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Simple Summary: Wheat (Triticum aestivum L.) breeding programs mainly focus on improving grain
yield, biotic and abiotic stress tolerance, and end-use quality traits. End-use quality and processing
traits are the combinations of various predefined parameters. Genomic selection (GS) opens the
potential for selecting improved end-use quality lines. This study explored the potential of the
machine and deep learning-based GS models for predicting end-use quality traits in wheat. Deep
models were superior to traditional statistical and Bayesian models under all the prediction scenarios.
The high accuracy observed for end-use quality traits in this study support predicting them in early
generations, leading to the advancement of superior genotypes to more extensive grain yield trails.

Abstract: Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are
important goals of wheat breeding programs. Screening for end-use quality traits is usually secondary
to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping.
Genomic selection provides an alternative to predict performance using genome-wide markers under
forward and across location predictions, where a previous year’s dataset can be used to build the
models. Due to large datasets in breeding programs, we explored the potential of the machine and
deep learning models to predict fourteen end-use quality traits in a winter wheat breeding program.
The population used consisted of 666 wheat genotypes screened for five years (2015–19) at two
locations (Pullman and Lind, WA, USA). Nine different models, including two machine learning
(random forest and support vector machine) and two deep learning models (convolutional neural
network and multilayer perceptron) were explored for cross-validation, forward, and across locations
predictions. The prediction accuracies for different traits varied from 0.45–0.81, 0.29–0.55, and 0.27–
0.50 under cross-validation, forward, and across location predictions. In general, forward prediction
accuracies kept increasing over time due to increments in training data size and was more evident
for machine and deep learning models. Deep learning models were superior over the traditional
ridge regression best linear unbiased prediction (RRBLUP) and Bayesian models under all prediction
scenarios. The high accuracy observed for end-use quality traits in this study support predicting
them in early generations, leading to the advancement of superior genotypes to more extensive
grain yield trails. Furthermore, the superior performance of machine and deep learning models
strengthens the idea to include them in large scale breeding programs for predicting complex traits.

Keywords: deep learning; end-use quality; genomic selection; machine learning; wheat breeding

1. Introduction

Wheat (Triticum aestivum L.) breeding programs mainly focus on improving grain
yield, biotic and abiotic stress tolerance, and end-use quality traits. Hexaploid wheat is
classified into hard and soft wheat classes based on kernel texture, milling quality, protein
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strength, and water absorption [1–3]. Washington State was ranked fourth in U.S. wheat
production in 2020. About 80% of wheat grown in eastern Washington is soft white wheat
(SWW), one of the six classes grown in the USA. SWW is the smallest wheat class and
is consistently in demand from overseas markets owing to its end-use quality attributes.
More than 85% of the SWW produced in the Pacific Northwest (PNW) region is exported
to markets in countries like Japan, Korea, The Philippines, and Indonesia [4].

End-use quality and processing traits are the combinations of various predefined
parameters [5]. Milling traits are measured to extract flour and break flour percentage as
flour yield and break flour yield [6]. Thermogravimetric ovens are used for measuring the
flour ash. Lower flour ash is recommended as higher ash levels are indicative of higher
bran contamination, which reduces the functionality of most dough and batters [6]. The
sugar snap cookie test is an essential test for evaluating SWW to meet expectations of
product performance from overseas markets. Baking of cookies is performed for lines
within the breeding program, and SWW lines having cookie diameter above 9.3 cm is
preferred [7].

Grain characteristics commonly measured in SWW include kernel hardness, kernel
size, kernel weight, test weight, and grain protein content. Kernel weight, kernel size, and
kernel texture (hardness) are measured with a single kernel characterization system (SKCS).
Lower values from the SKCS demonstrate softness; thus, SKCS values are negatively
correlated with break flour yield. However, the two measures of kernel texture are not
entirely correlated because SKCS includes only kernel resistance to crushing, whereas break
flour yield includes particle size, sieving, and grain structure [8]. High gluten strength
or viscoelastic strength is required for bread baking, whereas confectionary products
require less gluten and water absorption. Gluten strength and water absorption capacity
are measured using sodium dodecyl sulfate sedimentation and water solvent retention
capacity tests. Lower water absorption in SWW contributes to better cookie spread [2,5].

Major genes influencing end-use quality traits are typically already fixed in most
breeding programs, especially in different market classes. Until now, marker-assisted
selection has been used for major genes controlling end-use quality, namely, low molecular
weight glutenins, high molecular weight glutenins, granule bound starch synthase I (amy-
lose composition), and puroindolines (kernel hardness) [2,9]. Usage of these molecular
markers only aid in differentiating different wheat classes earlier in the breeding program;
however, they do not provide the complete profile of different end-use quality traits. Previ-
ous linkage mapping and genome-wide association studies in SWW have shown that a
large number of small effect QTLs control most end-use quality traits in addition to the
already fixed genes [4,10,11]. Similarly, 299 small effect QTLs were identified using multi-
locus genome-wide association studies for nine end-use quality traits in hard wheat [12].
Kristensen et al. [13] were unable to identify significant QTLs for Zeleny sedimentation,
grain protein content, test weight, thousand kernel weight, and falling number in wheat
and suggested genomic selection as the best alternative for predicting quantitative traits.

