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Simple Summary: To properly interact with our environment, the brain must be able to identify
external stimuli, process them, and make the right decisions all in a short time. This may involve
several brain regions interacting together by sharing information birectionally via rhythmic activity.
Such flexibility requires the functional connectivity between the areas to be dynamic, and a key
question is the relevant parameter and operating regimes that make this possible in spite of fixed
structural connectivity. Working towards this goal, we consider two coupled brain regions, each
of which exhibits a noisy rhythm, a commonly observed type of neural activity. Such rhythms
can be induced by the stochasticity in the neural circuitry, or be autonomously generated through
nonlinearities and not necessitating noise. For these two types of rhythms, we computed the amount
of information shared between the brain areas and the preferred direction(s) of sharing. We found
that without the coupling delay, the flexibility needed by the brain to perform cognitive tasks requires
the rhythms to be autogenerated rather than noise-induced. This is the case even with asymmetry
or heterogeneity. This suggests that the importance of the dynamical regime has to be taken into
account when modeling interacting neural rhythms from an information theoretical point of view.

Abstract: Brain areas must be able to interact and share information in a time-varying, dynamic man-
ner on a fast timescale. Such flexibility in information sharing has been linked to the synchronization
of rhythm phases between areas. One definition of flexibility is the number of local maxima in the
delayed mutual information curve between two connected areas. However, the precise relationship
between phase synchronization and information sharing is not clear, nor is the flexibility in the face
of the fixed structural connectivity and noise. Here, we consider two coupled oscillatory excitatory-
inhibitory networks connected through zero-delay excitatory connections, each of which mimics
a rhythmic brain area. We numerically compute phase-locking and delayed mutual information
between the phases of excitatory local field potential (LFPs) of the two networks, which measures the
shared information and its direction. The flexibility in information sharing is shown to depend on
the dynamical origin of oscillations, and its properties in different regimes are found to persist in
the presence of asymmetry in the connectivity as well as system heterogeneity. For coupled noise-
induced rhythms (quasi-cycles), phase synchronization is robust even in the presence of asymmetry
and heterogeneity. However, they do not show flexibility, in contrast to noise-perturbed rhythms
(noisy limit cycles), which are shown here to exhibit two local information maxima, i.e., flexibility. For
quasi-cycles, phase difference and information measures for the envelope-phase dynamics obtained
from previous analytical work using the Stochastic Averaging Method (SAM) are found to be in
good qualitative agreement with those obtained from the original dynamics. The relation between
phase synchronization and communication patterns is not trivial, particularly in the noisy limit cycle
regime. There, complex patterns of information sharing can be observed for a single value of the
phase difference. The mechanisms reported here can be extended to I-I networks since their phase
synchronizations are similar. Our results set the stage for investigating information sharing between
several connected noisy rhythms in neural and other complex biological networks.
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1. Introduction

The brain is a complex biological system composed of many subsystems. To perform
important tasks such as perception, cognition and behaviour, its subsystems must coordi-
nate information in a dynamic and flexible manner. Rhythmic activity is found in several
brain areas such as the primary visual cortex [1,2] and observed in local field potentials and
electroencephalograms. In particular, fast rhythms called gamma oscillations (30–100 Hz)
are believed to play an important role in communication between areas [3–5]. One long-
standing hypothesis for oscillatory communication in the brain assumes that it requires
phase synchronization or coherence between interacting components [6–8]. According to
this communication through the coherence (CTC) hypothesis, dynamic changes in neuronal
synchronization should allow flexibility in communication in terms of directionality and
timing. However, anatomical connections between brain areas are fixed which may, along
with noise, impede flexible CTC. Thus, basic stochastic aspects of flexible communication
with fixed connections are not well understood, and advancing knowledge in that direction
is a prelude to a deeper view of CTC in the presence of connection strength variations due
to synaptic and other plasticity mechanisms.

From a dynamic point of view, two distinct mechanisms can give rise to oscillations.
One is the self-sustained periodic rhythm [9] with a constant amplitude, frequency, and reg-
ularly increasing phase. Such a “limit cycle” becomes a noise-perturbed limit cycle in
the presence of weak noise. The other is the noise-induced rhythm (see [10] and refer-
ences therein). Such a “quasi-cycle” requires noise to exist, otherwise any oscillatory
behaviour stemming from an initial condition decays to and is replaced by a constant.
With noise, the quasi-cycle amplitude fluctuates more strongly than for a limit cycle, as do
the frequency and phase. In neuroscience, quasi-cycles are likely to include in vivo short
epochs of synchrony called “bursts”, during which the amplitude of the collective rhythm
is high [2,11,12]. Burst onset times and durations are random variables whose statistics
can determine healthy vs. diseased brain states. The main motivation of our study is
to advance our knowledge of how quasi-cycles can synchronize between areas and thus
share information in spite of this burstiness, especially in comparison to noise-perturbed
limit cycles.

The basic stochastic nature of quasi-cycles may limit their ability to synchronize with
other brain areas displaying rhythms. Alternately, it may endow them with more flexibility
compared to noisy limit cycles. We will see below that the issue of flexibility is a subtle one,
even if the connection delays between two individually rhythmic subsystems are negligible
as assumed in our work. In fact, the shape of the delayed mutual information function
(dMI—defined below) between two gamma rhythm-generating subsystems, including the
number, location and heights of its peaks, will be shown below to critically depend on the
origin of the rhythms, the degree of heterogeneity of the networks and the asymmetry of
their coupling.

The synchronization of gamma oscillations has been mostly studied using noise-
perturbed limit cycles, for which an analysis in terms of phase synchronization is effec-
tive [13]. Phase synchronization of coupled noisy limit cycles has been intensively studied
these last decades using simple models of interacting phases such as the Winfree and
Kuramoto models [14–16] or more realistic biophysical mean-field [17,18] and spiking [19]
models. The phase-locking of two noisy limit cycles is usually analyzed using the dynamics
of their phase difference [20]. A mean phase difference of zero signifies In-phase locking
(IP), while a mean of ±π indicates Anti-phase locking (AP). Between these two cases is
out-of-phase locking (OPL) which can be seen in coupled limit cycles, but also in coupled
quasi-cycles [21].
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The sign of the mean phase difference value signals the leadership between the two
oscillators. Outof-phase phase synchronization between two identical and symmetrically
coupled limit cycle oscillators may occur due to spontaneous symmetry breaking beyond
a certain critical parameter [19,22]. Which oscillator becomes the leader depends on the
initial conditions, but the leadership can be dynamically reversed by a brief external
pulse or by external noise, i.e., without altering the symmetry of the system [23]. Then,
for a fixed anatomic or structural connectivity, the phase synchronization fluctuates [24],
with possibly several peaks in the phase difference density. This suggests flexibility in
information sharing by the oscillators as a steady state behaviour.

