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Simple Summary: Information processing in the brain takes places at multiple stages, each of which
is a local network of neurons. The long-range connections between these network stages are sparse
and do not change over time. Thus, within each stage information arrives at a sparse subset of
input neurons and must be routed to a sparse subset of output neurons. In this theoretical work, we
investigate how networks achieve this routing in a self-organized manner without losing information.
We show that biologically inspired self-organization entails that input information is distributed
to all neurons in the network by strengthening many synapses in the local networks. Thus, after
successful self-organization, input information can be read out and decoded from a small number
of outputs. We also show that this way of self-organization can still be more energy efficient than
creating more long-range in- and output connections.

Abstract: Our brains process information using a layered hierarchical network architecture, with
abundant connections within each layer and sparse long-range connections between layers. As
these long-range connections are mostly unchanged after development, each layer has to locally
self-organize in response to new inputs to enable information routing between the sparse in- and
output connections. Here we demonstrate that this can be achieved by a well-established model of
cortical self-organization based on a well-orchestrated interplay between several plasticity processes.
After this self-organization, stimuli conveyed by sparse inputs can be rapidly read out from a layer
using only very few long-range connections. To achieve this information routing, the neurons that
are stimulated form feed-forward projections into the unstimulated parts of the same layer and get
more neurons to represent the stimulus. Hereby, the plasticity processes ensure that each neuron only
receives projections from and responds to only one stimulus such that the network is partitioned into
parts with different preferred stimuli. Along this line, we show that the relation between the network
activity and connectivity self-organizes into a biologically plausible regime. Finally, we argue how
the emerging connectivity may minimize the metabolic cost for maintaining a network structure that
rapidly transmits stimulus information despite sparse input and output connectivity.

Keywords: self-organization; synaptic plasticity; information transfer

1. Introduction

The brain’s visual system continuously transmits perceived information along a hier-
archical topology. At each layer of this topology, predominantly short-range connections
form a recurrent neuronal network while long-range connections convey inputs from the
previous layer and send outputs to the subsequent layer. Hereby, the long-range connec-
tions are sparse, meaning that a neuron in one layer has a rather low probability to be
connected to a neuron in the subsequent (target) layer. Sparsity across layers leads directly
to the problem of routing the information from an input neuron via the recurrent network
of the layer to a specific output neuron.
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The foundation of the brain’s topology is determined during development and the
coarse of the morphology of axons and dendrites remains rather rigid afterwards [1].
The chemo-affinity hypothesis formulates that during development gradients of chemical
signals [2] being sensed by axonal surface molecules [3,4] guide the axons towards their
destination area. Hereby the molecular composition defines a “molecular code” to specify
the target neuron. However, the low number of guidance molecules [5] and the stochasticity
of the involved processes [6] impede the clearness of the code. By contrast, anatomical
studies imply a rather unspecific assignment of neurons [7–9]. Hence, in the worst case,
which we consider in this study, the sparse in- and output connections of a layer could be
unstructured and assigned randomly to different neurons.

After the initial developmental phase, the brain also has the ability to adapt to sen-
sory experiences. For this, neuronal networks modify the properties of their neurons and
synapses by means of local activity-dependent plasticity processes. Most prominently,
synaptic plasticity adapts the transmission efficacy or weights of the established connec-
tions or synapses [10–17]. On the other hand, homeostatic processes such as synaptic
scaling [16,18,19] and intrinsic plasticity [20,21] regulate synaptic weights and the excitabil-
ity of neurons, respectively, such that the neuronal activity remains within a desired regime.
A series of theoretical studies shows that the interplay of these processes leads to the
self-organized formation of memory representations of observed input stimuli [19,22] and
their correlations [23,24], while matching and explaining the experimentally observed
connectivity on the microcircuit level [25,26]. These studies focused predominantly on in-
vestigating the neuronal and synaptic dynamics within the recurrent network forming one
hierarchical layer neglecting its embedding in the hierarchical topology discussed before.

In this study, we investigate whether the interplay of activity-dependent plasticity
mechanisms self-organizes a recurrent neuronal network to support the decoding of input
stimuli by subsequent network layers on the condition that all connections are sparse,
random and their source and target neurons are predetermined. Utilizing a mathematical
neuronal network model of the visual cortex [23] matching a multitude of experimental
data [25,26], in the first step, we show that the self-organizing principles lead to an optimal
decoding performance despite sparse, random read-out connections. In the second step,
we identify the effect of the self-organization on the neuronal activity and the information
storage of each neuron in the recurrent network resulting in the decoding performance.
Moreover, we investigate the underlying adaptation of the synaptic weight structure and
compare it to experimental data. Finally, we provide an analysis suggesting that the
resulting network architecture could be designed for low metabolic maintenance costs.

2. Methods and Materials
2.1. Model Network

Simulations are implemented in the Brian 2 simulator platform [27] and follow imple-
mentations of self-organizing spiking networks from earlier work [25,28].