Genomic selection (GS) opens up the potential for selecting improved end-use quality
lines due to the small effect of these loci, limited seed availability earlier in the breeding
pipeline for conducting tests, and time constraints in winter wheat for sowing the new
cycle [14]. GS uses the genotypic and phenotypic data from previous breeding lines or
populations to train predictive statistical models. These trained models are subsequently
used to predict the genomic estimated breeding values (GEBVs) of genotyped lines [15].
GS has shown the potential to enhance genetic gain by reducing the breeding cycle time
and improving selection accuracy [16–18]. This is especially important for winter wheat
end-use quality traits, as phenotyping requires more than three months and data from the
quality lab is often not available between harvest and planting. This ultimately results in
either the increase of one year in the breeding cycle or passage of undesirable lines into the
next growing season. Furthermore, phenotyping requires a large amount of seed and is
costly, so large-scale testing is often not conducted until later generations. Currently, the
cost of genotyping 10,000 lines with high density genotyping by sequencing is equivalent
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to phenotyping 200 lines for end-use quality and processing traits [5]. Therefore, GS is
currently the best option for breeding for end-use quality traits after considering time, cost,
and seed amount.

Genomic selection has been primarily explored in several hard wheat end-use quality
trait studies using the traditional genomic best linear biased prediction (GBLUP), Bayes
A, Bayes B, Bayes C, and Bayes Cpi, showing mixed results, where one model performed
best for one trait and not for another [19,20]. Machine and deep learning models have
opened up an entirely new platform for plant breeders and exploring them in the breeding
program could accelerate the pace of genetic gain. Deep learning models have shown higher
prediction accuracies for different complex traits in wheat [21], rice (Oryzae sativa L.) [22],
soybean (Glycine max L.) [23], and maize (Zea mays L.) [24]. Sandhu et al. [21] have
shown that two deep learning models, namely, convolutional neural network (CNN) and
multilayer perceptron (MLP), gave 1–5% higher prediction accuracy compared to BLUP-
based models. Ma et al. [25] and Montesinos-López et al. [26,27] also obtained similar
results to predict quantitative traits in wheat and suggested that deep learning models
should be explored due to their better prediction accuracies. To the best of our knowledge
from our literature search, this is the first study exploring the potential of the deep learning
models for predicting the end-use quality traits in wheat.

This study explored the potential of GS using multi-environment data from 2015-19
for end-use quality traits in a soft white winter wheat breeding program. We explored
nine different BLUP based models, Bayesian models, and machine and deep learning
models to predict the fourteen different end-use quality traits. The main objectives of this
include, (1) Optimization of the machine and deep learning models for predicting end-use
quality traits, (2) Comparison of prediction ability of nine different GS models to predict
fourteen different end-use quality traits using cross-validation approaches, and (3) Assess
the potential of GS for forward prediction and across location predictions using previous
years training data in the breeding program.

2. Materials and Methods
2.1. Germplasm

A total of 666 soft white winter wheat lines were evaluated for five years at two
locations, namely, Pullman and Lind, WA, USA, from 2015–19. These 666 genotypes consist
of F4:5 lines, double haploid lines, lines in preliminary and advanced yield trials screened
as a part of the Washington State University winter wheat breeding program. F4:5 derived
lines and double haploid lines were screened for the agronomic and disease resistance traits,
and the superior genotypes were tested for the end-use quality. Lines in preliminary and
advanced yield trials were selected for superior yield, and those lines were later advanced
for end-use quality trait phenotyping. Some genotypes were replicated at a single location
per year, whereas others were un-replicated, creating an unbalanced dataset [28]. As this
was a breeding population, very few lines were common between all the years except check
cultivars due to continuous selections.

2.2. Phenotyping

Fourteen different end-use quality and processing traits were measured, and data
were obtained from the USDA-ARS Western Wheat & Pulse Quality Laboratory, Pullman,
WA. All these traits were measured following the guidelines of the American Association of
Cereal Chemists International (AACCI 2008). These fourteen traits were divided into four
categories: milling traits, baking parameters, grain characteristics, and flour parameters.
The complete summary of each trait, number of observations, mean, standard error, and
heritability is provided in Tables 1 and 2.
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Table 1. Total number of lines screened across each year at two locations in Washington and
phenotyped for end-use quality traits.

Location Year Lines Screened for Quality

Lind

2015 122
2016 114
2017 115
2018 71
2019 106

Pullman

2015 183
2016 128
2017 181
2018 137
2019 178

Total 1335

Table 2. Summary of the fourteen end-use quality traits evaluated for genomic selection analysis using nine different
prediction models.

Trait Abbreviation Units Number of
Genotypes Mean Min Max S.E. H2 h2

Milling traits

FYELD Flour yield percent 666 69.9 58.0 75.8 0.09 0.91 0.75
BKYELD Break flour yield percent 666 48.1 33.9 56.6 0.14 0.93 0.72
MSCOR Milling score unitless 646 85.6 69.1 98.8 0.10 0.81 0.77

Grain characteristics

TWT Test weight Kg/hL 666 61.8 54.6 65.9 0.06 0.92 0.66
GPC Grain protein content percent 666 10.73 7.2 14.8 0.05 0.56 0.50

KHRD Kernel hardness unitless 666 23.0 −10.2 52.4 0.4 0.93 0.64
KWT Kernel weight mg 666 39.3 26.5 54.6 0.17 0.86 0.75

KSIZE Kernel size mm 666 2.76 2.3 3.3 0.005 0.83 0.77

Baking parameters

CODI Cookie diameter cm 622 9.2 7.8 10.0 0.008 0.89 0.82

Flour parameters

FPROT Flour protein percent 666 8.93 6.3 13.0 0.04 0.57 0.46
FASH Flour ash percent 646 0.39 0.21 0.54 0.001 0.88 0.73
FSV Flour swelling volume mL/g 665 19.06 14.0 26.3 0.05 0.63 0.59

FSDS Flour SDS sedimentation g/mL 666 10.1 3.5 18.3 0.09 0.92 0.85
FSRW Water solvent retention capacity percent 666 54.18 43.4 72.6 0.09 0.85 0.77

S.E. is standard error, H2 is broad sense heritability, h2 is narrow sense heritability.