In contrast, phase synchronization has been much less studied for quasi-cycles in spite
of the obvious relevance [2,11,12]. Only a few studies have addressed this issue [25,26].
Quasi-cycles can also exhibit robust phase synchronization. However, coupled quasi-
cycles do not exhibit spontaneous symmetry breaking, and the presence of OPL relies
on both coupling delay and noise [21]. That study shows that phase synchronization is
nevertheless still present and dynamic despite the fixed anatomical connectivity. Moreover,
such quasi-cycles can be accurately described by envelope-phase equations governed by a
small set of meta-parameters. Thus, since quasi-cycles exhibit dynamic changes in phase
differences, they should also show flexibility in information sharing. However, a coupling
delay was essential for dynamic changes in phase differences. Here, we wish to investigate
what happens without coupling delay but in more realistic cases where asymmetry and
heterogeneity are considered.

Additionally, it is still not clear what is the precise relationship between phase dif-
ference dynamics and information flexibility. Can the pattern of information sharing or
communication be inferred from the pattern of phase synchronization? Do noisy limit
cycles differ in important ways from quasi-cycles in terms of flexible communication,
and if so, what are the critical parameters and essential ingredients? In particular, how
is the pattern of information sharing shaped by biophysically more realistic network fea-
tures such as connection asymmetry or heterogeneity of the subsystems? These questions
motivate our work. They are addressed using two subsystems, each exhibiting its own
rhythm via the Pyramidal Interneuron Network Gamma (PING) mechanism. The two
subsystems representing neighboring—and perhaps co-localized—brain areas are coupled
through long-range excitatory connections. We study information sharing between these
subsystems by computing the dMI between their phases [27,28]. The amplitudes of the
rhythms are not explicitly analyzed in our study.

We first present the model, then the statistics used to quantify the phase and mutual
information. Results are shown first for the quasi-cycles; these results are then confirmed
by analyzing the phase differences and flexibility using a recently proposed envelope-
phase description of the coupled quasi-cycle rhythms. Then follow our findings for the
coupled noisy limit cycles. For each of these dynamical regimes, we investigate the effect
of asymmetry in the anatomical coupling and heterogeneity in each population. The paper
ends with a discussion and outlook onto future work. The results can be summarized
as follows:

• Zero-delay-coupled quasi-cycles can exhibit robust phase-synchronization even in
more realistic cases where asymmetry and heterogeneity are considered;

• The system of two coupled quasi-cycles oscillations does not show dynamic connec-
tivity. The information is predominantly shared from one network to the other in the
asymmetric inter-areal connectivity case and in the heterogeneous population case.
Therefore it lacks flexibility in information sharing;

• When the system is in the noisy limit cycle regime, we may observe dynamic con-
nectivity highlighted by the presence of two out-of-phase locking states for a single
and fixed value of the inter-areal coupling. Information can then be shared from one
network to the other and vice versa: there is a flexibility in information sharing. Such
flexibility persists in the presence of asymmetry and heterogeneity but with some bias.
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2. Methods
2.1. The Model

We consider a system composed of two E-I networks [10] connected through long-
range excitatory connections. A spike emitted by a neuron in the network i arrives instan-
taneously at a neuron of the network j with i, j ∈ {1, 2}. We only consider the long-range
excitatory connection between the E population of network i and the E population of
network j denoted Lij

EE. For each isolated network, the mean synaptic coupling from E
cells to themselves, and from E cells to I cells, are given, respectively, by WEE and WIE.
Similarly, the mean synaptic coupling from I cells to themselves and from I cells to E cells
are WI I and WEI . The E cell population receives a constant external stimulus hE, while the
I cell population is driven by the constant external current hI . The complete description
and numerical values of all the parameters are given in Table 1 and in the captions of
Figures 1–4. The dynamics of the E and I populations in each network are, respectively,
given by:

Ėi(t) = −αEEi(t) + (1− Ei(t))βE f (sEi (t)) + g1(Ei, Ii)ξEi (t)

İi(t) = −αI Ii(t) + (1− Ii(t))β I f (sIi (t)) + g2(Ei, Ii)ξ Ii (t)

sEi (t) = WEEEi(t)−WEI Ii(t) + hE + Lij
EEEj(t)

sIi (t) = WIEEi(t)−WI I Ii(t) + hi
I (1)

with i, j = {1, 2}, i 6= j, and where sEi (t) and sIi (t), i = 1, 2 are the total synaptic inputs to
E and I populations in each network, respectively. The sigmoidal response of a neuron
to its total input is given by f (x) = 1/(1 + exp(−x)), ξEi (t) and ξ Ii (t) are independent
Gaussian white noises, and g1 and g2 are population-size-dependent multiplicative noise
intensities defined by [10]:

g1(Ei, Ii) =

√
(1− Ei(t))βE f (sEi (t)) + αEEi(t)

NE

g2(Ei, Ii) =

√
(1− Ii(t))β I f (sIi (t)) + αI Ii(t)

NI
. (2)

The Gaussian white noises have the following properties:〈
ξEi ,Ii (t)

〉
= 0,

〈
ξEi (t)ξ Ii (t)

〉
=

〈
ξEi (t)ξ Ij(t)

〉
= 0〈

ξEi (t
′
)ξEi (t)

〉
=

〈
ξ Ii (t

′
)ξ Ii (t)

〉
= δ(t− t

′
) i, j = 1, 2 .

where the symbol
〈
.
〉

denotes the ensemble average. We focus on fluctuations around the
fixed point defined as