The self-organizing recurrent network model (Figure 1A) consists of a population
of nE = 1000 excitatory neurons with absolute refractory periods of τrefrac

E = 10 ms and
nI = 200 inhibitory neurons with absolute refractory periods of τrefrac

I = 2 ms.
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Figure 1. Self-organization of recurrent networks allows for efficient information transmission by sparse fixed in- and
output-projections. (A) Situation considered in this study: (Sensory) information is processed in a hierarchy of recurrent
networks. Connections between layer of the hierarchy are costly, such that each layer receives sparse input and transmits
outputs only from a subset of its cells via long-range output projections. As those require long-range axons, they are fixed
and cannot be reorganized in response to stimulation. (B) Accuracy of a perceptron classifying the presented stimulus
from the activity of a random sub-set of neurons in the self-organizing network. Different colors indicate training time (0 s
for network without self-organization). Dashed lines indicate the minimum number of samples needed to achieve 95%
classification accuracy. Initially around 100 neurons are needed but after around 100 s of self-organization, 10–15 neurons
are sufficient to decode the stimulus identity. Transparent regions mark standard deviations of classification accuracy for a
stratified 5-fold cross-validation and 6 different choices of readout connections. (C) Number of long-range connections
needed to achieve at least 95% classification accuracy at different training times. Perceptron classifier (black curve) and
non-neuronal classifiers such as 3-nearest-neighbor (light grey) or a (linear) support-vector machine (dark grey) arrive at
similar results. Data points are mean and standard deviation of the last number of connections with more than 95% accuracy
from 40 decreasing sequences.

We recurrently connect the excitatory neurons (without self-connections) and intercon-
nect the inhibitory and excitatory pool (in both directions) with random sparse connections
with probability pconnect = 0.04. Recurrent inhibitory connections are neglected. Recurrent
excitatory connections are given an initial strength of w = 0.5 nS, and all other connections
are given an initial strength of w = 1.0 nS.

2.1.1. Neuron Model

We use conductance-based leaky integrate-and-fire neurons [29], with membrane
voltages evolving according to:

dvj

dt
=

gleak
(
vrest − vj

)
+ gampa,j

(
vampa − vj

)
+ ggaba,j

(
vgaba − vj

)
cmembrane

+
σnoiseξ√
τmembrane

, (1)

and synaptic conductances evolving according to

dgampa,j

dt
= −

gampa,j

τampa
and

dggaba,j

dt
= −

ggaba,j

τgaba
. (2)

Here, vj is the membrane voltage of neuron j, gleak is the leak conductance, vrest is the
resting potential, cmembrane is the membrane capacitance, τx is the time constant for feature
x, g[ampa, gaba],j is the conductance for each neurotransmitter type, v[ampa, gaba] is the reversal
potential for each neurotransmitter type. ξ is an Ornstein-Uhlenbeck noise generator, and
σnoise is the noise variance. Please refer to Table 1 for the chosen parameter values.
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Table 1. Simulation parameter values.

Parameter Value Parameter Value

gleak 30 nS vrest −70 mV

cmembrane 300 pF τmembrane 20 ms

τampa 2 ms τgaba 5 ms

eampa 0 mV egaba −85 mV

η
ip
decay 0.2 mV/s η

ip
spike 0.066 mV

σnoise 1 mV τnoise 20 ms

A+ 0.05 nS A− 0.05 nS

τ+ 20 ms τ− 20 ms

Wtotal 50 nS

2.1.2. Neural Adaptation

The firing threshold of neuron j, vj
threshold, is adaptive (see [30] for a review) and

follows:
dvj

threshold
dt

= −η
ip
decay (3)

with adaptation rate η
ip
decay. When vj > vj

threshold, we reset the potential vrest → vj and set

vj
threshold + η

ip
spike → vj

threshold, as well as gampa,i + wij → gampa,i or ggaba,i − wij → ggaba,i,

respectively. Here, η
ip
spike is the adaptation increment for the intrinsic firing threshold

plasticity, and wij is the strength of the synaptic connection from presynaptic neuron j to
postsynaptic neuron i.

2.1.3. Synaptic Plasticity and Normalization

The synaptic weights wij between two excitatory neurons are modified by spike
timing-dependent plasticity (STDP) [14,15,31,32], which changes them according to the
temporal difference between adjacent pre- and postsynaptic spikes ∆t:

∆wij =


A+ exp (−∆t/τ+) ∆t > 0,
A− exp (∆t/τ−) ∆t < 0,
0 ∆t = 0.

(4)

Here, A+/− is the plasticity amplitude, τ+/− is the decay time constant, and + and −
signify potentiation and depression, respectively.

After each STDP-induced weight change, we also implement a biologically inspired
synaptic normalization mechanism [18,33,34] modeled by

Wi
Wtotal
||Wi||1

→ Wi (5)

where Wi is the vector of incoming weights to neuron i, ||Wi||1 its L1-norm, and Wtotal the
target value for the total incoming weight.