Grain characteristics, namely kernel size (KSIZE), kernel weight (KWT), and kernel
hardness (KHRD) were determined using 200 seeds/sample with a SKCS 4100 (Perten
Instruments, Springfield, IL, USA) (AACC Approved Method 55-31.01). Grain protein con-
tent (GPC) was measured using a NIR analyzer (Perten Instruement, Springfield, IL, USA)
(AACC Approved Method 39-10.01). Test weight (TWT) was obtained as weight/volume
following AACC Approved Method 55-10.01.

Three milling traits, namely flour yield (FYELD), break flour yield (BKYELD), and
milling score (MSCOR) were obtained using a Quadrumat senior experimental mill (Braben-
der, South Hackensack, NJ, USA). FYELD was determined as a ratio of total flour weight
(mids + break flour) to the initial sample weight using a single pass through the Quadrumat
break roll unit. BKYELD was estimated as the percent of milled product passing through a
94-mesh* screen per unit grain weight. Flour ash (FASH) was obtained using the AACC
Approved Method 08-01.01. MSCOR was calculated using the formula: MSCOR = (100
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− (0.5(16 − 13.0 + (80 − FYELD) + 50 (FASH − 0.30))) × 1.274) − 21.602, showing that
this trait is a function of FYELD and FASH content. To evaluate baking parameters, cookie
diameter (CODI) was measured using AACC Approved Method 10-52.02.

Four different flour parameters, namely, flour protein (FPROT), water solvent retention
capacity in water (FSRW), flour swelling volume (FSV), and flour sodium dodecyl sulfate
sedimentation (FSDS) were measured from the extracted flour. FPROT was measured
following the AACC Approved Method 39-11.01. FSRW measures the water retention
capacity of gluten, gliadins, starch, and arabinoxylans using the AACC Approved Method
56-11.02. The FSDS test was used to measure strength of gluten by following the AACC
Approved Method 56-60.01. The FSV test assesses starch composition following the AACC
Approved Method 56-21.01 [29].

2.3. Statistical Analysis

Due to the unbalanced nature of the dataset, adjusted means were calculated using
residuals obtained using the lme4 R package for within environment analysis. The model
equation is represented as

Yij = Blocki + Checkj + eij (1)

where Yij is the raw phenotype; Checkj is the effect of replicated check cultivar; Blocki
corresponds to the fixed block effect; and eij is the residuals [30,31]. Block was considered
fixed, as we want to remove that component of variation before exploring the genetic
variation. Residuals from the model were used to calculate the adjusted means (line effect).

Adjusted means across the environments were calculated following the method im-
plemented in Sandhu et al. [18,32] and is as follows

Yijk = µ + Blocki + Checkj + Envk + Blocki × Envk + Checkj × Envk + eijK (2)

where Yijk is the raw phenotype value; Blocki, Checkj, and Envk are the fixed effect of ith
block, jth check, and kth environment; and eijk is the residuals. Residuals from the model
were used to calculate the adjusted means (line effect).

Best linear unbiased predictors (BLUPs) for individuals and across environments
were used to obtain the variance components for estimating broad sense heritability. The
equation for heritability used was

H2
C = 1−

vBLUP
∆..
2σ̂2

g
(3)

where H2
C is the Cullis heritability; σ̂2

g is genotypic variance; and vBLUP
∆.. is the mean-variance

of BLUPs [33].

2.4. Genotyping

The whole population was genotyped using GBS through the North Carolina State
University (NCSU) Genomics Sciences Laboratory, Raleigh, NC, using the restriction
enzymes PstI and MspI [34]. LGC Biosearch Technologies OktopureTM robotic platform
with sbeadexTM magnetic microparticle reagent kits were used to extract the DNA from
the leaves of ten-day-old seedlings. Thermo Fisher (Waltham, MA, USA) Quant-ItTM

PicoGreenTM assays were used to quantify the DNA, and the samples were normalized to
20 ng/µL. Restriction enzymes PstI and MspI were used for sample fragmentation, and the
digested samples were ligated with barcode adapters using T4 ligase. The pooled samples
were amplified using PCR, following Poland et al. [34], and sequencing was performed at
NCSU Genomics Sciences Laboratory. Burrows-Wheeler Aligner (BWA) 0.7.17 was used
to align the sequences to the Chinese Spring (IWGSC) RefSeq v1.0 reference genome [35].
Tassel v5 was used for SNP discovery and calling [36]. Quality filtering pipeline was
implemented in R software to remove markers with minor allele frequency less than 5%,
markers missing more than 30% data, and heterozygosity more than 15%. Missing data
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in the SNP data were imputed using the expectation-maximization algorithm in the R
package rrBLUP [37]. After the complete filtering pipeline, 40,518 SNPs remained and were
used for population structure and genomic prediction [28].

2.5. Genomic Selection Models

We explored the performance of five parametric and four non-parametric models for
all fourteen traits evaluated in this study. Parametric models used were RRBLUP, Bayes B,
Bayes A, Bayes Lasso, and Bayes C. Non-parametric models included two machine and
two deep learning models. The complete information for all those models and optimization
process is provided as follows:

2.5.1. Ridge Regression Best Linear Unbiased Prediction (RRBLUP)

RRBLUP was included here as the benchmark for comparing its performance with
other models due to frequent use in wheat breeding and ease of implementation. The
model assumes that all markers contribute to the trait and has a constant effect variance.
Marker effects and variance patterns are estimated using the restricted estimated maximum
likelihood (REML) function based on phenotypic and marker data [37]. The RRBLUP model
was implemented with the R package rrBLUP using the mixed.solve function. The model
can be represented as

y = µ+ Zu + e (4)

where µ is the overall mean; y is the vector of adjusted means; u is a vector with normally
distributed random marker effects with constant variance as u ~ N(0, Iσ2

u); Z is an N ×M
matrix of markers; and e is the residual error distributed as e ~ N(0, Iσ2

e). The solution for
mixed equation can be written as

u = ZT
(

ZZT + λI
)−1

y (5)

where u, Z, and y are explained above; I is an identity matrix; and λ is represented as
λ = σ2

e/σ2
u and is the ridge regression parameter [37].