Vi
E = cE(Ei(t)− Ei0) Vi

I = cI(Ii(t)− Ii0) (3)

where i = 1, 2, cE =
√

NE and cI =
√

NI . Throughout our work, the population numbers
are set to NE = 80, 000 and NI = 20, 000 in the typical approximate 4:1 ratio found in
cortex. The effect of the noise is a function of the current state of the system. We choose
the number of E and I neurons to be high, implying that the noise intensities are relatively
weak. Moreover, they are kept fix for each set of parameters. Therefore we only investigate
the effect of small noise intensities. Note that we are only integrating two equations of
motion (E,I) for each oscillatory network; we are not modeling the activity of the individual
100,000 neurons. Additionally, we limited ourselves to two such networks coupled to
one another.
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Figure 1. Oscillatory properties of a single stochastic Wilson–Cowan network. Synchronization level (a) and mean frequency
(b) of the network are shown in color code in the recurrent inhibitory (WI I) vs. recurrent excitatory (WEE) weight parameter
subspace. Black dot curves in panels (a,b) define the Hopf boundary where the real parts of the rightmost complex conjugate
eigenvalues λ = −ν± jω0 have ν = 0. The quasi-cycle regime occurs for ν > 0 and only in the presence of noise (see,
e.g., the cyan point in (a) where WEE = 27.4); it has weak mean amplitude, i.e., weak synchronization. In the noisy limit
cycle regime ν < 0, limit cycles exist without noise, with amplitude and thus synchronization increasing as the parameters
move away to the right of the boundary (representative point in magenta in (a) where WEE = 30.4). The amplitude is
computed using a long simulation (80 s) of the excitatory activity E(t) in Equation (1) with LEE = 0.0 after transients.
The two values of the mean frequency in (b) correspond to the high frequency gamma band (30–100 Hz). Fluctuations
VE(t) are shown in (c) for the quasi-cycle regime and in (d) for the noisy limit cycle. Time-frequency representations of the
excitatory fluctuations VE(t) are shown for the quasi-cycle in (e) and the noisy limit cycle in (f). Parameters are: αE = 0.1,
αI = 0.2, βE = 1.0, β I = 2.0, WEI = 26.3, WIE = 32, WI I = 1.3, hE = −3.8, hI = −8.0, NE = 80,000 and NI = 20,000 for all
panels. For this figure and all other figures, numerical simulations were performed using the Euler-Maruyama scheme with
a fixed integration step size of dt = 0.05 ms.
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Table 1. List of parameters used in this work, along with their descriptions and their values.

Network Parameters Description Values

WEE recurrent excitation of each network 27.4/30.4

WEI feedback inhibition of each network 26.3

WIE feedback excitation of each network 32

WI I recurrent inhibition of each network 1.3

αE decay rate of excitatory neurons 0.1 ms−1

αI decay rate of inhibitory neurons 0.2 ms−1

βE scaling coefficient of the E population response function 1

β I scaling coefficient of the I population response function 2

NE number of excitatory neurons 80,000

NI number of inhibitory neurons 20,000

hE external input to the E population of each network −3.8

h1
I external input to the I population of network 1 see caption Figures 1–4

h2
I external input to the I population of network 2 see caption Figures 1–4

L12
EE long-range connection from E2 to E1 see caption Figures 2–4

L21
EE long-range connection from E1 to E2 see caption Figures 2–4

2.2. Dynamics of a Single Stochastic Wilson–Cowan Network

The dynamics of a single isolated stochastic Wilson–Cowan network is given by
Equations (1) and (2) without the index i, j and without the long-range excitatory cou-
plings (LEE = 0). We focus on the parameter range where the deterministic dynamics
(g1 = g2 = 0) has complex conjugate eigenvalues λ = −ν± jω0 (Figure 1a), with imagi-
nary part in the gamma band (30 Hz < ω0/(2π) < 100 Hz) (Figure 1b). Without noise
(g1 = 0; g2 = 0), the system admits a fixed point (E0, I0) which can be stable or unstable.
When noise is included, the oscillatory behaviour of the system varies in the parameter
space and depends on the stability of the fixed point.

Synchronization level: To quantify the ability of the model to generate sustained and
coherent oscillations, we compute the “synchronization level” as the mean of the differ-
ences between the peak and the trough during each period over a very long simulation
of the excitatory activity E(t) (see Figure 1a). In the two-population model, weak syn-
chronization level refers to weak amplitude and less coherent oscillations whereas strong
synchronization level correspond to high amplitude and coherent oscillations. Depending
on the synchronization level, we can distinguish two different regimes. From [10], it is
known that the amplitude, which is a measure of the mean firing rate across a network, is
a reasonable proxy for the level of synchronization in an actual network of E and I cells
(here one network is described only by two variables). However it is not a direct measure
of synchronization, and in particular, this proxy will miss out on any synchronization that
can occur at low firing rate levels [29].

Quasi-cycle regime: If ν > 0 the fixed point is a stable focus. The synchronization level
is weak as shown in the left part of the black curve (blue color) of Figure 1a. Oscillations are
induced by noise, without which they would simply decay to the fixed point. The quantity
of interest is therefore the fluctuation VE(t) = cE(E(t) − E0) of the excitatory activity
around the fixed point. This regime is known in the literature as quasi-cycle regime. Note
that we choose to work with only the excitatory variable E(t). However, the results
obtained here are qualitatively similar with other quantities such as the sum of excitatory
and inhibitory populations. The time series VE(t) of a representative point in the quasi-cycle
regime (cyan dot in Figure 1a) is shown in Figure 1c and its corresponding time-frequency
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representation in Figure 1e. The characteristic bursting dynamics of the fluctuations in this
regime can be seen from these panels as previously reported in other works [2,12].

Noisy limit cycle regime: For ν < 0, the fixed point is unstable. Oscillations are
generated independently of the presence of noise. The stochastic oscillations have a high
synchronization level, and occur to the right side of the black curve (red color) in Figure 1a.
This is the noisy limit cycle regime. The time series VE(t) for a representative point in the
noisy limit cycle regime (magenta dot in Figure 1a,b) with its associated spectrogram
are shown in Figure 1d,f. The oscillatory fluctuations in the noisy limit cycle regime are
self-sustained with an almost constant frequency. The two oscillatory regimes are therefore
distinct and may support different neural computations. The condition ν = 0 (black
curves in Figure 1a,b) corresponds to the transition between the two regimes known as the
Hopf bifurcation.