2.2. Training and Testing Paradigm

Our goal is to study how network self-organization shapes the transmission of infor-
mation conveyed by stimuli. To this end we simulate the self-organization of a recurrent
network which is exposed to five different stimuli for varying durations and then assess
the network properties. All simulations are conducted in four phases:
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1. Warm-up: The network is simulated without input for a period of 50 s to allow all
dynamical variables to converge to an equilibrium distribution.

2. Training: In the following, five non-overlapping stimulation groups of 40 excitatory
neurons are driven through strong connections (20 nS) from a group-specific Poisson
spike source firing at 50 Hz when activated. Every 200 ms another source is activated
for 100 ms.

3. Relaxation: Afterwards, plasticity and inputs are turned off and the homeostatic
mechanisms are allowed to re-equilibrate for 50 s.

4. Testing: The network is presented with recall cues which consist of one precisely
timed input spike to all neurons in one stimulation-group conveyed through a strong
(20 nS) connection. To allow for sufficient network relaxation, there is only one recall
stimulus every 500 ms for 100 s.

To assess the influence of the training phase duration, we conduct new simulations
with the respective training phase duration every time.

2.3. Evaluation Measures
2.3.1. Classification Accuracy

To assess whether information about the stimulus is present in the activity of a certain
brain area or, as considered here, in the activity of a subset of cells (with output projection) a
decoding analysis can be performed (for a recent review see [35]). Hereby, a decoder–that is
a mapping from the neural activities to the stimulus–is derived and it probability to predict
the right stimulus (accuracy) is evaluated. Our focus in this study lies on the question if
information can be decoded by a subsequent network rather than how this is achieved by
a neuronal system. Therefore, we use standard classification algorithms without asking
whether they can be neuronally implemented. The latter question is subject to intensive
research and out of the scope for this study.

As the most biologically inspired algorithm, we employ a perceptron classifier using
the implementation from the scikit-learn-framework [36]. This algorithm uses a single
readout neuron for each stimulus-class, which is trained to display high activity when the
respective stimulus has been presented and low activity for all others. The prediction of
the classifier amounts to the stimulus corresponding to the readout neuron with maximal
activity (one-vs-all multi-class classification).

As a comparison we also use well-established machine learning algorithms: a support
vector machine with linear kernels and a k-nearest neighbor classifier (with k = 3), both
also using the standardized implementation from the scikit-learn-framework.

To determine, if a certain number of long-range projections allows sufficient decoding,
we repeatedly randomly select the given number of neurons, and train the above classifiers
on their immediate spiking response to different stimuli (2.5 ms in 0.5 ms bins). To estimate
the classification accuracy, we use only 80% of the responses for training and test the
prediction on the remaining 20%. This process is repeated five times using a stratified
cross-validation strategy.

2.3.2. Analytical Approximation of the Decoding Accuracy Depending on
Response Probabilities

To approach the decoding accuracy analytically, we first consider the situation where
neurons respond to one preferred stimulus with probability pon and to all other stimuli
with po f f , which approximately corresponds to the response behavior of our recurrent
networks after self-organization. We assume that our decoder receives input from an equal
number ncon of neurons tuned to each of the nstim stimuli and the firing of these neurons
is independent. The output of our decoder is assumed to be the stimulus corresponding
to the population of inputs with the same tuning that spiked most often. In that case, the
probability for the decoder to yield the right output is the probability that the neurons
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tuned to the presented stimulus fire more than any other group of neurons. Using Bernoulli
distributions, this probability can be evaluated as:

Pdecode(pon, po f f ) =
ncon

∑
k=1

(
ncon

k

)
pk

on(1− pon)
ncon−k

(
k−1

∑
k̃=0

(
ncon

k̃

)
pk

o f f (1− po f f )
ncon−k

)nstim−1

.

For a given number of stimuli, we evaluated these probabilities for all combinations
of pon and po f f and obtained the 95% isolines for a varying number of connections per
stimulus ncon. In Figure 2F the resulting isolines are shown for five stimuli corresponding
to the situation in the simulations.