2.5.2. Bayesian Models

We implemented four different Bayesian models, namely, Bayes Lasso, Bayes A, Bayes
B, and Bayes C. All these models assume different prior distributions for estimating marker
effects and variances. Bayes A applies the inverted chi-squared probability distribution
for estimating marker variances. Bayes B provides a more realistic scenario for breed-
ing, assuming that all markers do not contribute to the phenotype. It applies a mixture
of prior distribution with a high probability mass at zero, and others follow the Gaus-
sian distribution. Bayes C and Bayes Lasso follow the mixture of the prior distribution
(point mass at zero with scaled-t distribution) and double exponential distribution, respec-
tively [38]. All the Bayesian models were implemented using the BGLR R package using
the model equation

yi = u +
j=p

∑
j=1

xijβ j + εi (6)

where u, yi, xij, and εi are defined above; and β j is the jth marker effect. Each Bayesian
model used in this study has separate conditional prior distribution. Analysis was per-
formed with 30,000 Monte Carlo Markov chain iterations with 10,000 burn-in iterations [38].

2.5.3. Random Forests (RF)

RF involves building a large collection of identical distributed trees and averages
from the trees for final prediction. Different bootstrap samples are performed over the
training set to identify the best feature subsets for splitting the tree nodes. The main criteria
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for splitting at the node include lowering the loss function during each bootstrapped
sample [39]. Model equation is represented as

ŷi =
1
B

B

∑
b=1

Tb(xi) (7)

where ŷi is the predicted value of the individual with genotype xi; T is the total number
of trees; and B is the number of bootstrap samples. The main steps involved in model
functioning includes

1. Bootstrap sampling (b = (1, . . . , B)) to select genotypes with replacement from
the training set, and an individual plant can appear once or several time during
the sampling

2. Best set of features (SNPj, j = (1, . . . , J) were selected to minimize the mean square
error (MSE) using the max feature function in the random forest regression library.

3. Splitting is performed at each node of the tree using the SNPj genotype to lower
the MSE.

4. The above steps are repeated until a maximum depth is reached or a minimum node.
The final predicted value of an individual of genotype xi is the average of the values
from the set of trees in the forest.

The important hyperparameter model training includes the depth of the trees, the
importance of each feature, the number of features sampled for each iteration, and the
number of trees. Randomized grid search cross-validation was used for hyperparameter
optimization. The combination of hyperparameters that were tried included max depth
(40, 60, 80, 100), max features (auto, sqrt), and number of trees (200, 300, 500, 1000) [40]. The
Scikit learn, and random forest regression libraries in Python 3.7 were used for analysis [41].

2.5.4. Support Vector Machine (SVM)

SVM uses the non-linear kernel for mapping the predictor space to high dimensional
feature space for studying the relationship between marker genotype and phenotypes. The
model equation is represented as

f (x) = wx + b (8)

where f (x) is learning function; b is the constant, reflecting the maximum allowed bias;
w is the unknown weight; and x is the marker set. The learning function is mapped by
minimizing the loss function as

C
n

∑
i=1

L(ei) +
1
2
‖w‖2 (9)

where C is a positive regularization parameter; ‖w‖2 represents model complexity, ei = y− f(x) is
the associated error with the ith training data point, and L is the loss function [42].

2.5.5. Multilayer Perceptron (MLP)

MLP is the feed-forward deep learning model that uses three layers, namely, input,
hidden, and output, for mapping the relationship. These layers are connected by a dense
network of neurons, where each neuron has its characteristic weight. MLP uses the com-
bination of neurons, activation function, learning rate, hidden layers, and regularization
for predicting the phenotypes. Input layer corresponds to SNP genotypes, while neurons
connect multiple hidden layer with associated strength (weight). The output of the ith
hidden layer is represented as

Zi = b(I−1) + Wi f(I−1) (x) (10)
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where Zi is the output from the ith hidden layer; b0 is the bias for estimating neurons
weight; f (I−1) represents the activation function; and Wi is the weight associated with the
neurons, and this process is repeated until the output layer.

Keras function’s grid search cross-validation and internal capabilities were used for
optimizing the hyperparameters. Hyperparameters giving the lowest MSE were identified
and used for output prediction [43]. Regularization, dropout, and early stopping were ap-
plied to control overfitting. Furthermore, information about hyperparameter optimization
and deep learning models is referred to in [21,31].

2.5.6. Convolutional Neural Network (CNN)

CNN is a special case of a deep learning model that accounts for the specific pattern
present between the input features. Information about the CNN model, its implementation,
and hyperparameter optimization are referred to in previous publications [21,31]. A combi-
nation of input, convolutional, pooling, dense, flatten, dropout, and output layers were
applied for the prediction. Like MLP, hyperparameter was optimized using grid search
cross-validation to select filters, activation function, solver, batch size, and learning rate.
Regularization, dropout, and early stopping were applied to control overfitting. All the
deep learning algorithms were implemented using Scikit learn and Keras libraries [44,45].

