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Simple Summary: The unfolded protein response (UPR) is the cells’ way of maintaining the balance
of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding
proteins with specific destinations such as other organelles or to be secreted by the cell. The UPR is
activated when unfolded proteins accumulate in the endoplasmic reticulum. This accumulation puts
a greater load on the molecules in charge of folding the proteins, and therefore the UPR works to
balance this by lowering the number of unfolded proteins present in the cell. This is done in multiple
ways, such as lowering the number of proteins that need to be folded; increasing the folding ability
of the endoplasmic reticulum and by removing some of the unfolded proteins which take longer to
fold. If the UPR is successful at reducing the number of unfolded proteins, the UPR is inactivated
and the cells protein folding balance is returned to normal. However, if the UPR is unsuccessful, then
this can lead to cell death.

Abstract: The unfolded protein response is the mechanism by which cells control endoplasmic
reticulum (ER) protein homeostasis. Under normal conditions, the UPR is not activated; however,
under certain stresses, such as hypoxia or altered glycosylation, the UPR can be activated due to an
accumulation of unfolded proteins. The activation of the UPR involves three signaling pathways,
IRE1, PERK and ATF6, which all play vital roles in returning protein homeostasis to levels seen in
non-stressed cells. IRE1 is the best studied of the three pathways, as it is the only pathway present in
Saccharomyces cerevisiae. This pathway involves spliceosome independent splicing of HAC1 or XBP1
in yeast and mammalians cells, respectively. PERK limits protein synthesis, therefore reducing the
number of new proteins requiring folding. ATF6 is translocated and proteolytically cleaved, releasing
a NH2 domain fragment which is transported to the nucleus and which affects gene expression. If
the UPR is unsuccessful at reducing the load of unfolded proteins in the ER and the UPR signals
remain activated, this can lead to programmed cell death.

Keywords: UPR; IRE1; PERK; ATF6; RIDD; ERAD; inactivation

1. Introduction

The endoplasmic reticulum (ER) is a membrane-bound organelle that is responsible for
folding, modification and synthesis of secretory and organelle-bound proteins. The process
of protein synthesis and folding is highly controlled and is sensitive to perturbation of ER
homeostasis. This situation is often referred to as ER stress. A multitude of homeostatic
changes can lead to a build-up of unfolded proteins. The changes in ER homeostasis
can be caused by Ca2+ depletion, hypoxia, altered glycosylation or viral infection [1–3].
Consequently, because of the accumulation of unfolded proteins, the cell has evolved a
response mechanism to prevent further accumulation of unfolded proteins. This signalling
pathway is known as the unfolded protein response (UPR). The UPR detects the build-up
of unfolded or misfolded proteins and adjust the protein folding ability of the ER.

The UPR in mammalian cells is complex and works via three principal ER transmem-
brane receptors: type I transmembrane protein inositol requiring 1 (IRE1α); eukaryotic ini-

Biology 2021, 10, 384. https://doi.org/10.3390/biology10050384 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-6064-7979
https://doi.org/10.3390/biology10050384
https://doi.org/10.3390/biology10050384
https://doi.org/10.3390/biology10050384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10050384
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10050384?type=check_update&version=1


Biology 2021, 10, 384 2 of 10

tiation factor 2α (eIF2α) kinase (PERK) and activating transcription factor 6 (ATF6) [1,4–6].
The UPR attempts to process the accumulation of unfolded proteins by downregulating
transcription of secretory proteins and increases the removal of misfolded or slowly folding
proteins through ER-associated degradation (ERAD) or lysosomal degradation [7]. Addi-
tionally, the synthesis of ER resident chaperones and foldases is increased to promote the
folding ability of the ER and to alleviate the unfolded protein burden [8,9]. If adaptation by
the cell via the UPR is not sufficient to deal with the increased load of unfolded proteins,
activation of JNK protein kinase and caspases 3, 7 and 12 occurs, which ultimately leads to
an apoptotic response [6,10].

