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Simple Summary: Tight regulation of gene expression is critical for various biological processes
such as proliferation, development, differentiation, and death; its dysregulation is linked to the
pathogenesis of diseases. Gene expression is dynamically regulated by numerous factors at DNA,
RNA, and protein levels, and RNA binding proteins (RBPs) and non–coding RNAs play important
roles in the regulation of RNA metabolisms. RBPs govern a diverse spectrum of RNA metabolism
by recognizing and binding to the secondary structure or the certain sequence of target mRNAs,
and their malfunctions caused by aberrant expression or mutation are implicated in disease pathology.
HuD, an RBP in the human antigen (Hu) family, has been studied as a pivotal regulator of gene
expression in neuronal systems; however, accumulating evidence reveals the significance of HuD in
non–neuronal systems including certain types of cancer cells or endocrine cells in the lung, pancreas,
and adrenal gland. In addition, the abnormal function of HuD suggests its pathological association
with neurological disorders, cancers, and diabetes. Thus, this review discusses HuD–mediated
gene regulation in neuronal and non–neuronal systems to address how it works to orchestrate gene
expression and how its expression is controlled in the stress response of pathogenesis of diseases.

Abstract: HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human anti-
gen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs.
Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in
neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal devel-
opment, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic trans-
mission by regulating the metabolism of target mRNAs. However, growing evidence suggests
that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its
malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression,
abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role
as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant
HuD expression. This review focuses on recent advances investigating the emerging role of HuD,
its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and
non–neuronal systems.

Keywords: HuD; RNA–binding protein; neuronal systems; non–neuronal systems; disease pathology

1. Introduction

RNA–binding proteins (RBPs) are responsible for the formation of ribonucleopro-
tein (RNP) complexes by binding to specific sequences or secondary structures of target
RNAs. RBPs regulate the life cycle of RNAs, including alternative splicing, maturation,
editing, transport, localization, turnover, and translation, thereby acting as an important
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regulators of gene expression [1–4]. Canonical RBPs usually include RNA–binding domains
(RBDs), such as RNA recognition motif (RRM), K–homology (KH) domains, CCHC–type
zinc–finger domains, helicase domains, and glycine–rich domains [5,6]. Non–canonical
RBPs lack common RBDs and interact with RNA molecules via intrinsically disordered
regions or mono–/di–nucleotide–binding domains [7–9]. Mutations or alterations in the
expression of certain RBPs are linked to the development of human genetic diseases
(reviewed in [10]). Further, impaired expression, mislocalization, and aggregation of
RBPs are involved in the pathogenesis of various diseases, such as neurodegeneration,
cancer, and metabolic diseases [11–16].

HuD, otherwise known as ELAVL4, is an RBP belonging to the Hu/ELAVL (Hu
antigen/embryonic lethal, abnormal vision, Drosophila–like) family. While HuR is ubiq-
uitously distributed across tissues, HuD, along with HuB and HuC, exhibits tissue–
specific expression, particularly in neurons [17–19]. The HuD gene generates a variety
of mRNA variants through alternative splicing and encodes ~40~42 kDa proteins in hu-
mans, mice, and rats [20–22]. HuD contains three RRMs (RRM1, RRM2, and RRM3) and
a linker region between RRM2 and RRM3, through which it interacts with the AU–rich
element (ARE) sequence of target mRNAs, thereby affecting their splicing, polyadenylation,
transport, stability, and translation [23].

HuD plays diverse and important roles in neuronal processes, including neuronal
development, plasticity, survival, function, and disease processes [23–25]. Many studies
have emphasized the significance of HuD in the neuronal system; however, it also func-
tions as a pivotal regulator of gene expression in non–neuronal tissues, including lung,
testis, pituitary gland, and pancreatic endocrine cells [26–29]. Therefore, comprehensive
knowledge of its expression, abundance, molecular targets, and regulatory mechanisms
is needed to broaden our understanding of HuD as a versatile regulator of gene expres-
sion. This review focuses on recent studies elucidating the role of HuD, the molecular
mechanisms underlying its target gene regulation, and its association with disease in both
neuronal and non–neuronal systems.

2. General Characteristics of HuD

HuD was identified and characterized as a neuronal form of the Hu family, along with
HuB and HuC [17]. HuD is well–conserved among vertebrates and located on chromo-
somes one, four, and five in humans, mice, and rats, respectively [30–32]. The complexity
of the 5′ sequence of HuD transcripts and alternative exon splicing may generate several
HuD mRNA variants [19,22,33,34] (reviewed in [24]). HuD proteins are ~40~42 kDa in
size and have three highly conserved RRMs [23,25]. RRM1 and RRM2 associate with ARE–
containing target mRNAs, while RRM3 is known to interact with poly(A) or ARE regions
of target mRNAs [35–37]. Neuronal Hu proteins HuB, HuC, and HuD share 80% amino
acid sequence homology compared to HuR, thus executing a similar role in RNA regula-
tion [19]. The N–terminal and linker regions located between RRM2 and RRM3 seem to be
responsible for the Hu family characteristics of each protein, including nuclear–cytoplasmic
shuttling, protein–protein interactions, and binding to target mRNAs [24]. HuD variants
reportedly display different amino acid sequences at their nuclear localization signal (NLS)
or nuclear export signal (NES) in the linker region, which are responsible for temporal and
spatial regulation of neuronal differentiation [38].