2.6. Prediction Accuracy and Cross-Validation Scheme

Prediction accuracy was evaluated using five-fold cross-validation where 20% of
the data were used for testing and the remaining 80% for training within each environ-
ment. One hundred replications were performed for assessing each model’s performance.
One replicate consisted of five iterations where data are split into five different groups.
Prediction accuracy was reported as the Pearson correlation coefficient between the true
(observed phenotype) and GEBVs. Separate analysis was performed for both locations
using a cross-validation approach to assess the model’s performance.

Independent predictions or forward predictions were performed by training the model
on previous year data and predicting future environments (i.e., 2015 data from Lind was
used to predict 2016; 2015 and 2016 data predict 2017, and so on for both locations). In
the end, we tried to predict the 2019 environment of both locations by using the whole
data set from the other location (i.e., 2015–19 data from Lind was used to predict 2019 in
Pullman). Forward prediction represents real prediction scenarios in breeding programs
where previous data are used to predict future environments. Due to computational
burden, all the GS models were analyzed over the Kamiak high-performance cluster
(https://hpc.wsu.edu/, accessed on 10 April 2021).

3. Results
3.1. Phenotypic Data Summary

Table 1 provides information on the number of lines screened for end-use quality
traits across years at Lind and Pullman. One thousand three hundred thirty-five lines
were phenotypically screened for end-use quality traits across five years (2015–19) at two
locations (Table 1). Overall, Pullman had more lines compared to Lind for each year.
Summary statistics, including mean, minimum, maximum, standard error, and heritability
are provided for all the fourteen end-use quality traits (Table 2). Broad sense heritability
ranged from 0.56 to 0.93 for different traits. All the traits were highly heritable except GPC
and FPROT (Table 2).

Significant positive and negative correlations were observed among different traits
(Figure 1). Positive correlations were observed between FYELD and BKFYELD, KSIZE and
KWT, GPC and FPROT, FSDS and FPROT, GPC and FSDS, and FSRW and KHRD (Figure 1).
Similarly, negative correlations were seen between FASH and MSCOR, CODI and KHRD,
GPC and FSV, FSDS and CODI, and CODI and FSRW (Figure 1). Most of the traits were not
strongly correlated with each other, suggesting that a single quality trait cannot substitute
for others; hence, measurements from all of them are required for selection decisions.

https://hpc.wsu.edu/
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3.2. Cross-Validation Genomic Selection Accuracy and Model Comparison

Complete datasets across the years from Pullman and Lind were used to predict the
fourteen end-use quality traits using nine different models (Table 3, Figure 2). Five-fold
cross-validation was performed to compare the results from the models at both locations.
Prediction accuracy at Pullman varied from 0.52–0.81 for all traits with nine different
GS models. The highest prediction accuracy was 0.81 for KWT and KSIZE with the RF
and MLP model at Pullman (Figure 2). The lowest prediction accuracies were for GPC,
FASH, FPROT, and FSRW at Pullman using different GS models (Table 3). The highest
prediction accuracy for each trait is bolded for comparison with other models (Table 3).
For the fourteen end-use quality traits evaluated in this study at Pullman, deep learning
models, namely MLP and CNN, performed best for eight of the traits, demonstrating the
potential to incorporate them into breeding programs (Table 3) for prediction. RF and SVM
performed best for three and four traits out of the fourteen, respectively, while RRBLUP
performed superior for only one trait (Table 3 and Figure 2).
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Table 3. Genomic selection cross-validation prediction accuracies for the fourteen end-use quality traits evaluated with
nine different models at two locations in Washington. The highest accuracy for each trait is bolded under different
model scenarios.

Location Trait RRBLUP BayesA Bayes B Bayes C Bayes Lasso RF SVM MLP CNN

Pullman FYELD 0.71 b 0.61 d 0.64 c 0.64 c 0.63 c 0.76 a 0.76 a 0.75 a 0.74 a
BKYELD 0.70 b 0.62 d 0.64 c 0.64 cd 0.64 cd 0.75 a 0.75 a 0.76 a 0.75 a
MSCOR 0.58 c 0.52 d 0.52 d 0.53 d 0.52 d 0.60 abc 0.60 bc 0.63 a 0.61 ab

TWT 0.67 c 0.67 c 0.66 c 0.66 c 0.66 c 0.68 abc 0.67 bc 0.70 ab 0.70 a
GPC 0.55 b 0.54 bc 0.54 bc 0.53 c 0.53 c 0.59 a 0.60 a 0.60 a 0.60 a

KHRD 0.71 a 0.67 bcd 0.67 cd 0.68 bcd 0.67 d 0.70 ab 0.69 abcd 0.70 ab 0.69 abc
KWT 0.76 b 0.77 b 0.75 b 0.75 b 0.75 b 0.81 a 0.80 a 0.80 a 0.75 b

KSIZE 0.77 b 0.75 bc 0.74 c 0.75 bc 0.77 b 0.76 bc 0.76 bc 0.80 a 0.81 a
CODI 0.67 bc 0.67 bc 0.67 c 0.68 bc 0.67 c 0.69 ab 0.69 abc 0.69 ab 0.71 a

FPROT 0.58 c 0.58 c 0.58 bc 0.55 d 0.55 d 0.61 a 0.58 c 0.62 a 0.60 ab
FASH 0.55 d 0.56 cd 0.59 ab 0.58 ab 0.59 ab 0.58 abc 0.59 a 0.59 a 0.59 bc
FSV 0.55 b 0.54 b 0.53 b 0.53 b 0.53 b 0.59 a 0.60 a 0.60 a 0.60 a