Figure 2. Self-organization tunes all neurons reliably to a single stimulus allowing for readout with less connections.
(A) Stimulus triggered responses (spike rasters for 10 trials and mean response) to the five possible stimuli for three
(unstimulated) cells (colors) after 48 s of training. At this stage, clear preferences for single stimuli are visible. (B) Spiking
probability withing the fist 2.5 ms after the stimulus for the three example cells. If the probability for a stimulus exceeds the
threshold (dashed line), the cell is considered to be tuned to that stimulus. (C) Distributions of mutual information between
stimulus and single neuron activity (up to 2.5 ms after the stimulus) at different training times. (color coded as in Figure 1B).
(D) Distribution of the mutual information for neurons that respond to the same number of stimuli (with more than 20%
probability) indicated on the x-axis. Neurons responding to one or two stimuli convey maximal information. Color code
for number of tunings as in panel E. (E) Evolution of the the fraction of neurons that responds to n = 0, 1, 2, 3 or 4 stimuli.
(F) Response probabilities for preferred stimulus (pon, x-axis) and all other stimuli (po f f , y-axis) determine the number of
readout connections needed to decode the stimulus. Blue curves mark the boundary between combinations of response
probabilities for which the stimulus can be decoded from the indicated number of neurons per stimulus with a 95% accuracy.
Colored dots mark the mean response probabilities observed in simulations. Color code as in Figure 1B. (G) Fraction of
neurons responsive to n-stimuli depending on the response threshold at different times during network training (indicated
in title). Color code for number of tunings as in panel E. After training most neurons respond to a single stimulus.
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2.4. Number of Long-Range Connections Needed to Decode Partly Tuned Networks

The above analysis assumes that each long-range output connection emerges from a
tuned neuron and that there are approximately equally distributed between the stimuli.
Next, we investigate how the number of outputs needed to decode the stimulus scales
if these assumptions do not hold. To this end, we consider a network where a fraction
f of the neurons are tuned to one of nstim stimuli and respond to it with pon = 1 while
not responding to other stimuli (po f f = 0). The remaining fraction 1− f of neurons is
untuned. We further assume that the preferred stimuli are randomly chosen from the nstim
stimuli and every stimulus occurs with equal probability f /nstim. The stimulus identity
can be reliably read out from the network, if at least nstim − 1 differently tuned neurons can
be identified by the read outs. We determine the probability to observe at least nstim − 1
differently tuned neurons after k draws following [37]:

p(k) =
k

∑
l=0

(
k
l

)
f k−l(1− f )l

nstim

∑
m=1

min(nstim−m,1)

∑
s=0

(
nstim

m

)
(−1)nstim−m−s(nstim −m)s

(
m

nstim

)k−l
.

To determine the minimal number of needed long-range connections to decode all
stimuli with 95% certainty, we steadily increase the number of draws k until p(k) > 0.95.
An analytic approximation of the number of needed long-range connections can be found
in the Appendix A.

2.4.1. Mutual Information

Decoding analyses can identify whether information on the stimulus is present in neu-
ronal activities, but it is difficult to interpret how it is encoded and how individual neurons
contribute to the decodability, partly because this depends on the decoder-model [35]. As a
model-free measure of the information that the activity of each single neuron carries about
the stimulus we use mutual information [38–40]. This measure tells us how much informa-
tion we gain about one random variable–here, the stimulus–by observing the other–here,
the neuronal responses. Specifically, we calculate the mutual information between single
neuron responses (spike or no spike) and the stimulus by subtracting the stimulus condi-
tioned entropy of the responses H(response|stimulus) from the unconditioned entropy of
the responses H(response):

MI(response, stimulus) = H(response)− H(response|stimulus).

To determine theses entropies, we use the probability pi that a neuron fires within the
first 2.5 ms after presentation of stimulus i ∈ {A, B, C, D, E}:

MI(response, stimulus) = H2

1
5 ∑

i∈{A,B,C,D,E}
pi

− ∑
i∈{A,B,C,D,E}

H2(pi)

where H2(p) = −p · log2(p)− (1− p) · log2(1− p).
Note that, as the neurons response is binary (spike or no spike, time is not taken into

account), this mutual information is maximally 1 bit, when the neuron spikes in 50% of the
cases. However, if the cell only responds to one stimulus with 100% probability–that is in 20%
of the cases if the stimuli occur equally often–the value would be−0.2log2(0.2)− 0 = 0.46 bit.

2.4.2. Correlation Dependent Densities

To assess whether network self-organization entails strong connectivity between cor-
related neurons as observed in [41], we perform a similar analysis as in these experiments:
For each existing synapse, we determined the correlation of a pre- and postsynaptic neuron
pair using the Pearson correlation coefficient of the stimulus responses of the respective
neurons. Hereby, we restricted the responses for each trial to the first 2.5 ms after the stim-
ulus presentation. We then sorted the synapses according to these correlation coefficients
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and evaluated the cumulative sum of synaptic weights as well as the number of synapses
for increasing correlations, similar to the analysis conducted in [41].

3. Results
3.1. Self-Organization Improves Stimulus Decoding through Sparse Readouts

As explained above, networks within the cortical hierarchy need to relay informa-
tion on incoming sensory stimulation from a subset of neurons that receive sparse input
connections from the previous layer of the hierarchy to another subset of neurons from
which sparse output connections project to the next layer of the hierarchy (Figure 1A). Here
we investigate how recurrent neuronal networks can achieve such information routing
through self-organization. To this end, we investigate the stimulation, reorganization and
readout of self-organizing recurrent networks (SORN) comprising 1200 conductance-based
leaky integrate-and-fire neurons equipped with intrinsic plasticity, spike-timing-dependent
plasticity and synaptic normalization [23,25].