Mean frequency; The parameters were chosen such that oscillation frequencies belong
to the higher frequency gamma-band (30–100 Hz). To obtain the mean frequency, we first
computed the autocorrelation function of the excitatory activity E(t). The autocorrelation is
an even function with a maximum at the origin. The period of the signal thus corresponds
to the value of the location of the second maximum at positive lags. The mean frequency is
obtained by taking the inverse of this value. We used this approach to compute the mean
frequency in Figure 1b.

2.3. Dynamics of Two Coupled Stochastic Wilson–Cowan Networks

In our work, we make sure that when two stochastic Wilson–Cowan networks oper-
ating in the quasi-cycle regime prior coupling are coupled through long-range excitatory
connections (Lij

EE 6= 0 in Equations (1) and (2)), the behaviour of the coupled system re-
mains in the quasi-cycle regime. For coupled noisy limit cycle oscillators, the system also
remains in the limit cycle regime for weak coupling. However, the stability of the deter-
ministic fixed point (E10, I10, E20, I20) of the system is given by the rightmost eigenvalues
(λ = −ν ± jω0,) of Equation (1). We did not consider the case where a network in the
limit cycle regime (prior to coupling) is coupled to one in the quasi-cycle regime (prior
to coupling).

2.4. Phase Locking

We are interested in the patterns of phase-locking and information sharing (i.e., com-
munication) between phase signals of the reciprocally coupled networks. We extracted
the phases using the Hilbert transform. For example, the analytic signal corresponding to
VE(t) is VE(t) + jH

[
VE(t)

]
, with the Hilbert transform H defined as:

H[x] =
1
π

P
∫ ∞

−∞

x(τ)
t− τ

dτ (4)

where P signifies the Cauchy principal value. The envelope of the stochastic signal is then

Env[VE] =
√

V2
E + H2[VE]. Likewise, the phase angle of the analytic signal is defined as:

θ(t) = arctan
[
H[VE]/VE

]
. (5)

Phase difference distribution: Phase locking can be analyzed by first computing the
difference in the phases of the time series for each network. The phase difference is given by:

∆θ(t) = θ1(t)− θ2(t) , (6)

where θ1( θ2, respectively) is the phase of the excitatory population of the first network (the
second network, respectively) extracted through the Hilbert transform. The most probable
values, i.e., the location of the peaks ∆θ of the distribution of ∆θ(t), are the phase-difference
values of interest.
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Phase cross-covariance function: In the quasi-cycle regime, oscillations appear as
short epochs of transient synchrony called bursts. Due to this transient nature, an alterna-
tive and more appropriate way to compute the phase-locking is to use the cross-covariance
function between the phase signals defined as:

C12(s) =
〈(

θ1(t)−
〈
θ1(t)

〉)(
θ2(t + s)−

〈
θ2(t)

〉)〉
t
, (7)

where the subscript t denotes a time average, and s varies from −T/2 and T/2 with T the
mean period of the oscillation. The advantage of using the cross-covariance is that it takes
into account the transient nature of the signals and therefore efficiently captures the correct
phase-difference values. Using the cross-covariance function returns the most probable
time-lag between the two signals. We convert this time-lag into a phase value using the
mean period of the signal. The phase differences to which the system locks are then given
by:

∆θ = 2π
speak

T
(8)

where speak is the location (or locations) of the peak of the covariance function in the interval
[−T/2, T/2]. The sign of the phase-difference value determines the leader-lag relationship
between the two subsystems [23,26,30]. It is believed that if the phase difference is negative,
the first network lags the second, and otherwise leads the second. The analysis of phase-
difference values usually allows inferring the “effective connectivity” between the networks.
Such connectivity can be different from the anatomical connectivity.

2.5. Delayed Mutual Information

Another way to infer the “effective connectivity” between the networks is to compute
the delayed mutual information (dMI) using the phase signal of each network [27]:

dMI1,2(d) = ∑
θ1,θ2

P(θ1(t), θ2(t + d)) log
(

P(θ1(t), θ2(t + d))
P(θ1(t))P(θ2(t + d))

)
. (9)

It measures the amount of information shared and transferred between the phases
θ1(t) of the first network and a time-shifted (by lag d) copy θ2(t + d) of the second network
as a function of the lag d, independent of how this information is encoded or decoded [27].
When the dMI curve has a single peak, or a most dominant peak, the sign of the location (i.e.,
time lag) of that peak gives the preferred direction of the information flow, and therefore
the "effective connectivity" between the networks [27,28]. For example, if the location of
a peak is positive, information flows preferentially from the first to the second network.
Then, the system can be functionally interpreted as unidirectionally connected from the
first to the second network even if there exists bidirectional anatomical connectivity. A peak
at zero means that there is no preferred direction for information flow.

Flexibility in information sharing: dynamic effective connectivity: When the dMI
curve exhibits a peak at both a positive and a negative location, the coupled networks
reciprocally share information in both directions, in one direction at a time. The “effective
connectivity” fluctuates in directionality from one epoch of time to another, and for the
stochastic dynamics of interest here, these changes occur randomly, as described in [26].
Such behaviour is defined as flexibility in information sharing, or a dynamic effective
connectivity, which is likely a necessary property for bi-directional communication between
brain areas. In this picture, the more positive and negative peak locations there are,
the more flexible the information sharing is. Note that this is fundamentally different from
information sharing with a peak at zero, which does not imply the same flexibility.

Amount of information shared: The values of the peaks of the delayed mutual infor-
mation describe the maximum amount of information shared between the networks. It
also measures the level of phase synchronization between the networks. When there are
several peaks at positive and negative locations, the system of coupled networks can still
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share information towards a dominant direction provided that one peak is higher than the
other. The amplitudes of the dMI peaks will be studied in more depth elsewhere.

3. Results
3.1. Information Sharing between Quasi-Cycle Rhythms

Symmetric case: We first consider the symmetric case of two identical networks
coupled with long-range excitatory connections L12

EE = L21
EE. The excitatory long-range

connection L21
EE is taken as control parameter and varied from L21

EE = 0.1 to L21
EE = 2.