IRE1α is a type I transmembrane protein with a protein serine/threonine kinase and
endoribonuclease domain. Activation of IRE1α occurs when the ER chaperone BiP is
released from its luminal domain when a build-up of unfolded proteins arises [1,5,11].
Once IRE1α is activated, its endoribonuclease domain initiates splicing, independent of
the spliceosome, of the mRNA encoding the bZIP transcription factor XBP-1 in mammals
and Hac1 in yeast by its ortologue Ire1 [6,12]. PERK is also a type I transmembrane protein
which shares luminal domain homology with IRE1α [13]. When PERK is activated, it
phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) at serine 51 [14].
Protein synthesis is inhibited by serine 51 phosphorylated eIF2α, which in turn reduces
the number of proteins that need to be folded. ATF6 is a type II transmembrane protein.
When unfolded proteins accumulate, ATF6 is transported to the Golgi complex where it is
proteolytically cleaved by S1P and S2P to release the NH2 terminal-domain [15,16]. The
cleaved section of ATF6 translocates to the nucleus, where it activates gene transcription
of target genes such as GRP78, GRP94 and calnexin [17]. The ER-resident proteins that
are regulated by the UPR share a common activating sequence termed the unfolded
protein response element (UPRE) or ER stress response elements (ERSEs). These elements
are necessary for activation of transcription in response to accumulation of unfolded
proteins [18,19].

2. Ire1 in Yeast

The UPR in yeast differs from mammals, as it lacks both ATF6 and PERK, which
leaves only one known pathway originating at the IRE1α orthologue Ire1 available to
yeast cells to respond to accumulation of unfolded proteins in the ER. There are two
proposed models for the activation of the UPR via Ire1. One model suggests direct binding
of unfolded proteins to Ire1, which causes oligomerisation of Ire1. This is suggested by
studies of the core of Ire1′s luminal domain, which contains two interfaces [20]. Interface
1 creates a deep groove. Interface 2 allows oligomerisation. Mutating either of the interfaces
decreases splicing of the HAC1 mRNA by Ire1 and decreases oligomerisation of Ire1 [21].
The grooves formed by Ire1 are similar to that of the major histocompatibility complex
(MHC), which are able to bind peptides with high specificity. The Ire1 groove is lined
with hydrophobic and hydrophilic residues [20]. It is also thought that due to the depth of
the groove, correctly folded proteins are unable to access the groove and therefore only
allow Ire1 to bind to unfolded proteins. This steric discrimination may be the reason for
the specificity of Ire1 for unfolded proteins [20]. The other proposed model involves the
resident ER chaperone Kar2, called BiP in mammalian cells, which is bound to inactivate
Ire1 and preferentially binds to unfolded proteins when they accumulate. This releases
Kar2 from Ire1 allowing it to oligomerise, which promotes trans-autophosphorylation of
Ire1 in its activation segment at serines 837, 840, 841, 850, and threonine 844 [22–24] and
induction of endoribonuclease activity [1]. The target of Ire1 endoribonuclease activity
is a mRNA that encodes the transcription factor Hac1 which binds to the UPRE in the
promoters of target genes such as KAR2 [25,26]. During activation of the UPR, an intron
of 252-nucleotides is removed from the HAC1 mRNA creating the spliced form of HAC1,
termed HAC1i (Figure 1) [19]. The next step after cleavage of HAC1 mRNA by Ire1 is the
ligation of the two exons by tRNA ligase. The splicing of HAC1 is unique, as most other
pre-mRNAs require the spliceosome and its related constituents. By contrast, the type of
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splicing for HAC1 is more like pre-tRNA splicing, as it only requires two components for
cleavage and ligation [27]. The newly ligated mRNA is then translated to an active protein
able to bind to the promoter regions of target genes (Figure 1).
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splicing activity and IRE1β exerts stronger RIDD activation [31]. RIDD has not been ob-
served in S. cerevisiae, as it appears that HAC1 splicing is the only target for RNase activity, 
whereas in S. pombe the splicing of HAC1 does not occur and RIDD is the main mechanism 
for ER protein homeostasis [32]. It has also been demonstrated that basal levels of RIDD 
are required to maintain ER homeostasis. As XBP1/HAC1 is only spliced under elevated 
ER stress, basal activity of RIDD is observed as the cleavage of mRNAs when cells are 
only under basal levels of ER stress. IRE1β has many target substrates even when ER stress 
is not induced, further supporting the theory of basal RIDD activity [33]. ire1α and xbp1 
mutants were also used to investigate which one had the greater effect on ER homeostasis 
when not under stress and the ire1α mutant altered homeostasis to a greater extent [30,33]. 