As a first step, we test whether self-organization improves the described information
routing, by testing how well a presented stimulus can be decoded from the activities
of a subset of output neurons at different stages of the self-organization. For this, the
network is presented with five stimuli, which are modeled by increased rates in one of five
input populations, whose activity is conveyed to the network by sparse input connections.
The network is then allowed to self-organize in response to these stimuli for a specified
training time.

We then test, whether the stimulus can be identified from a sparse readout that only
sees the activity of a small subset of neurons in the recurrent network (Figure 1A). For this,
we track the spiking activity relative to the stimulus presentation time and try to decode the
stimulus from a sub-set of the recorded neuron activities using multiple classifiers. To this
end, we repeatedly select a subset of neurons and divide their responses into a training set,
on which a decoder is trained, and a test set on which its classification accuracy is evaluated.
At the beginning of the training the decoding accuracy rises only slowly with the number
of neurons and a good accuracy above 95% is only reached with around 100 neurons
(Figure 1B,C). After around 100 s of training the accuracy rises much faster such that only
10–15 neurons are needed to decode the stimulus with high accuracy (Figure 1B). This
result is preserved when other classifiers are used (Figure 1C).

Thus, we conclude that self-organization improves the readout of stimulus information
by sparse randomly distributed long-range connections to other layers or brain areas.

3.2. Self-Organization Distributes Information by Tuning All Neurons to a Single Stimulus

In the next step, we aim to identify the features of self-organized neuronal code in
the recurrent network that allows for the above described improved decoding as training
proceeds. Most prominently, we find that, after a short training interval, also the cells that
receive no stimulation exhibit a rapid response, mostly to one of the stimuli (Figure 2A).
However, as the actual time of the spike is slightly jittered from trial to trial (Figure 2A),
we also tracked the cumulative probability that a cell spikes within the first 2.5 ms after the
stimulus presentation. As expected from the spike-rasters, these distribution exhibit clear
peaks for one of the stimuli and only small probabilities to fire for one of the other stimuli
(Figure 2B).

We then set a threshold for the stimulus-dependent firing probability (20%, dashed
line in Figure 2B) above which a cell is considered as tuned to the respective stimulus and
evaluated how many cells are tuned to one, two or more stimuli at different training times.
While initially most cells are tuned to no stimulus (Figure 2E, blue curve) and only the
200 cells that are stimulated are tuned to one stimulus (orange curve), the number of cells
that are tuned to no stimulus decreases continuously over the first 100 s of training, such
that at the end, every cell responds to external stimuli. Interestingly, nearly all of the cells
become tuned to only one of the stimuli (orange curve), while double or triple tunings
remain sparse (green/red curves).
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We wondered how this strong preference for one of the stimuli influences the infor-
mation that the activity of a single cell carries about the stimulus. Thus, we evaluated the
mutual information between the stimulus and the activity of individual cells and tracked
the distribution of this mutual information over time (Figure 2C; thickness of the shape
signifies the relative frequency of mutual information value indicated at y-axis at the
training time indicated at the x-axis). Initially the activity of only a few cells–presumably
the stimulated ones–carries information about the stimulus, while the activity of all other
cells is uninformative. As the number of cells that are tuned to at least one stimulus rises,
the probability mass shifts towards higher mutual information values until ultimately the
activity of each individual cell carries around 0.5 bit of information about the stimulus
(training times larger than 96 s). Note, while in principle the spiking probability could
carry up to 1 bit of information, a perfectly tuned cell responding to one stimulus with
100% probability and remaining silent for the rest of the stimuli has a mutual information
value of 0.46 bit. This indicates that self-organization does not necessarily lead to a optimal
representation of information in the spiking activity, but to one that can be easily read out
(see below). Yet, when the mutual information distributions are calculated separately for
cells that are tuned to different numbers of stimuli (Figure 2D), we find that cells with a
tuning for one stimulus actually yield slightly higher information content than cells with
multiple tunings. Hence, for the network we consider here, the final state with a single
tuning for each cell might be the best choice.

The number of tunings, however, could strongly depend on the threshold for the firing
probability that is used. Therefore, we varied the threshold for tuning and evaluated the
fraction of tuned cells at different training durations (indicated in panel title, Figure 2G).
The tendency to acquire a single tuning (orange) is observed over a large range of thresholds.
Tunings to two or more stimuli are mostly observed for very small thresholds during the
beginning of training (Figure 2G). At very high thresholds, the number of untuned neurons
(blue) first shrinks and then rises again over time, which can be attributed to intrinsic
plasticity which prevents the neurons from being overly active and responding to each
stimulus presentation with 100% probability.

