I IFNs in
oncology as we offer a view of their role in affecting the response to diverse therapeutic
strategies.

5.1. Type I IFNs and Cytotoxic Therapies

Type I IFNs were shown to critically contribute to the induction and the perception
of cancer immunogenic cell death (ICD) upon anthracycline-based chemotherapy [3].
Indeed, anthracyclines, such as viruses, lead to cancer cell-autonomous, TLR3-mediated,
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Type I IFN production, that triggers autocrine and paracrine IFNAR-dependent circuits,
finally resulting in the expression of various ISGs, including CXCL10 (known to recruit
innate immune cells). Of note, in several independent cohorts of breast cancer patients,
the ISG MX Dynamin-Like GTPase 1 (MX1) was shown to be upregulated following
anthracycline-based therapy and to predict clinical response to treatment [3]. On the
whole, these observations indicate that “viral mimicry” constitutes a hallmark of successful
immunogenic chemotherapy [3,252]. In line with these findings, blocking of IFNAR1
signaling with monoclonal antibodies, was shown to nullify the benefits of target therapy
against the human epidermal growth factor receptor 2 (HER2, also known as ERBB2) and
the epidermal growth factor receptor (EGFR) [253,254]. Type I IFNs were also shown to be
an added value when combined with the ICD inducer cyclophosphamide as they induce
the proliferation and activation of CD8α+CD11c+ DCs in mice bearing transplantable
lymphomas [243]. The synergistic effects of Type I IFNs have been extensively reviewed in
Reference [255] and are also effective in combination with radiation therapy. Indeed, in a
pioneering study, Burnette et al. showed that local ablative radiation therapy triggers the
production of IFN-β by myeloid immune cells infiltrating B16F1 melanomas, followed by
a strengthening of tumor antigen cross-presentation and treatment response in Wt but not
Ifnar1−/− mice [256]. Subsequent studies confirmed the role of radiation therapy-induced
Type I IFNs in stimulating cancer immune surveillance [179,257]. In particular, in a mouse
model of colorectal carcinoma, the activation of DCs following radiation therapy was
shown to rely on cGAS > STING-mediated cytosolic DNA sensing [257]. In this study, the
administration of recombinant IFN-β at the tumor site was shown to restore the efficacy of
radiation therapy in cGas−/− and Sting−/− mice [257].

5.2. Type I IFN Monotherapies

Since the first report on their antitumor effects more than 50 years ago [258], Type I
IFNs have been the subject of an intensive wave of clinical investigation, which leads to
the approved used, by several regulatory agencies, of natural, unmodified recombinant,
and pegylated IFN-α variants (Table 1), these last having longer half-life and persistent
bioavailability [57,259]. However, over time Type I IFNs have been replaced by new, more
efficient therapies. It is right and proper to note that Type I IFNs were used in cancer
medicine when their main mechanisms of action were unknown and were conceived, at
high doses, as conventional cytostatic drugs. The relevant off-target toxicity of high-dose
Type I IFNs finally dictated the failure of these cytokines as clinical drugs. More recent
discoveries of the immune modulatory and antiangiogenic effects of Type I IFNs, opened
up a plethora of novel clinical indications, thus repositioning Type I IFN cytokines in new-
generation cancer therapy, and particularly immunotherapy [135]. Systemic administration
of pegylated IFN-α2b in patients with melanoma has shown beneficial effects attributable
to the induction of immune infiltration within tumor lesions [260,261]. A renaissance of
Type I IFNs also pertains the treatment of chronic myeloid leukemias. Indeed, the use of
pegylated IFN-α together with the tyrosine kinase inhibitor Imatinib, resulted in higher
rates of clinical responses and in positive immune modulation [262–265].

More than 450 clinical trials are globally assessing the efficacy and the safety of
Type I IFN formulations either as monotherapy or as adjunctive to conventional and new
generation strategies (https://clinicaltrials.gov) (accessed date on 1 August 2021). Here,
below, we offer a view of Type I IFNs in combination (immuno)therapies.

https://clinicaltrials.gov
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Table 1. Type I IFN formulations for clinical use.

Name Company Type I IFN Subtype Indication(s)

Alfaferone Alfa Wassermann Natural leukocyte interferon
alpha

Hairy cell leukemia, multiple
myeloma, non-Hodgkin lymphoma,

follicular lymphoma, chronic
myelogenous leukemia, malignant
melanoma, AIDS-related Kaposi’s

sarcoma

Belerofon Nautilus Biotechnology Interferon alpha /

HeberFERON
Center for Genetic
Engineering and
Biotechnology

Interferon
alpha-2b/interferon gamma Basal cell cancer

IFN alfa-2b XL Flamel Technologies Interferon alpha-2b /

Infergen Amgen Interferon alfacon-1 Non-Hodgkin’s lymphoma, ovarian
cancer

Intron A Biogen Idec Interferon alpha-2b

Chronic myeloid leukemia,
follicular lymphoma, hairy cell
leukemia, malignant melanoma,

multiple myeloma, non-Hodgkin’s
lymphoma, AIDS-related Kaposi’s

sarcoma

Joulferon Human Genome Sciences Albinterferon alpha-2b /

Locteron Biolex Interferon alpha-2b /

Multiferon Viragen HuIFN-alpha Chronic myeloid leukemia, hairy
cell leukemia, malignant melanoma