Figure 1. The unfolded protein response. The Ire1 pathway of the unfolded protein response: (A) Ire1-bound BiP/Kar2
(yellow) is released from the luminal domain of Ire1 when unfolded proteins accumulate leading to the oligomerisation and
trans-autophosphorylation of Ire1 monomers. (B) Unspliced HAC1/XBP1 mRNA is spliced by the endoribonuclease domain
of Ire1 and the two exons ligated together by tRNA ligase (pink). (C) The HAC1i/XBP1s mRNA is then translated into an
active protein. (D) The newly synthesised protein then enters the nucleus and binds to the promoter regions of target genes.

The UPR varies even among different yeast species where the Ire1 pathway is the only
conserved pathway. The main difference is that some species focus on processing of HAC1
mRNA, such as Saccharomyces cerevisiae and Candida albicans [28], whereas some species,
such as Schizosaccharomyces pombe, focus on the degradation of mRNAs which have been
localised to the ER through a mechanism known as RIDD [28].

3. IRE1 and RIDD

The RNase activity of metazoan IRE1 is also involved in a different mechanism known
as regulated IRE1-dependent decay (RIDD). RIDD was reported to degrade mRNAs that
are localised to the ER [29]. The cleavage site for the mRNAs seems to be similar to
the cleavage sequence of XBP1, and the mRNA fragments are then degraded by cellular
exoribonucleases [30]. IRE1 has two different isoforms, IRE1α and IRE1β, both of which
have the ability to splice XBP1 and to activate RIDD, although IREα shows stronger splicing
activity and IRE1β exerts stronger RIDD activation [31]. RIDD has not been observed in
S. cerevisiae, as it appears that HAC1 splicing is the only target for RNase activity, whereas
in S. pombe the splicing of HAC1 does not occur and RIDD is the main mechanism for
ER protein homeostasis [32]. It has also been demonstrated that basal levels of RIDD are
required to maintain ER homeostasis. As XBP1/HAC1 is only spliced under elevated ER
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stress, basal activity of RIDD is observed as the cleavage of mRNAs when cells are only
under basal levels of ER stress. IRE1β has many target substrates even when ER stress
is not induced, further supporting the theory of basal RIDD activity [33]. ire1α and xbp1
mutants were also used to investigate which one had the greater effect on ER homeostasis
when not under stress and the ire1α mutant altered homeostasis to a greater extent [30,33].
This suggests that IRE1α has a way of balancing ER homeostasis even when the cell
is not under stress through mechanisms such as RIDD. Under normal unstressed cells,
XBP1/HAC1 is not spliced. Once ER stress due to the accumulation of unfolded proteins
occurs, XBP1/HAC1 splicing is present and increases until it reaches a maximum peak and
then starts to decrease. RIDD is active under basal conditions and once ER stress is induced
also increases. If both splicing and RIDD are able to alleviate the unfolded protein load
in the ER, then homeostasis returns to normal levels [34,35]. However, if the mechanisms
of XBP1/HAC1 splicing and RIDD are insufficient to normalise ER homeostasis, then,
unlike splicing, which decreases over prolonged ER stress, RIDD continues increasing
and degrades pre-miRNAs as well as pro-survival protein encoding mRNAs [36,37]. This
ultimately leading to apoptosis of the cell and is termed prodeath RIDD [30].

4. IRE1 Activates JNK Signaling

Activated IRE1α has also been revealed to recruit TNF receptor-associated factor 2
(TRAF2), the newly recruited TRAF2 then also recruits apoptosis signal-regulating kinase
(ASK1) which directly interacts with TRAF2 [38]. Once ASK1 is recruited and activated, a
signal is relayed to c-Jun amino-terminal kinase (JNK) and p38 [10]. This apoptotic pathway
of IRE1α further demonstrates its ability to control the fate of the cell under ER stress.