3.3. Decodability Improves through Increasing the Response to Preferred Stimulus

In summary, the above results indicate that the majority of neurons in the network
responds to a single stimulus, but with a probability below 1. We use this simplified view to
gain an analytical insight, how many long-range connections would be needed to read out
from such a trained network and decode the stimulus with a given accuracy. For this we
consider the situation, where each neuron is tuned to one preferred stimulus and responds
to it with probability pon, whereas it responds to all other stimuli with probability po f f .
For a given number of long-range connections per stimulus, we can then calculate which
combinations of pon and po f f would allow us to discern the correct stimulus in 95% of the
cases (by choosing the population with the maximal activity). In general, the higher the
response probability to the preferred stimulus, the higher also the response probability for
the other stimuli can be (Figure 2F, blue curves with number of long-range connections
indicated). Using less connections however, will require higher response probabilities to
the preferred stimulus or smaller ones to the not preferred stimulus. We then determined
the average of these response probabilities for our simulated network in different training
stages. The self-organization initially increases the average response probability to the
preferred, but also to the not preferred stimuli (Figure 2F, square markers, color indicates
training time). Later on, the response to the non-preferred stimuli is decreased again, most
likely due to the homeostatic mechanisms that prevent excessive firing. Comparing the
time-course of the response probabilities to the curves indicating the number of connections
necessary for decoding reveals that self-organization transforms the network from a state
where around 20 long-rage connections would be needed per stimulus, to a point where
only one or two connections are necessary for a reliable readout, mainly by increasing the
response probability to the preferred stimulus.
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3.4. Tuning Spreads Due to Strong Feed-Forward Connections

The phenomenon that most cells tune to a single stimulus can be explained by the
self-organization mechanisms in our network: The intrinsic plasticity mechanism adapts
the firing threshold of the unstimulated cells to prevent them from being inactive. Hence,
they eventually become very sensitive and can be triggered via random connections by the
stimulated cells. The resulting correlated firing leads to a strengthening of those connections
by STDP. As stronger weights also induce more correlated firing, this constitutes a positive
feedback loop. However, synaptic normalization also introduces competition between
input weights to a cell and, hence, a winner-take-all mechanism that ultimately only allows
strong weights from the stimulated cells of a single stimulus.

Evidence for this mechanism can be found in the time evolution of histograms of
different weight types in our network (Figure 3A,C). First of all, neurons that receive the
same stimulus exhibit correlated firing, such that the weights between them (intra-stimulus,
red) are continuously growing. However, also the weights that project from the stimulated
neurons to the unstimulated neurons (brown) grow at the same pace. The weights that
project back to the stimulated neurons (reservoir→ stim, pink), however, remain weak.
This could arise from the asymmetric nature of the STDP rule, which senses that the
stimulated neurons trigger the firing in the unstimulated ones, but not vice versa. Weights
between unstimulated neurons (reservoir, grey) also grow, although a bit less than those
from stimulated neurons. Finally, firing between neurons that receive different stimuli are
uncorrelated and the weights between them remain low (inter-stimulus, green).

As a consequence, after training, we observe strong recurrent connections between
the neurons receiving the same stimulus (Figure 3B top, indices 0–199, five groups with
40 neurons). Moreover, we observe strong connections from these neurons to the rest of the
network (upper right block), but not back (lower left block) or between the unstimulated
neurons (lower right block). When the neuron indices are rearranged according to the
stimulated group from which they receive the strongest cumulative input weight and the
size of that weight (Figure 3B bottom), the connectivity matrix exhibits a block diagonal
structure, which is in line with the observation that each neuron tunes to one stimulus.

Furthermore, neurons that receive strong weights from one stimulated group, do not
receive strong weights from another (Figure 3E), which likely emerges by the winner-take-
all structure induced by synaptic normalization.

In summary, we see a spread out of tuned stimulus responses from the stimulated
neurons to the whole unstimulated network (Figure 3F). Thus, the self-organizing dynamics
determined by the interplay between STDP, synaptic normalization, and intrinsic plasticity
allocates the maximum possible neuronal resources to represent the stimuli. Intuitively,
this spread-out of the stimulus representation due to self-organization is beneficial for a
sparse readout by a subsequent network layer or brain area. This is because all long-range
readout connections–no matter how they are distributed–can be expected to sample from
tuned neurons whose activity carries information about the stimulus (see above).
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Figure 3. Self-organization of connectivity during training. (A) Connection-types emerging from the stimulation paradigm:
We differentiate between intra-stimulus connections (red) between neurons stimulated by the the same input-group
and inter-stimulus connections (green) between cells stimulated by different inputs. Furthermore there are connections
from stimulated cells to the unstimulated cells (brown), between unstimulated cells (grey) and from the unstimulated to
stimulated cells (magenta). (B, top) Excitatory synaptic weight matrix after 512 s training. Note the recurrent connection
blocks between the stimulated neurons (0–199) and the feed-forward projections to the unstimulated neurons. Color code
as defined in panel A. (B, bottom) Weight matrix with neurons resorted according to the stimulated neuron group from
which they receive the maximum input and the size of that weight. Note, for better visibility, weight matrices have been
sub-sampled using max-pooling with a stride of 4. (C) Histogram of the synaptic weights of the different connection types.
Connections within and from stimulated groups form stronger weights. Also weights between unstimulated neurons
increase. (D) Cumulative distribution of synaptic connections (blue) and synaptic weight (black) with connections sorted
according to the correlation between pre- and postsynaptic signals. Similar as in experimental results from visual cortex
(compare [42]), large fractions of the total synaptic weight stem from synapses between neuron pairs with high signal
correlation. (E) Pairwise histogram of the mean incoming weights from the stimulated neuron groups receiving stimuli A
and B for the same neuron. Neurons with large weights from one stimulated group do not have large weights from the
other stimulated group. (F) Schematic drawing of the connectivity resulting by training. The network is partitioned in
strongly connected sub-networks for each of the presented stimuli.