The mean phase-difference values were always close to zero (Figure 2a) showing that the
networks are in phase. The mean frequencies of the networks (not shown) increase with
the coupling but remain equal. The location of the dMI peak is also at zero (Figure 2b).
Thus there is no preferred direction for information sharing between the two networks,
and no flexibility. The dMI peak increases with coupling (Figure 2c), a sign of enhanced
synchronization and information sharing between the networks. Selected dMI curves are
shown in /(Figure 2d), which confirm the results of (Figure 2b,c).

Asymmetric-coupling case: We move to two identical networks but which are asym-
metrically coupled. The coupling L12

EE from the second to the first network is fixed at
L12

EE = 1.5, while the coupling from the first to the second network L21
EE (taken as control

parameter) is varied from L21
EE = 0.5 to L21

EE = 2.5. The phase-difference value decreases
from positive (L21

EE < L12
EE) to negative (L21

EE > L12
EE) and is zero when L21

EE = L12
EE . When the

coupling towards the first network is the greatest (L21
EE < L12

EE), the first network leads and
the phase-difference values are positive; the reverse situation happens when L21

EE > L12
EE)

(Figure 2e). The mean frequency of the first network is greater when L21
EE < L12

EE and weaker
when L21

EE > L12
EE. One could have expected that the network with a higher anatomical

coupling to the other leads, but we observe the reverse situation.
The network with the higher frequency leads. The location of the dMI peak increases

from negative to positive, meaning that information is preferentially shared from the
second to the first network when the first network leads, and conversely when the second
network leads (Figure 2f). The value of the dMI peak increases with the control parameter
(Figure 2g). This is confirmed in Figure 2h. For a fixed structural connectivity, phase
locking and information theory return a single value. Flexibility in information sharing
is not present. Surprisingly, information sharing does not follow the phase relation in
Figure 2e but the structural connectivity which is set by the values of L12

EE and L21
EE. In other

words information is not shared from the leader to the laggard as observed in previous
studies [24,26,30] but from the network with a stronger structural or anatomical connectivity.
This suggests that phase-relation does not necessary predict the direction of information
flow as suggested [23,24,26]. Information may be shared from the laggard to the leader.

Heterogeneous case: Finally, we focus on the heterogeneous situation where the two
networks are not identical. The inhibitory external input h2

I to the second network is fixed
while the external input to the first is varied. The phase-difference values decrease from
positive to negative. When the phase-difference values are positive (h1

I < −7), the first
network has a stronger power than the second, its mean frequency is also higher and it is the
leader. For h1

I > −7, we have the reverse situation (Figure 2i). The locations of the dMI peak
also shifts from positive to negative according to the phase-difference values. Information
is preferentially shared from the first to the second network when phase-difference values
and locations are positive, and the reverse happens when these quantities are negative
(Figure 2j). The dMI peak value decreases when the control parameter increases since the
two networks become less synchronized and the amount of information shared decreases
(Figure 2k). Information is preferentially shared from the leader to the laggard as predicted
by previous studies [23,24,26,30]. However, flexibility in sharing is not seen since, for a
fixed value of the structural connectivity, information can only be shared in one direction.
These results are also seen in Figure 2l.
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Figure 2. Phase locking and information sharing between two excitatorily coupled EI networks: Quasi-cycle regime. (a–d) Symmetric
case. (a) Mean phase difference between the networks as the symmetric excitatory coupling (L12

EE = L21
EE) increases. (b) Location

of the dMI peak vs. coupling strength. (c) Peak dMI value increases with coupling strength. (d) dMI vs. lag d with coupling
strengths L21

EE = [0.48, 0.86, 1.24, 1.62, 2] for blue, cyan, green, magenta and red, respectively. (e–h) Asymmetric case. The coupling
L12

EE = 1.5 is fixed. (e) Mean phase difference now increases from negative to positive. (f) Peak location changes from negative to
positive, i.e., a change in direction of information sharing occurs. (g) Peak dMI value increases with coupling. (h) dMI curves with
L21

EE = [0.9, 1.3, 1.7, 2.1, 2.5] for blue, cyan, green, magenta and red, respectively. (i–l) Heterogeneous case. (i) Mean phase difference
between the networks as the inhibitory input to the first network h1

I varies from −8 to −6, while the inhibitory input to the second
network h2

I = −7 is fixed. (j) Peak location changes from negative to positive showing that there is a preferred direction of information
sharing between the networks. (k) dMI peak value decreases as the inhibitory input to the first network increases. (l) dMI curves
corresponding to h1

I = [−8,−7.6,−7.2,−6.8,−6.4] for blue, cyan, green, magenta and red, respectively. Other parameters are: αE = 0.1,
αI = 0.2, βE = 1, β I = 2, WEE = 27.4, WEI = 26.3, WIE = 32, WI I = 1.3, hE = −3.8, NE = 80,000 and NI = 20,000 for all panels.
For panels (a–d), h1

I = h2
I = −8 and for panels (i–l), L12

EE = L21
EE = 1.

Thus for coupled quasi-cycles without propagation delay, phase synchronization is
robust even in the presence of asymmetry and heterogeneity. However, communication
is not flexible and the effective connectivity is not dynamic. This means that for a fixed
structural connectivity or phase relation (values of ∆θ), the dMI curves show a single
peak. The network with the higher frequency leads. The pattern of information sharing
between the networks cannot always be anticipated from the phase-locking dynamics as
in previous studies [23,24,30], i.e., it is not always preferentially shared from the leader to
the laggard but the reverse can happen according to the dominant structural connectivity.
Additionally, the networks are “effectively” unidirectionally coupled in the asymmetric
and heterogeneous cases. The phase difference relation (the phase-difference value) and the
structural (values of the coupling) connectivity are unique for a given value of the control
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parameter and there is only one route for communication. The locations and peaks of the
dMI depend on the biophysical parameters of the networks and their synchronization level.