Novaferon Genova Biotech Company Interferon alpha Colorectal cancer, neuroendocrine
tumors, pancreatic cancer

Pegasys Hoffmann-La Roche Peginterferon alpha-2a Malignant melanoma, renal cell
carcinoma

PegIntron Enzon Pharmaceuticals Peginterferon alpha-2b
Malignant melanoma,

cholangiocarcinoma, chronic
myeloid leukemia, solid tumors

Reiferon Retard Rhein Minapharm Biogenetics Peginterferon alpha-2a /

Roferon A Hoffmann-La Roche Interferon alpha-2a

Chronic myeloid leukemia,
cutaneous T-cell lymphoma, hairy
cell leukemia, Kaposi’s sarcoma,

malignant melanoma,
non-Hodgkin’s lymphoma, renal

cell carcinoma

Sylatron Merck Peginterferon alpha-2b Melanoma

Wellferon Glaxo Wellcome SA Interferon alpha-n1 Chronic myeloid leukemia, Hairy
cell leukemia

5.3. Type I IFNs and Immunotherapies

Due to their key role in cancer immune surveillance, Type I IFNs are also considered
essential for the effectiveness of various immunotherapies and have entered clinical testing
in association with immune checkpoint inhibitors (ICIs), adoptive cell therapies (ACTs),
cancer vaccines, and oncolytic virotherapies (OVs).

ICIs are considered pillars of current anticancer therapies [266]. Despite impressive
clinical results, therapy resistance and disease relapse can be observed and mainly rely
on cancer cell intrinsic and extrinsic factors within the TME [267]. Defects in Type I IFN
signaling were shown to affect the efficacy of anti-PD1 based therapies [228,268–270]. Simi-
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larly, in mice and patients with triple negative breast cancer (TNBC), age-related immune
dysfunction impairing ICI therapeutic benefits was shown to rely on decreased Type I IFN
signaling [271]. Accordingly, treatment with the STING agonist 5,6-dimethylxanthenone-
4-acetic acid restored the effectiveness of ICI-based therapy [271]. Consistent with these
observations, a clinical trial (NCT03010176) testing the combination of the anti-PD-1 anti-
body Pembrolizumab with the STING agonist MK-1454, in patients with TNBC, yielded
better response rates and survival. Accordingly, improved clinical responses were ob-
served in patients with stage II and stage III melanomas treated with the anti-CTLA4
Tremelimumab combined with high-dose IFN-α2b [272].

A growing amount of evidence has given impetus to ACT as a potent antitumor
tool [273,274]. T cells are unique in the cancer treatment arena as they directly and specif-
ically kill cancer cells, have long-term persistence, and may be engineered to express
high-avidity tumor-specific receptors. Type I IFNs were shown to interpose the processes
of graft-versus-leukemia (GVL) and graft-versus-host disease (GVHD) by reducing allore-
active donor T-cell expansion, thus providing protection from CD4-dependent GVHD [275].
Of note, Katlinski et al. recently proposed a Type I IFN-related mechanism of immune
escape, which affects the activity of chimeric antigen receptor (CAR) T cell transfer [276].
In more detail, colorectal cancer cells were shown to induce the degradation of IFNAR1 on
CTLs, thus impairing their survival. Genetic stabilization of IFNAR1 preserved CTL viabil-
ity and increased the efficacy of CAR-T targeting the fibrinogen activated protein [276].

Therapeutic cancer vaccines experienced a revival in the last decade. A deeper knowl-
edge of tumor antigens and the development of diverse strategies of antigen delivery,
helped the design of novel cancer vaccines to educate immune effector cells about what
cancer cells “look like” so that they can be recognized and destroyed, thus reducing and,
hopefully, avoiding non-specific or adverse reactions [277]. However, the induction of
immune suppression and the acquisition of immune resistance still represent significant
challenges. The importance of Type I IFNs in improving the effectiveness of cancer vac-
cines was provided by various studies. In particular, Fu et al. showed that the use of
STING agonists in combination with irradiated GM-CSF–secreting whole-cell vaccine (so-
called STINGVAX) enhance the activity of tumor-specific CTLs in diverse murine tumor
models [278]. Of note, such tumor infiltrating CTLs in STINGVAX-treated mice showed
a significant up-regulation of PD-L1, which suggests the possibility to combine STING-
VAX with ICIs [278]. Other clinical studies in melanoma patients receiving peptide-based
vaccination (Melan-A/MART-1 and NY-ESO-1) have reported an enhanced DC matura-
tion/activation and CD8 T cell activity when the vaccine was combined with low dose
IFN-α [279,280].