3.5. Comparison to Experimental Findings

We wondered whether the above-described interplay between neural activity and
connectivity is biological plausible. To this end, we repeated an analysis from visual
cortex [41–43], which evaluates how the correlation between the activities of neurons
influences the synaptic weight of the connection between them. We find that after the
self-organization of the network, a large fraction of the total synaptic weight in the
network is distributed to a small fraction of connections between neurons with the
strongest correlation (Figure 3D, fraction of connections for 50% of the total synaptic
weight indicated in title). This finding is in line with experimental results from vi-
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sual cortex [41–43] indicating that the here discussed self-organization of activity and
connectivity is biologically plausible.

3.6. Is the Spread-Out of Stimulus Representation Energy-Efficient?

One reason why the long-range connectivity between layers is sparse may be to save
energy. A cost-efficient implementation of neural computation provides an evolutionary
advantage. Hence, it is assumed that networks are arranged such that the total wiring
cost stays small [44,45]. However, to allow for a proper readout with less long-range
connections (LRC), our network uses strong recurrent or short-range connections (SRC).
Thus, it is unclear whether and under which conditions the self-organization principles
discovered here decrease the metabolic cost of the network structure.

To investigate this, we assume that the metabolic cost E to maintain the connectivity of
the network is proportional to a weighted sum of number of short-range connections nSRC
and the number of long-range connections nLRC: E ∝ ELRCnLRC + ESRCnSRC, where ELRC
and ESRC signify the metabolic cost per long-range and short-range connection, respectively.
Using the ratio γ = ELRC/ESRC, which indicates how much more expensive a long-range
connection is compared to a short-range connections, this can be simplified to

E ∝ γnLRC + nSRC.

Hereby, both nSRC and nLRC are determined by the architecture of the network. In
the following we will analyze the metabolic cost for the class of network architectures
which emerge during the above studied self-organization process. In these networks, a
fraction f of the neurons are assumed to acquire a tuning and to respond to one stimulus
(with pon = 1), whereas the remaining fraction 1 − f of neurons shows no stimulus
specific response.

We further assume that, as in our self-organized network, each tuned neuron receives
strong short-range connections from all input neurons that are stimulated by its preferred
stimulus (if these connections physically exist). Thus, for a network with N neurons,
the number of short range connections is approximately nSRC = f Npconβ, where pcon is the
connection probability within the network and β the number of stimulated cells for each
individual stimulus.

The number of long-range connections that are needed to correctly read out the stimu-
lus identity has been determined numerically for different fractions of tuned neurons
and different numbers of stimuli through simulation (Figure 4A, solid curves). These
numbers of long-range connections match well with those needed to correctly read out
from our self-organizing network at different training stages (grey crosses, nLRC and f
determined as in Figures 1C and 2E, respectively). Using an analytical approximation
(see Appendix A), we found that it scales with f like nLRC = L(nstim)/ f (best fits shown
in Figure 4A, dashed lines).

Using the above relations between the fraction of tuned neurons and the numbers of
long- and short-range connections, we can determine the metabolic costs for different cost
ratios γ (Figure 4B top/bottom).

For small numbers of stimuli and small cost ratios, there is an optimal fraction of
tuned neurons below 1 (Figure 4B top for nstim ∈ {3, 5}). This optimal fraction of tuned
neurons at which the total metabolic cost is minimized can be expressed as

fmin =
√

γL(nstim)/(Npconβ).

For all other cases (where fmin > 1) the metabolic cost is monotonically decreasing with f
(Figure 4B), such that networks with f = 1 are the most cost efficient architecture. Thus, in
these cases the here investigated self-organization, which drives the network towards f = 1
(see above), is constructing a network architecture that transmits the stimulus information
with minimal metabolic cost.
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The minimal cost ratio, for which this ( f = 1) is the case, can be determined from the
above expression as

γmin = pcon · β︸ ︷︷ ︸
in-degree of tuned cells

· N/L(nstim)︸ ︷︷ ︸
≈ tuned cells per stimulus

.

The cost ratio is higher the more cells are tuned to each stimulus and the more synapses
they receive from the cells stimulated by the inputs βpcon. In Figure 4C we show how this
minimal cost ratio scales for different network sizes and number of stimuli (using β = 40
and pcon = 0.04 as in the simulations).