5. Ire1 Inactivation

The mechanism for the inactivation of Ire1, the most studied of all the UPR pathways,
has yet to be fully elucidated. However, two phosphatases Dcr2 and Ptc2 have been sug-
gested to negatively regulate yeast Ire1 [39–43]. Reversible protein phosphorylation is an
important mechanism of control of protein activity which works through the antagonistic
actions of protein kinases and phosphatases. Ptc2 is a protein serine/threonine phosphatase
which dephosphorylates Ire1 through a direct interaction with Ire1 [39]. Ptc2 binds to Ire1
in vitro and has specificity for phosphorylated Ire1. Binding to Ire1 is independent of diva-
lent metal ions or mutations in the metal ion binding site of Ptc2. Ptc2 dephosphorylates
Ire1 in a Mg2+ or Mn2+ dependent manner [39]. The dephosphorylation inactivates Ire1
and prevents splicing of HAC1, which attenuates the UPR. Cells lacking PTC2 have shown
similar phenotypes to cells overexpressing Ire1 which showed a three-fold increase in HAC1
splicing. Additionally, when catalytically inactive Ptc2 is expressed, a similar increase in
HAC1 splicing was observed which was not seen with active Ptc2 overexpression [40,42].
However, PTC2 is not necessary for cell survival during ER stress, as PTC2 null mutants
still showed the same growth as wild-type cells, even though they had an increase in UPR
activity [22,39]. This may suggest that additional phosphatases compensate for the loss of
PTC2. PTC2 is also constitutively expressed and is not regulated by Ire1 or induced upon
activation of the UPR. Therefore, the exact mechanism of regulation of Ire1 by Ptc2 remains
unclear [39].

Dose-dependent cell cycle regulator (Dcr2) has also been suggested to negatively
regulate the UPR at a step preceding HAC1 splicing [42]. Mutants with Ire1-S840E-
S841E or Ire1-S840A-S841A as their sole version of Ire1 represent phosphorylated and
non-phosphorylated versions of Ire1, respectively [42]. Dcr2 directly interacted with the
phosphomimic Ire1 mutant but not the non-phosphorylatable mutant suggesting that Dcr2
shows specificity towards phosphorylated Ire1 [42]. However, loss of DCR2 has no impact
on cell survival of ER stress suggesting that Dcr2 is not the main mechanism for Ire1 de-
phosphorylation [22,42]. In addition, survival of ER stress was not affected by loss of both
Dcr2 and Ptc2 [22], suggesting that other phosphatases are involved in inactivating Ire1,
that other phosphatases can compensate for the loss of both Dcr2 and Ptc2, or that dephos-
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phorylation is not necessary for inactivation of Ire1. The kinetics of inactivation of an Ire1
mutant lacking all phosphorylation sites in its activation segment was indistinguishable
from wild type Ire1 [22]. These data provide evidence for dephosphorylation-independent
inactivation of Ire1 or biphasic inactivation of Ire1, where fast dephosphorylation steps
precede slower dephosphorylation-independent inactivation steps.

6. PERK Activation and Signalling

The luminal domains of IRE1 and PERK show a small amount of homology in their
luminal domains and both IRE1 and PERK from Caenorhabditis elegans can function as
replacements for the luminal domain in S. cerevisiae, even though yeast does not have the
PERK gene [13,44]. The activation of PERK is also thought to be similar to that of IRE1,
as both rely on BiP bound to their luminal domains being released due to its affinity for
unfolded proteins, which is followed by oligomerisation and trans-phosphorylation of
PERK monomers [44], although the way in which BiP represses the activation of IRE1
and PERK may differ slightly. The BiP binding sequence in IRE1 overlaps with the re-
gion believed to be involved in oligomerisation and signalling [45], whereas in PERK,
the BiP binding region does not overlap with the oligomerisation sequence and, there-
fore, is thought to interfere with PERK activation sterically [13,45]. Once activated PERK
phosphorylates eukaryotic initiation factor 2 on its α subunit (eIF2α), Figure 2 [13]. eIF2α
binds to methionylated initiator methionyl-tRNA, GTP and the 40 S ribosomal subunit
to form the 43 S preinitiation complex [44]. This preinitiation complex binds to the 5′ cap
structure of mRNAs and in a 5′ to 3′ manner scans the mRNA until it reaches the first AUG
codon, which then allows binding of the 60 S subunit to initiate translation [44]. When
the two ribosomal subunits combine, the GTP in the preinitiation complex is hydrolysed
to GDP. Phosphorylated eIF2 reduces the exchange of eIF2-GDP to eIF2-GTP which in
turn reduces translation of upstream open reading frames (ORFs) which would normally
be translated when GTP is readily available [46]. High levels of phosphorylated eIF2α
lead to downstream ORFs which would not be translated in normal circumstances due
to the ribosomes still being bound to the mRNAs but scanning further along the mRNAs
before re-initiation of translation is started due to lower amounts of GTP [44,46,47]. This
mechanism represses translation of most mRNAs except for GCN4 in yeast and ATF4 in
vertebrates, which are actually increased (Figure 2) [47,48]. ATF4 has been demonstrated
to induce expression of both ATF3 and CHOP under ER stress (Figure 2). CHOP is a vital
intermediary of ER stress-induced apoptosis as it induces multiple pro-apoptotic molecules
such as death receptor 5 (DR5) and tribbles homologue 3 (TRB3) [49]. ATF3 is also an
important molecule induced by ATF4, as ATF3 and ATF4 have been suggested to bind to
the promoter region of GADD34. GADD34 is a regulatory subunit of protein phosphatase
1, which targets protein phosphatase 1 to phosphorylated eIF2α, and in this way promotes
dephosphorylation of eIF2α (Figure 2) [49–53].