3.2. Information Sharing between Quasi-Cycles: Envelope-Phase Decomposition Framework

In the quasi-cycle regime, it has been shown that dynamics of Local Field potentials
(LFPs) could be written in the form:

V1
E(t) = Z1(t) cos(ω0t + φ1(t)); V1

I (t) = α1Z1(t) cos(ω0t + φ1(t) + δ1)

V2
E(t) = Z2(t) cos(ω0t + φ2(t)); V2

I (t) = α2Z2(t) cos(ω0t + φ2(t) + δ2). (10)

The dynamics of the envelopes Zi(t) and the slow phases φi(t), i = 1, 2 are obtained
by performing the Stochastic Averaging Method (SAM) [12,21]. We can recover the fast
phases θi(t) (which correspond to those extracted by the Hilbert transform) from the SAM
phases φi(t) as:

θ1(t) = ω0t + φ1(t) θ2(t) = ω0t + φ2(t). (11)

This leads to the following envelope Zi(t) and phase θi(t) dynamics:

dZ1 =

[
− λ1Z1(t) +

D1
2Z1(t)

+ γ1α1C12
EE sin

[
θ1(t)− θ2(t) + δ1

]
Z2(t)

]
dt +

√
D1dWZ1

dθ1 =

[
ω1 + γ1α1C12

EE cos
[
θ1(t)− θ2(t) + δ1

]Z2(t)
Z1(t)

]
dt +

√
D1

Z1(t)
dWθ1 (12)

dZ2 =

[
− λ2Z2(t) +

D2
2Z2(t)

+ γ2α2C21
EE sin

[
θ2(t)− θ1(t) + δ2

]
Z1(t)

]
dt +

√
D2dWZ2

dθ2 =

[
ω2 + γ2α2C21

EE cos
[
θ2(t)− θ1(t) + δ2

]Z1(t)
Z2(t)

]
dt +

√
D2

Z2(t)
dWθ2 .

where the dWk, k = Zi, θi with i = 1, 2 are independent Brownian motions. The coefficients
αi, δi with i = 1, 2 are, respectively, the amplitude ratio and phase difference between the
inhibitory and excitatory fluctuations in each network. Their expressions can be found
in [21]. The expressions of the effective coupling Cij

EE and the coefficients λi, γi, Di and ωi
are given by

Cij
EE = (1− Ei0)βE f

′
(sEi0)Lij

EE; λi = −
Ai

EE+Ai
I I

2 ; γi =
1

2αi sin(δi)
;

Di =
α2

i σ2
Ei
+σ2

Ii
2(αi sin(δi))2 ; ωi = γi

(
αi cos(δi)(Ai

EE − Ai
I I) + α2

i Ai
EI − Ai

IE
)

with the parameters

Ai
EE = −αE − βE f

(
sEi0

)
+
(
1− Ei0

)
βE f

′(
sEi0

)
WEE

Ai
EI = −cEI

(
1− Ei0

)
βE f

′(
sEi0

)
WEI

Ai
IE = cIE

(
1− Ii0

)
β I f

′(
sIi0

)
WIE

Ai
I I = −αI − β I f

(
sIi0

)
−
(
1− Ii0

)
β I f

′(
sIi0

)
WI I

and

sEi0 = WEEEi0 −WEI Ii0 + hE + Lij
EEEj0

sIi0 = WIEEi0 −WI I Ii0 + hi
I

σEi =
√

2αEEi0; σIi =
√

2αI Ii0

cEI =
√

NE/NI ; cIE =
√

NI/NE i, j = 1, 2.
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Figure 3. Phase locking and information sharing between networks coupled through long-range excitatory connections in the quasi-
cycle regime: SAM analysis. (a–d) Symmetric case. (a) Phase difference between the networks as the symmetric long-range excitatory
coupling (L12

EE = L21
EE) varies. The phase-difference value is always near zero. (b) dMI peak location is always at zero showing that

there is no preferred direction of information sharing between the networks. (c) dMI peak value increases with coupling. (d) dMI
curves for selected values of the long-range excitatory coupling. (e–h) Asymmetric case. (e) Phase difference between the networks
as the long range excitatory coupling L21

EE varies while the coupling L12
EE = 1.5 is fixed. The phase-difference value increases from

negative to positive. (f) Peak location changes from negative to positive: there is a preferred direction of information sharing between
the networks. (g) Peak value increases with coupling. (h) dMI curves for selected values of the control parameter, showing changes
in the location of the single peak. (i–l) Heterogeneous case. (i) Phase difference as the inhibitory input to the first network h1

I varies
while the inhibitory input to the second network is fixed at h2

I = −7. The phase-difference value decreases from positive to negative.
(j) Change in the peak location from negative to positive, showing that there is a preferred direction of information sharing between
the networks. (k) Peak value decreases as the inhibitory input to the first network increases. (l) dMI curves for selected values of the
inhibitory input to the first network. Parameters are the same as in Figure 2.

A complete and detailed review about the derivation of the envelope-phase dynamics
Equation (12) can be found in [21]. We performed the same analysis as in the previous
case where the phases were numerically extracted through the Hilbert transform. The goal
is to assess the generality of the flexibility of communication through analytical models
of envelope-phase dynamics Equation (12). We therefore compute the dMI using the
analytical “Hilbert phases” obtained from simulations of Equation (12).

The results obtained for the symmetric, asymmetric, and heterogeneous cases in
Figure 3 are qualitatively in very good agreement with those obtained numerically in
Figure 2. However, we observe a quantitative difference in the number of bits shared
between the networks. This may be due to the fact that our envelope-phase dynamics
Equation (12) are based on the associated linear equations of the full SWC Equation (1),
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whereas the phase dynamics extracted through the Hilbert transform use the full nonlin-
ear dynamics.

3.3. Information Sharing through Noisy Limit Cycles

To better understand the mechanism of information sharing reported for the case of
noise-induced rhythms, we extend the previous analysis to the case of noisy limit-cycle
oscillations. Parameters are such that, prior to coupling and without noise, each network
lies in the limit cycle regime (Figure 1a, magenta dot), and when the long-range excitatory
coupling is considered, the system of two coupled networks remains in the limit cycle
regime for low value of the coupling. In contrast to previous work on phase locking and
information sharing by noisy limit cycles [19,23,24], here we investigate more specifically
the role of heterogeneity and coupling asymmetry in order to compare with the quasi-cycle
case studied up to now. Another important difference is the fact that we did not include
coupling delay in our modeling as in previous studies [19,22,24,31]. Coupling delay has
been shown to induce dynamic out-of-phase locking and information sharing in identical
and symmetrically coupled limit cycles oscillators through a mechanism called Spontaneous
symmetry breaking [19,22,24]. It is therefore of interest to investigate if such dynamic
phase locking and information sharing could be observe in the absence of coupling delay
and if yes how such flexible information sharing behaves in the presence of asymmetry
and heterogeneity.