FSDS 0.67 de 0.67 bcde 0.66 e 0.66 e 0.67 cde 0.69 abcd 0.69 abc 0.70 ab 0.70 a
FSRW 0.58 b 0.52 c 0.52 c 0.52 c 0.52 c 0.60 ab 0.60 ab 0.61 a 0.62 a

Lind FYELD 0.64 b 0.55 c 0.58 c 0.56 c 0.58 c 0.68 a 0.69 a 0.67 ab 0.67 a
BKYELD 0.63 b 0.55 c 0.57 c 0.56 c 0.57 c 0.67 a 0.68 a 0.69 a 0.69 a
MSCOR 0.48 c 0.49 bc 0.53 a 0.50 b 0.52 a 0.50 b 0.52 a 0.52 a 0.50 ab

TWT 0.61 ab 0.61 ab 0.60 b 0.61 ab 0.60 b 0.61 ab 0.61 ab 0.63 ab 0.64 a
GPC 0.51 b 0.51 b 0.51 b 0.47 b 0.47 b 0.54 a 0.52 a 0.55 a 0.53 a

KHRD 0.58 a 0.56 bc 0.56 bc 0.57 ab 0.54 c 0.56 bc 0.57 abc 0.57 abc 0.57 abc
KWT 0.65 bc 0.65 bc 0.63 c 0.63 c 0.63 c 0.70 a 0.66 ab 0.69 a 0.63 bc

KSIZE 0.66 bc 0.64 c 0.62 c 0.63 c 0.66 bc 0.64 c 0.64 c 0.69 a 0.68 ab
CODI 0.56 b 0.54 b 0.54 b 0.56 b 0.55 b 0.57 ab 0.58 ab 0.58 ab 0.58 a

FPROT 0.48 c 0.48 c 0.46 d 0.46 d 0.46 d 0.51 b 0.53 ab 0.53 ab 0.54 a
FASH 0.51c 0.44d 0.44d 0.45d 0.44d 0.54ab 0.53b 0.56a 0.53b
FSV 0.48 b 0.47 bc 0.46 c 0.45 c 0.46 c 0.54 a 0.54 a 0.53 a 0.53 aa

FSDS 0.59 c 0.60 c 0.59 c 0.60 bc 0.59 c 0.62 ab 0.63 a 0.63 a 0.62 ab
FSRW 0.52 b 0.45 c 0.45 c 0.45 c 0.46 c 0.53 ab 0.53 a 0.54 a 0.54 a

Average 0.61 0.58 0.58 0.58 0.58 0.63 0.63 0.64 0.63

All the abbreviation are previously abbreviated in the text and Table 2. Models labelled with the same letter are not significantly different
for each trait (p value = 0.05) using Tukey’s test.
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Prediction accuracies (0.45–0.70) within the Lind dataset were lower than Pullman for
all traits (Table 2). Similar to Pullman, the highest cross-validation prediction accuracy (i.e.,
0.70) was obtained for KWT at Lind. The lowest prediction accuracies were obtained for
GPC, FPROT, and FSRW using the Bayesian models (Table 3). Machine and deep learning
models performed superior for twelve out of the fourteen end-use quality traits (Figure 2).
Table 3 provides the average performance for all models, and we observed that machine
and deep learning models performed superior to RRBLUP and all the Bayesian models. On
average, machine and deep learning models performed 10 and 5%, superior to Bayesian
and RRBLUP.

3.3. Forward Predictions

GS model predictions were assessed to reflect the power of training size to predict
the phenotypes in future years. Figures 3 and 4 show the results for forward predictions
at Pullman and Lind when combined data from the previous years were used to predict
the phenotypes. The x-axis represents the year for which predictions were made while
training the models on all the previous year’s phenotypic data (Figures 3 and 4; Table S1).
We saw a gradual increase in prediction accuracy for all the traits as we kept increasing the
training data size, and the same trend was observed for both locations (Figures 3 and 4).
The highest improvement in prediction accuracy was observed for GPC, FPROT, FASH,
and FSDS, owing to the complex nature of these traits and demonstrating the importance of
training size. Similar to cross-validation prediction accuracy (Table 3), the highest forward
prediction accuracy was obtained with machine and deep learning models, especially when
the training data size kept increasing (Figures 3 and 4). Bayesian models performed worst
for all of the traits and at both locations, even when training data size was increased.
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Forward predictions in 2019 were, on average, 32 and 29% greater than forward
predictions in 2016 for Pullman and Lind (Figures 3 and 4). The highest improvement in
forward predictions from 2016 to 2019 was 0.35 to 0.55 for CODI, while the lowest was
0.26 to 0.29 for KWT (Figure 3). The highest improvement was seen for MLP and CNN,
demonstrating as the size of training data increases, deep learning models result in the
highest improvement in prediction accuracy. Furthermore, cross-validation prediction
accuracies were, on average, 34 and 32% higher than forward prediction in 2019 for Pullman
and Lind (Table 3, Figures 3 and 4), suggesting that cross-validation scenarios over-inflate
prediction accuracies.

3.4. Across Location Predictions

Across location predictions were performed where data from Lind was used to train
the model for predicting performances in Pullman and vice versa. Owing to all the Bayesian
model’s worst performance and computational burden in cross-validation and forward
predictions, these models were eliminated for the across location predictions. Figure 5
and Table 4 showed the prediction accuracy for all fourteen end-use quality traits when
predictions were made for 2019_Pullman by models training on the whole Lind dataset
and vice versa. The across location prediction accuracies were, on average, 16 and 47% less
than forward and cross-validation prediction accuracies, demonstrating the importance
of inclusion of genotype by environment interaction components into the GS models for
across location and environment predictions.
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Table 4. Genomic selection across environment prediction accuracies for fourteen end-use quality traits evaluated with
four different models. 2019_Pullan_Lind denotes the scenario where 2019_Pullman was predicted using datasets from
Lind as the training set and vice versa for 2019_Lind_Pullan. The highest accuracy for each trait is bolded under different
model scenarios.