Apparently at odds with the traditional view of Type I IFNs as antiviral agents, an
ensemble of recent studies have shown that Type I IFNs actively contribute to the induction
of antitumor-specific responses also in the context of OV [281]. Indeed, Type I IFN signaling
was shown to play a role in inducing inflammatory responses in B16 melanomas locally
treated with oncolytic Newcastle disease virus combined with systemic CTLA4 blockade.
Of interest, the antitumor effects of OV were appreciable also in distant (non-virally injected)
tumors [281]. Similarly, the therapeutic activity of a Semliki Forest virus encoding IL-12
was reported to strongly rely on a vector-induced Type I IFN response in the host [282].

5.4. Type I IFNs and Therapy Resistance

Although Type I IFNs have improved the clinical outcome in specific therapeutic
settings, the development of resistance represents a recurrent problem. The complexity and
the magnitude of Type I IFN signaling, together with the plasticity and the heterogeneity
of cancer cells and their ever-evolving cross-talk with host immune cells, leads to the
insurgence of drug resistance by distinct mechanisms, that we broadly classify as (i)
unresponsiveness to Type I IFNs and (ii) Type I IFN-induced resistance.

Unresponsiveness to Type I IFNs. A variety of mechanisms were described to affect
the sensing of Type I IFN signals. These include: (i) degradation of IFNAR1 in cancer and
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immune cells through ubiquitination driven by the phosphorylation on serine residues.
This pathway is triggered by a variety of stress- and inflammation-related signals within
the TME (e.g., hypoxia [283], proinflammatory cytokines [284], and VEGF [285]) and leads
to tumor progression and immune suppression by altering the expression of the ISGs IFIT2,
IRF7, MX2, and USP18 in cancer cells and of IL-2 in immune cells [150,276]; (ii) impairment
of IFNAR1 signaling through SOCS-mediated prevention of STAT1 phosphorylation [286];
(iii) silencing or loss-of-function mutations of JAKs and STATs [157,270,287,288]; and (iv)
downregulation of IRFs [289–291].

Type I IFN-induced resistance. Groundbreaking studies by Andy J Minn established
the existence of an IFN-related DNA damage resistance signature (IRDS) responsible
for an adaptive resistance to chemotherapy and radiation therapy [126]. Subsequent
findings confirmed a role for Type I IFNs in adaptive resistance to therapy, as they induce
surface PD-L1 on cancer cells [292]. However, prolonged Type I and II IFN exposure,
was associated to a state of chronic resistance to anti PD-L1 therapy [227]. Such ICI
resistance was described to rely on epigenomic changes on cancer cells, the expression
of various ISGs (i.e., Tnfrsf14, Lgals9, MhcII, Ifit, Mx1), and induction of multiple T cell
inhibitory receptor networks [227]. These findings are in line with previous reporting
of a persistent Type I IFN related signature in RT-resistant squamous cell carcinomas,
and breast, prostate, and glioma cells [293,294]. Of note, Type I IFNs were found to be
required for CD95-induced stemness in cancer cells [235]. The mechanisms underlying
CSC induction rely on STAT1 phosphorylation and the downstream activation of PLSCR1,
USP18, and HERC8 [235]. Along similar lines, exosome transfer from stroma to cancer cells,
was shown to drive RIG-I > STAT1-dependent signaling while promoting cancer stemness
and therapy resistance [295]. Further confirming that Type I IFNs could stay at the pinnacle
of therapy resistance, a more recent study described chemotherapy-induced activation of
STING-mediated type I IFN signaling as a cell-intrinsic mechanism of cell survival and
regrowth in diverse breast cancer cell lines [296]. On the whole, these works point out
the need to dig deeper into viral-like signatures in cancer in order to tailor and optimize
therapy. Indeed, therapeutic failure is not an option. Only a deep understanding of the
players and the dynamics of cancer adaptation to therapies will help overcame resistance
and reach effectiveness as the only possibility.

6. Conclusions and Future Perspectives

Type I IFNs are master regulators of cancer immunity as they tip the balance between
cancer immune surveillance and cancer immune escape and between therapy response and
therapy resistance. The complexity of Type I IFN signaling networks, and the plasticity of
their downstream effects within the TME, leaves no doubt that a better understanding of
the where, when, and how Type I IFNs should be induced or delivered in tumors in a way
that promotes disease control, while preventing deleterious effects, will have invaluable
insights in cancer management. Filling this gap of knowledge will indeed help to open
the way for the development of innovative (combinatorial) strategies that will yield more
effective and durable responses.
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