Symmetric case: We consider identical networks, each of which exhibits a self-sustained
rhythm in the absence of noise prior to coupling. We then symmetrically coupled them
through long-range excitatory connection but without propagation delay. Unlike the case
of quasi-cycle oscillations, we observe out-of-phase locking. In contrast to a previous study
where propagation delay was included to explain out-of-phase locking between limit-
cycles [19], the parameters chosen here are such that a delay is not necessary. However,
the precise mechanism underlying this phenomenon (out-of-phase locking) is not identified
here, as this question is beyond the scope of our present work. Additionally, noise is not
critical for out-of-phase locking of limit cycles as it is for the quasi-cycles. Nevertheless,
it causes the random reversals of leadership between the networks without any local
intervention (such as stimulation).

The long-range excitatory coupling L21
EE = L12

EE was again chosen as the control
parameter. As it increased from L21

EE = 0.1 to L21
EE = 3, we observed that out-of-phase

locking persisted (Figure 4a) but took on a range of phase difference values. The mean
frequencies of the networks are equal (not shown). Interestingly, the diagram of the peak
locations now shows two branches, i.e., for each value of the control parameter there
exists two symmetric locations for the peaks as shown in Figure 4b. This already shows
flexible communication between the two networks. The peak values are equal within
statistical fluctuations. They first increase for weak coupling, and then stabilize for strong
coupling (Figure 4c). The flexibility of communication is seen through the bimodality of
selected dMI curves shown in Figure 4d. There is no need for propagation delay for flexible
information sharing or dynamic effective connectivity. The precise mechanism behind the
out-of-phase locking or dynamic effective connectivity is not well identified here. However,
we found that such out-of-phase locking was different to the well-known spontaneous
symmetry breaking as in previous studies [19,22,24]. A deeper investigation concerning
this mechanism will be published elsewhere.

Asymmetric-coupling case: The coupling from the second to the first network is fixed
L12

EE = 1, while the coupling from the first to the second network is the control parameter
that varies from L21

EE = 0.1 to L21
EE = 3. For short values of this parameter (L21

EE < L12
EE),

the second network leads and its mean frequency is higher. Then, over a short parameter
range, the phase-difference diagram shows bimodality, i.e., when L21

EE is close to L12
EE,

the mean frequencies of the networks are equal. For the remaining range, the first network
leads (i.e., for L21

EE > L12
EE—see Figure 4e) and its mean frequency is higher. The diagram of

the dMI peak locations is also bimodal for a short range of the control parameter (Figure 4f).
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However, this range is larger than the bimodal range of the phase difference. This suggests
that bimodality can be seen even for parameters where the phase-difference distribution is
unimodal. Thus the phase-locking does not always reflect the pattern of communication.

Figure 4. Phase locking and information sharing between networks coupled through long range excitatory connection in the
limit cycle regime. (a–d) Symmetric case. (a) Phase difference between the networks as L12

EE = L21
EE varies. The phase-difference

distribution exhibits two symmetric preferred values. (b) Peak locations are symmetric, i.e., there are two equivalent preferred
directions for information sharing between the networks. (c) Diagram of the peak values. (d) dMI curves for selected values
L21

EE = [0.1, 0.216, 0.564, 1.58, 1.84] for blue, cyan, green, magenta and red, respectively. (e–h) Asymmetric case. (e) Phase difference
as L21

EE varies while the coupling L12
EE = 1.0 is fixed. The phase-difference distribution exhibits two different values for the same

coupling in a certain range. (f) Peak locations show bimodality for a certain range of the coupling. (g) dMI peak values. (h) dMI curves
for L21

EE = [0.796, 0.912, 1.028, 1.144, 1.26] for blue, cyan, green, magenta and red, respectively. (i–l) Heterogeneous case. (i) Phase
difference as the inhibitory input to the first network h1

I varies while the inhibitory input to the second network is fixed at h2
I = −8.25.

(j) The diagram of peak locations shows that there is a preferred direction of information sharing. (k) Diagram of the peak values.
(l) dMI curves for selected values of the inhibitory input to the first network: h1

I = [−8.3,−8.28,−8.26,−8.24,−8.22] for blue, cyan,
green, magenta and red, respectively.

The diagram of the peak values shows bimodality in agreement with the diagram of
locations (Figure 4g). Bimodality corresponds to a low amount of information shared be-
tween the two networks. The flexibility reported in the locations and the values of the peaks
of the dMI curves is highlighted in Figures 4h. Flexible information sharing persists when
asymmetry is included between the networks but with a bias towards one network de-
pending on the strength of the structural coupling. However, information is predominantly
shared from the leader to the laggard according to the phase difference diagram.

Heterogeneous case: The inhibitory external input to the second network is fixed to
h2

I = −8.25 and the one applied to the first network is chosen as a control parameter and
varied from h1

I = −8.5 to h1
I = −8. The long-range of excitatory coupling is symmetric.

When h1
I < h2

I , network 2 has higher and stronger power than network 1. This implies
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that network 2 leads network 1 in phase as observed in Figure 4i, and the reverse occurs
when h1

I > h2
I . There exists a value of the control parameter where phase-locking shows

bimodality. This bimodality is observed in the diagram of locations in Figure 4j. Flexibility
in communication is therefore present in the heterogeneous case. It seems then that increas-
ing the long-range excitatory coupling leads to a broader range of flexibility. The values of
the peaks decrease around the bimodality range as observed in previous cases (Figure 4k).
Curves of dMI in Figures 4l reflect the phase-locking behaviour. The dominant direction of
information sharing is from the leader to the laggard.

In summary, for coupled noisy limit cycles, delay is not critical for the appearance
of dynamic out-of-phase locking and flexibility in information sharing. Such flexibility
persists in the presence of asymmetry and heterogeneity. Information is predominantly
shared from the leader to the laggard according to the phase-difference diagram. Noisy
limit cycles therefore contrast with quasi-cycles since they allow flexibility which is not
observed in quasi-cycles. This suggests that the functionality of the system of coupled
networks depends on the dynamical regime .