Location Trait RRBLUP RF MLP CNN

2019_Pullman_Lind FYELD 0.41 d 0.48 b 0.50 a 0.46 c
BKYELD 0.31 c 0.38 b 0.38 b 0.40 a
MSCOR 0.27 b 0.30 a 0.30 a 0.30 a

TWT 0.32 b 0.37 a 0.38 a 0.38 a
GPC 0.25 c 0.30 b 0.31 b 0.33 a

KHRD 0.32 c 0.37 ab 0.36 b 0.38 a
KWT 0.34 b 0.37 a 0.36 a 0.36 a

KSIZE 0.34 c 0.38 b 0.38 b 0.40 a
CODI 0.40 c 0.45 b 0.46 a 0.46 a

FPROT 0.35 c 0.40 b 0.40 b 0.41 a
FASH 0.40 b 0.41 ab 0.41 ab 0.42 a
FSV 0.27 c 0.36 b 0.39 a 0.36 b

FSDS 0.36 c 0.44 a 0.43 a 0.41 b
FSRW 0.36 c 0.39 b 0.41 a 0.42 a

2019_Lind_Pullman FYELD 0.43 c 0.47 b 0.50 a 0.49 a
BKYELD 0.31 b 0.40 a 0.41 a 0.40 a
MSCOR 0.28 b 0.29 b 0.31 a 0.31 a

TWT 0.31 c 0.36 ab 0.35 b 0.37 a
GPC 0.27 b 0.30 a 0.28 b 0.31 a

KHRD 0.33 b 0.33 b 0.38 a 0.37 a
KWT 0.34 b 0.37 a 0.38 a 0.37 a

KSIZE 0.35 b 0.39 a 0.40 a 0.40 a
CODI 0.42 c 0.44 b 0.46 a 0.46 a

FPROT 0.34 c 0.42 a 0.42 a 0.40 b
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Table 4. Cont.

Location Trait RRBLUP RF MLP CNN

FASH 0.41 a 0.42 a 0.42 a 0.40 b
FSV 0.30 c 0.38 b 0.38 b 0.42 a

FSDS 0.38 c 0.41 a 0.40 b 0.40 b
FSRW 0.37 c 0.41 b 0.41 b 0.43 a

Average 0.34 0.38 0.39 0.39

All the abbreviation are previously abbreviated in the text and Table 2. Models labelled with the same letter are not significantly different
for each trait (p value = 0.05) using Tukey’s test.

Deep learning models performed best for across location prediction compared to
RRBLUP and machine learning models (Table 4 and Figure 5). The highest prediction
accuracy was 0.50 for FYELD with a MLP model for predicting 2019_Pullman (Table 4).
The lowest prediction accuracies were for MSCOR, GPC, and FSV with the RRBLUP model
for predicting 2019_Pullman (Table 4). Out of the four models used, twelve end-use quality
traits were best predicted by deep learning models under the 2019_Pullman scenario, while
RF performed best for the remaining two traits (Table 4). In 2019_Lind predictions, the
highest accuracy was 0.50 for FYELD with the MLP model, and the lowest was for GPC
and MSCOR with the RRBLUP model. Similar to 2019_Pullman, deep learning models
performed best for eleven out of the fourteen traits evaluated in 2019_Lind.

4. Discussion

Selection for end-use quality traits is often more difficult to conduct compared to
grain yield, disease resistance, and agronomic performance, due to the cost, labor, and seed
quantity requirements [46]. Phenotyping for quality traits is usually delayed until later
generations, resulting in creating small population sizes with unbalanced datasets [16].
This study explored the potential of GS, especially machine and deep learning models, for
predicting fourteen different end-use quality traits using five years (2015-19) of phenotyp-
ing data from a winter wheat breeding program. The prediction accuracy in this study
varied from 0.27-0.81, demonstrating the potential of its implementation in the breeding
program. We observed that forward and across location prediction accuracies could be
increased using deep and machine learning models without accounting for genotype by
environment interaction, environment covariates, and kernel matrices in traditional GS
models. Furthermore, QTLs or major genes controlling quality traits are typically already
fixed in the particular market class or breeding programs; hence, GS is the best substitute
for marker-assisted selection by exploring different combinations of QTL to achieve the
best variety [47].

The broad-sense heritability of end-use quality traits evaluated varied from 0.56 to
0.93, with the majority of them having a value above 0.80. Similar heritability values
were obtained by Michel et al. [48], Jernigan et al. [49], and Kristensen et al. [50] for
different baking and flour yield parameters of winter wheat. These intermediate to high
heritability estimates suggested that most of the variation in these traits is attributed to
genetic factors and considerably less affected by environment and genotype by environment
interactions [51]. Therefore, GS is the best option for predicting these traits due to capturing
most of the additive genetic variation by the models, as observed in this study, due to
intermediate to high prediction accuracy for different quality traits. We observed that only
a few grain and flour assessments traits were correlated. These low correlations among
most end-use quality traits strengthen the fact that no single quality parameter can assist
in final variety selection, but that many are needed [1]. Only three end-use quality traits,
namely, GPC, FPROT, and FSV, had intermediate heritability values, which were also
reported in previous studies due to their complex and polygenic inheritance nature [32,52].
Similarly, comparatively low prediction accuracies obtained from these traits validated the
fact for inclusion of genotype by environment interaction or environmental covariates for
their prediction [53].
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Cross-validation prediction accuracies were, on average, 34 and 32% higher than
forward prediction in 2019 for Pullman and Lind. The higher cross-validation prediction
accuracies compared to forward and across location prediction suggests the importance of
including bigger training sets, genotype by environment interactions, and environment
covariates for exploiting the maximum variation to make predictions [54]. Higher accu-
racies obtained in cross-validation showed that most of those values are over-inflated,
and attention is required before making any final decision about those large values to
adopt GS in the breeding program [55]. Cross-validation approaches included training and
testing sets from the same environment, thus accounted for environmental variation in
prediction. Moreover, most of the lines evaluated in breeding programs are usually closely
related or full sibs and confound cross-validation approaches, where full sibs might be
in the same training or testing group, causing inflation in prediction accuracies [56]. The
relationship between individuals in the training and testing set profoundly affects model
performance, with a closer relationship resulting in higher accuracy. Forward and across
location prediction are the best methods for studying the importance of GS implementation
in the breeding program [57,58].