Biology 2021, 10, 384 6 of 10
Biology 2021, 10, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 2. The PERK pathway of the unfolded protein response. (A) BiP bound to the luminal domain of PERK dissociates 
when unfolded proteins accumulate allowing oligomerisation and phosphorylation of the PERK monomers. (B) Phos-
phorylated PERK then phosphorylates eIF2 on its α subunit at S51. (C) Phosphorylated eIF2α interferes with ribosomal 
translation of mRNA and causes downstream ORFs to be translated, such as ATF4. (D) ATF4 induces expression of ATF3 
and CHOP. (E) ATF3 binds to the promoter region of GADD34 which activates a protein phosphatase which dephosphor-
ylates eIF2α. (F) CHOP induces ER stress-induced apoptosis. 

7. ATF6 Signalling 
ATF6 is a type II transmembrane protein and the third pathway which plays a vital 

role in UPR signalling. Similarly to IRE1 and PERK, this transmembrane protein is also 
bound to BiP in its inactive state and requires dissociation of BiP before the signalling 
cascade can activate [44]. Regulated intermembrane proteolysis (RIP) is the process by 
which transmembrane proteins such as ATF6 are cleaved to release their cytoplasmic do-
mains which then regulate gene expression by entering the nucleus [15,52]. The mecha-
nism for the activation of ATF6 is best represented by the model for sterol regulatory ele-
ment binding proteins (SREBPs), which are transcription factors important in the synthe-
sis of cholesterol [53]. The SREBPs are also embedded in the ER membrane with their NH2-
terminal and COOH-terminal segments projecting into the cytosol and a hydrophilic loop 
facing the ER lumen which is similar to ATF6 as its NH2 domain also projects into the 
cytosol [15]. The next step for SREBPs is to bind with SREBP cleavage activating-protein 
(SCAP), which transports the SREBPs to the Golgi complex, where RIP occurs [54,55]. Site-
1 protease (S1P) is a membrane-anchored serine protease that cleaves the recognition se-
quence RXXL, where X can be any amino acid [15,56]. S1P cleavage splits the two trans-
membrane domains, with the NH2-terminal segment being termed as the intermediary 
fragment (Figure 3) [15]. Site-2 protease (S2P) is responsible for cleaving the intermediary 
fragment, which releases the NH2-terminal fragment that then localises to the nucleus and 
binds to promotor regions initiating gene expression (Figure 3) [57,58]. The same RXXL 
sequence has been detected in the luminal domain of ATF6 which suggests that S1P may 
also cleave ATF6 in a similar manner to SREBP-2 [15,17]. However, an equivalent mole-
cule to SCAP has not been identified for ATF6. Therefore, the transport of ATF6 to where 
S1P is localised, which is usually in or near the Golgi complex, remains unknown [15]. 