4. Discussion
4.1. Summary of Results

We have studied information sharing between two networks, each of which exhibits
its own rhythm through the PING mechanism; they are connected through long-range
excitatory connections. Our principal goal was to identify critical parameters, regimes
and mechanisms for flexible information sharing or dynamic effective connectivity in the
absence of coupling delays. In particular, our study enables a direct qualitative comparison
of information sharing between quasi-cycles and noisy limit cycles, which have both
been advanced as candidate regimes for observed rhythms. We found that flexibility
in communication depends on the dynamical origin of oscillations and, probably some
critical biophysical parameters (not identified here). We note that a recent study has also
showed the presence of symmetric out-of-phase locking states in coupled noisy limit cycles
oscillators [32]. However, there was not a comparison with the quasi-cycle regime as we
did here.

For identical and symmetrically coupled quasi-cycle oscillations, there is no flexibility
in the absence of any delay. This likely follows from the fact that delays have been shown
to be crucial for the presence of multiple out-of-phase locking (OPL) states, and without
them, the range of phase differences between the networks is smaller. The same holds in
the more realistic cases where asymmetry or heterogeneity is included in the model.

In contrast, for noisy limit cycle oscillations, flexibility is observed in the absence of
coupling delay. Coupling delay is not necessary for dynamic changes in phase synchroniza-
tion and flexible communication. However, the critical biophysical parameter responsible
for dynamic out-of-phase locking observed with our parameter settings is not identified
here. Flexible communication persists in more realistic situations where asymmetry or
heterogeneity are included. This takes the form of two peaks in the dMI, and bistability in
the phase difference.

Surprisingly, we found that the pattern of information sharing can not always be
inferred from the phase relation. Even a single value of the phase difference can lead to a
complex pattern of communication with two routes (see Figure 4e,f). This suggests that
the relation between phase synchronization and communication is not trivial; preliminary
results suggests that the situation is even more complex with delays, and this will be
reported elsewhere in more detail. However, such differences between the pattern of phase
locking (Figure 4e) and the mutual information (Figure 4f) are so far only the outcome of
numerical experiments on phase locking and dMI. More theory is required to properly
interpret the origin and significance of this interesting feature.
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4.2. Limitations and Future Work

We also found that the relation between phase synchronization, structural coupling,
frequency difference and information sharing depends on the specific coupling scenario and
the dynamical regime of interest. More precisely, we showed that in the quasi-cycle regime,
information could be shared from the laggard to the leader (in asymmetric coupling),
in contrast with the noisy limit cycle regime where information was shared from the leader
to the laggard. The relation between the phase difference and the frequency difference was
similar in the quasi-cycle and noisy limit cycle regimes. In these cases, the network with the
higher frequency was the leader, whereas the one with the lower frequency was the laggard.
The fact that information could be shared from the phase laggard to the phase leader in
quasi-cycles stands in clear contrast to previously known results on phase synchronization
and information sharing between coupled limit cycle oscillators where the opposite was
established [23,24,30]. Thus, further studies on phase synchronization of quasi-cycles are
needed to further understand the dynamical origins of this result.

We used numerical simulations to compute phase synchronization and the dMI
between phase signals. Phases were extracted through the Hilbert transform and from
previously derived envelope-phase equations (SAM) for quasi-cycles. The results from the
Hilbert transform and the SAM equations were qualitatively in good agreement. However,
we observed a quantitative discrepancy between the amount of information shared and
the exact locations of the peaks of the dMI curves. These discrepancies may be associated
with the absence of nonlinear terms to obtain the SAM dynamics. In fact, SAM dynamics
are derived from the linearized dynamics of the former nonlinear stochastic equations.
Additional information could be contained in the nonlinear terms which were neglected
to obtain the SAM dynamics to the order shown here. We also found (not shown) that
the results obtained when using only the phase obtained directly from the SAM dynamics
were identical to those obtained when the phases were converted to Hilbert phases. This
suggests that all the information is contained in the stochastic part of the Hilbert phases.

Some results obtained here are in good agreement with previous results on flexible
information transfer in noisy limit and quasi-cycles. These results allow us to gain a better
insight into the mechanisms of flexible information sharing or dynamic effective connectiv-
ity between brain areas. However, complex biological, biochemical, genetic, mechanical,
or chemical networks are often made up of more than two interacting subsystems. The re-
sults obtained here could be extended to such complex realistic networks. Furthermore,
from a theoretical point of view, an extension of the envelope-phase dynamics to include
nonlinearity and to cover limit cycle oscillations will be an important avenue for future
analysis, along with the effect of external stimulation aimed at controlling the properties of
the rhythms in isolation or under coupling.

5. Conclusions

We have addressed the question of flexible information sharing through neural os-
cillations. How can two coupled brain areas dynamically exchange information of a fast
timescale provided that the structural or anatomic connectivity between them remains
fixed? We tackled this question by considering oscillatory brain areas that independently
exhibit rhythms in the fast gamma band (30–100 Hz) prior to being coupled. The two net-
works are connected through a bidirectional long-range excitatory connection but without
conduction delay. For each of these two dynamical regimes, we computed the phase-
locking states and the delayed mutual information between excitatory signals of the two
brain areas. Our minimal criterion for flexible information sharing was two peaks in the
delayed mutual information curve and phase difference distribution. We found that when
the system of the two coupled brain areas was in the quasi-cycle regime, flexibility in infor-
mation sharing was not observed. However, when the networks were in the noisy limit
cycle regime, we observed flexibility in information sharing, i.e., sharing in both directions
but not at the same time. Clearly, the effective connectivity was dynamic such that during
a short epoch of time, only one network sent the information to the other which is passive,
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and the reverse situation happens during another epoch of time. Therefore, the ability
of zero-delay coupled brain areas to dynamically exchange information while keeping
the structural coupling fixed depends on the operating regime of the system. Including a
coupling delay could induce more complex phase-locking patterns as well as several routes
of information sharing even in the quasi-cycle regime, a possibility that further studies
could establish.
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