Continuous increments in forward prediction accuracy with all nine models demon-
strated the importance of a large training population and more environments for training
the GS model [59]. He et al. [60] and Battenfield et al. [16] observed an increase in forward
prediction in spring wheat end-use quality traits. Similarly, Meuwissen et al. [61] suggested
updating the GS model with a large training population every cycle to increase prediction
accuracy. They observed a rise in genetic gain for fertility, longevity, milk production, and
other traits in cows by following this approach. Deep learning models saw the greatest
improvement in forward prediction accuracy by including more training data and new
environments, supporting the importance of big data for their best performance [62]. Fur-
thermore, across location predictions were superior by using deep learning models. This
could be attributed to capturing genetic, environmental, and genotype by environment
interaction components by these models without explicit fitting [63]. Across location pre-
diction can be further improved by including genotype by environment interactions or
environment covariates like weather or soil parameters into the GS models to make across
location and environment selections [53,64].

We observed differences in model prediction accuracies under all scenarios evaluated
in this study, where machine and deep learning models performed superior to Bayesian and
RRBLUP models. This difference in model performance is attributed to the different genetic
architecture of each trait, dependent upon the heritability and number of QTLs controlling
that trait [65]. Similar results were obtained by various other studies showing the supe-
riority of machine learning models over conventional Bayesian models in wheat [66–68].
Hu et al. [69] showed that random forest performed superior to the Bayesian and RRBLUP
for predicting thousand kernel weight, grain protein content, and sedimentation volume
in wheat under forward prediction scenario, further strengthening our findings that ma-
chine and deep learning models should be explored for such conditions. Furthermore,
we observed that highly heritable traits in this study have higher prediction accuracy
than moderately heritable traits, suggesting that in addition to genetic architecture, the
heritability of a trait also plays an important role in final prediction accuracy [52,70].

Machine and deep learning models performed better than all Bayesian and RRBLUP
models under cross-validation, forward, and across location predictions. The higher pre-
diction accuracy observed due to deep and machine learning models is attributed to their
flexibility in deciphering complex interactions between responses and predictors to capture
different trends present in the datasets compared to only additive variation in conventional
GS models [71]. Deep and machine learning models explore the whole feature space during
model training using different sets of neurons, activation function, and various other hyper-
parameters to identify the best pattern for giving the best prediction scenario compared to
Bayesian models that include a pre-selected prior distribution for final predictions. Further-
more, most of the traits were predicted best by different deep and machine learning due
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to their respective genetic architecture of each trait. Some studies in wheat reported that
all models give the same prediction accuracy irrespective of the model used while others
strengthen the superiority of different models for different traits [72,73]. Ma et al. [25] and
Montesinos-López et al. [26] also obtained similar results to predict quantitative traits in
wheat and suggested that deep learning models should be explored due to their better
prediction accuracies.

It is believed that machine and deep learning models should be used on very large
training datasets, which is often not possible for end-use quality traits that are evaluated at
later stages of the breeding process. However, this and other studies have shown that even
small datasets can give equivalent or superior performance to the traditional parametric GS
models [21,25,74]. Moreover, Bellot et al. [75] have used a training set of 100,000 individuals
and showed no advantage of deep learning models over the conventional GS models.
Montesinos-Lopez et al. [76] and Liu et al. [23] showed the superiority of different deep
learning algorithms over conventional GS models using population sizes of 268 wheat and
4294 soybean lines. These results provide evidence that training datasets play a minor
role in prediction compared to the genetic architecture of the trait. The main issue with
using a small dataset for deep learning models is overfitting, resulting in the model’s
failure to learn the exact pattern from the dataset [71]. Herein, we used regularization and
dropout functions to remove a certain number of neurons during model training to avoid
the overfitting problem [44,77].

5. Conclusions

We assessed the potential of machine and deep learning genomic selection models
for predicting fourteen different end-use quality traits at two locations in a soft white
winter wheat breeding program. Different cross-validation, forward, and across location
prediction scenarios were tried for comparing different models and utilization of this
approach in the breeding program. Owing to limited seed availability, time constraint, and
associated cost, phenotyping for quality traits is delayed to later generations. However, the
higher accuracy of prediction models observed in this study suggest that selections can be
performed earlier in the breeding process. Machine and deep learning models performed
better than Bayesian and RRBLUP genomic selection models and can be adopted for use in
plant breeding programs, regardless of dataset sizes. Furthermore, the increase in forward
prediction accuracy with the addition of more lines in the training set concluded that
genomic selection models should be updated every year for the best prediction accuracy.
Overall, this and previous studies showed the benefit of implementing genomic selection
with machine and deep learning models for different complex traits in large scale breeding
programs using collected phenotypic data from previous years.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10070689/s1, Table S1: Forward prediction accuracies for both locations with all the
nine models.
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