We would like to point out, that the metabolic cost to maintain a connection depends
on the axonal membrane area [46–48], which is in turn proportional to the axonal length.
The length-ratios between local projections (order of 100 µm) and long-range projections
(order of millimeters) can be expected to be around 10–100. As this already exceeds most
of the minimal cost ratios determined in Figure 4C, the here discussed self-organization,
which entails that every neuron in the network responds to one stimulus, may indeed
be a biologically plausible mechanism to ensure a metabolically cost efficient routing of
stimulus information.

Figure 4. Energy-efficiency of information transmission depending on the fraction of tuned neurons. (A) Number of
long-range connections needed to sample at least nstim − 1 different tunings, assuming that a fraction f of the neurons
are tuned to a single stimulus and all tunings are equally probable. Color indicates the number of stimuli nstim. For
each number of stimuli, the dependency on f is well fit by the function L/ f (dashed lines). Grey error-bars mark the
simulation corresponding to nstim = 5 (fraction of single tuned neurons vs long-range connections needed for classification).
(B) Metabolic cost for connection maintenance assuming that long-range connections are 40× (top) or 120× (bottom) more
expensive than the short-range connections in the recurrent network. Grey bars mark simulation results (as above, number
of short-range connections from weights above 5 nS). (C) Maximal cost-ratio between long- and short-range connections for
which a number of stimuli (x-axis) is transmitted most cost-efficient through the here presented self-organizing recurrent
network . Gray scale indicates the size of the recurrent network, which determines the number of short range connections.

4. Discussion

In this study we used a well established model of the self-organization of cortical
connectivity and demonstrated that the resulting intra-layer connectivity supports infor-
mation processing and transmission using sparse long-range connections to other brain
areas higher or deeper in the cortical hierarchy. Specifically, we demonstrated that the
stimulated neurons form feed-forward projections into the unstimulated parts of the net-
work and thereby acquire more neurons to represent the stimulus by rapid stereotypical
spiking responses. Hereby, each neuron only receives feed-forward projections from one
externally stimulated group such that the network is partitioned into parts with different
preferred stimuli (Figure 3F). Finally we showed that the self-organization is consistent
with experimental findings and leads to metabolically cost efficient network architectures.
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4.1. Model Predictions

Several pre- and postdictions can be derived from our model: First of all, it predicts
that each neuron is tuned to a stimulus. This is in line with neurons establishing new
tunings when they are deafferentiated (e.g., [49]). Note, however, in a given experiment it
is still possible to observe neurons which are not tuned to any experimental parameter as
the animals still encounter other stimuli outside of the experiment.

Secondly, we see that an increasing training and adaptation time increases the response
probabilities of the neurons. Hence, the neural responses to a stimulus will become more
and more stereotypical when training continues. Similar effects have been observed in the
olfactory domain [50].

Most importantly, however, we predict that an increased entrainment to a set of stimuli
will enable the identification of the stimulus from smaller and smaller subsets of neurons.
This might be verified by future experiments where learning is tracked in animals with
implanted electrode arrays.

4.2. Limitations and Possible Extensions

In this study we focused on routing of uncorrelated stimuli which are moreover
conveyed to disjunct or orthogonal groups of neurons. Interestingly, the sets of neurons
responding to the stimuli are also disjunct/orthogonal such that this assumption is self-
consistent with the transmission of stimulus information over many layers. However, often
there is a significant correlation between presented stimuli and the corresponding responses.
This may lead to cells with mixed responses that support complex computations [51].
Moreover, stimuli might not stem from distinct classes but rather from a continuum, as
for example orientation and speed of bars and moving gratings in the visual system. In
this case we would also expect more continuous tuning curves. An investigation of the
self-organization and information routing in response to correlated stimuli is therefore an
interesting direction for future work.
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Appendix A. Estimation for the Number of Needed Long-Range Connections

Here we approximate the number of long-range connections that is needed to discern
nstim different stimuli. We assume that they randomly emerge from cells in the network.
Hereby a fraction f is tuned to one of the stimuli (equally distributed, whereas a fraction of
1− f is untuned.

A reliable readout needs to sample at least from nstim − 1 different stimuli. Thus, to
determine the minimal number of long-range connection, we then determine the number
of samples for which the probability to observe at least nstim − 1 different tunings is above
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95%. Using the probability that two stimuli are not chosen within the first nLRC connections,
we get

0.95 > 1− nstim(nstim − 1)
2

[
1− 2 · f · 1

nstim

]nLRC

.

Hence, using ln(1− x) ≈ −x, we obtain

nLRC >
ln(2 · 0.05/nstim/(nstim − 1))

ln
(

1− 2 · f · 1
nstim

) ≈ nstim
2 f

ln
(

nstim(nstim − 1)
2 · 0.05

)
=: L(nstim)/ f .
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