Figure 2. The PERK pathway of the unfolded protein response. (A) BiP bound to the luminal domain of PERK dissociates
when unfolded proteins accumulate allowing oligomerisation and phosphorylation of the PERK monomers. (B) Phosphory-
lated PERK then phosphorylates eIF2 on its α subunit at S51. (C) Phosphorylated eIF2α interferes with ribosomal translation
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7. ATF6 Signalling

ATF6 is a type II transmembrane protein and the third pathway which plays a vital role
in UPR signalling. Similarly to IRE1 and PERK, this transmembrane protein is also bound
to BiP in its inactive state and requires dissociation of BiP before the signalling cascade
can activate [44]. Regulated intermembrane proteolysis (RIP) is the process by which
transmembrane proteins such as ATF6 are cleaved to release their cytoplasmic domains
which then regulate gene expression by entering the nucleus [15,52]. The mechanism
for the activation of ATF6 is best represented by the model for sterol regulatory element
binding proteins (SREBPs), which are transcription factors important in the synthesis of
cholesterol [53]. The SREBPs are also embedded in the ER membrane with their NH2-
terminal and COOH-terminal segments projecting into the cytosol and a hydrophilic loop
facing the ER lumen which is similar to ATF6 as its NH2 domain also projects into the
cytosol [15]. The next step for SREBPs is to bind with SREBP cleavage activating-protein
(SCAP), which transports the SREBPs to the Golgi complex, where RIP occurs [54,55].
Site-1 protease (S1P) is a membrane-anchored serine protease that cleaves the recognition
sequence RXXL, where X can be any amino acid [15,56]. S1P cleavage splits the two
transmembrane domains, with the NH2-terminal segment being termed as the intermediary
fragment (Figure 3) [15]. Site-2 protease (S2P) is responsible for cleaving the intermediary
fragment, which releases the NH2-terminal fragment that then localises to the nucleus and
binds to promotor regions initiating gene expression (Figure 3) [57,58]. The same RXXL
sequence has been detected in the luminal domain of ATF6 which suggests that S1P may
also cleave ATF6 in a similar manner to SREBP-2 [15,17]. However, an equivalent molecule



Biology 2021, 10, 384 7 of 10

to SCAP has not been identified for ATF6. Therefore, the transport of ATF6 to where S1P is
localised, which is usually in or near the Golgi complex, remains unknown [15].
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8. ERAD Induction

ER-associated degradation (ERAD) is a mechanism by which slowly folding or mis-
folded proteins are cleared from the ER and degraded [8]. The clearance and degradation
of these unfolded or misfolded protein helps to alleviate the accumulation of unfolded
proteins during ER stress. The UPR and ERAD are known to functionally connect to each
other. Cells with compromised ERAD display constant UPR activation due to misfolded
proteins not being degraded [43,59,60]. In mammalian cells, ATF4 and ATF6 have been
suggested to induce HERP/Mif1, an ER membrane protein which is known to interact
with the 26 S proteosome, which brings proteosomes closer to the ER allowing for efficient
ERAD [43]. Additionally, herp-/- cells have shown greater susceptibility to ER stress and
demonstrated increased UPR signaling as well as stabilisation of an endogenous ERAD
substrate [61]. Multiple genes involved in ERAD, such as EDEM, HRD1 and UGGT, require
induction by XBP1. EDEM recognises and targets unfolded proteins for degradation [62].
It has also been suggested that the UPR may work in two phases. Phase one allows the
unfolded proteins time to refold without being degraded and phase two degrades any
proteins which have failed to fold [63]. This is believed to occur due to ATF6 activating
quickly when compared to IRE1, which has to induce XBP1 splicing and translation of
XBP1 to an active protein. During this time, the ER chaperones induced by ATF6 are able
to promote protein folding before spliced XBP1 induces ERAD genes which promote the
degradation of unfolded proteins [63,64].

9. Future Perspectives

The importance of protein folding homeostasis in the ER has been demonstrated
to have a vital role in the function and growth, as well as being a major regulator at
transcriptional, translational and post-translational levels. The basic mechanisms of action
have been established for IRE1, PERK and ATF6. However, a deeper understanding of
the interactions of these signaling pathways with molecular chaperones is needed. There
are still important questions left unanswered. Are all UPR pathways regulated in the
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same manner? Is BiP the only molecular chaperone involved at the start of all three UPR
pathways, or has the importance of BiP been overstated and do other molecular chaperones
contribute to the regulation of the ER stress sensors? The factors that regulate the UPR
pathways still remain uncertain. The characterisation of these factors could lead to a greater
understanding of the effect that the UPR has in the cell. For example, the UPR is not only
focused on clearing accumulated unfolded proteins, but it also has the ability to initiate
or prevent apoptosis. Therefore, understanding all the factors involved in the UPR could
demonstrate the ability of the UPR to affect previously unrelated pathways.
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