HuD is primarily found in the brain and regulates neural development, synaptic plas-
ticity, and nerve generation [19,23,27,34]. However, increasing evidence has demonstrated
its expression in non–neuronal cells, including small cell lung carcinoma (SCLC), oral squa-
mous cell carcinoma (OSCC), β– and α–cells in the pancreatic islets, thymocytes, cells in
the adrenal medulla, and spermatogonial cells in the testis [26–29,31,39–42]. This indicates
that HuD expression is not ubiquitous, nor is it restricted to neurons and certain types
of endocrine cells. To fully understand the cell–type specific roles of HuD, its molecular
targets and gene regulatory mechanisms need to be determined.
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HuD functions as an important regulator of gene expression by regulating a diverse
spectrum of RNA metabolisms, including stability, translation, splicing, polyadenylation,
nucleo–cytoplasmic shuttling, and intracellular localization of target mRNAs. HuD in-
creases the stability of target mRNAs by competing with decay factors such as AU binding
factor 1 (AUF1) and tristetraprolin (TTP); conversely, it also destabilizes target mRNAs
in cooperation with microRNAs [20,24,43–45]. Although several studies have shown
the role of HuD in mRNA stability, the detailed mechanisms of HuD–mediated regula-
tion of mRNA turnover have not been fully elucidated. Further, HuD can affect trans-
lation of target mRNAs in a positive or negative manner. HuD promotes translation
of target mRNAs by interacting with eIF4a and poly(A)–binding protein (PABP) [46].
Conversely, HuD functions as a translational repressor by associating with the internal ribo-
some entry site (IRES) of p27 mRNA or the stem–loop structure in the 5′UTR of proinsulin2
(Ins2) mRNA [28,47]. In addition to its regulatory role in mRNA turnover and translation,
HuD is also involved in post–transcriptional control via exon inclusion or exclusion by splic-
ing, alternative polyadenylation, and site–specific localization of various target mRNAs,
thereby contributing to dynamic regulation of gene expression [28,48–52]. In addition,
HuD regulates mRNA metabolisms through cooperative interactions with other RBPs in-
cluding AUF1, insulin–like growth factor 2 mRNA binding protein 1 (IGF2BP1, also known
as IMP1 and ZBP1), Ras–GAP SH3 domain binding protein (G3BP), survival of motor
neurons (SMN), and PABP [53–57]. A list of target mRNAs and their HuD–mediated
regulatory mechanisms is summarized in Table 1.

3. Regulation of RNA Metabolism by HuD

Comprehensive understanding of HuD–mediated gene regulation requires iden-
tification of its target mRNAs and elucidation of the regulatory mechanisms of RNA
metabolism. Several studies have extensively investigated interactions between HuD,
its target mRNAs, and HuD–mediated post–transcriptional regulation in neuronal systems,
thereby demonstrating the pivotal role of HuD as a neuronal regulator (summarized in Table 1).
Additionally, systemic approaches have attempted to identify molecular targets of HuD
on a large scale [52,58,59]. For example, HITS–CLIP (high–throughput sequencing of
RNA isolated by crosslinking immunoprecipitation) was employed to determine the bind-
ing sites targeted by neuronal ELAVLs (nELAVLs), but not specifically HuD, on over
8000 transcripts from the human brain [59]. HuD–associated mRNAs have been analyzed
by ribonucleoprotein immunoprecipitation (RIP) followed by microarray in the brains of
transgenic mice [58], and also by CRAC (crosslinking and analysis of cDNA) in motor
neuron cells expressing His–HA–HuD [52]. Recently, a series of HuD–associating circular
RNAs (circRNAs) from HuD transgenic mice were identified by RIP analysis followed by
circRNA arrays [60]. These analyses revealed that HuD interacts with a variety of mRNAs
as well as non–coding RNAs, via their ARE regions and provided useful information
concerning the roles of HuD in RNA regulation. Most studies demonstrated the neuronal
function of HuD; however, growing evidence indicates that HuD plays essential roles in
HuD–expressing non–neuronal cells, such as pancreatic β–cells and SCLC. In this section,
we provide an update on the molecular targets of HuD and HuD–mediated regulatory
mechanisms in both neuronal and non–neuronal systems.
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Table 1. Target RNAs and their regulatory mechanisms.

Target Study Systems Regulatory
Mechanism Function Ref.

I. Neuronal cells or brain

Acetylcholinesterase (AChE)

Rat pheochromocytoma–derived cell
PC12
Superior cervical ganglion (SCG)
from rat
Brain from HuD O/E mice

mRNA stability ↑ [73,74]

Amyloid Precursor Protein (APP)

Human neuroblastoma SK–N–F1
Brain from HuD O/E mice
Brain from AD patient

mRNA stability ↑ APP→ Aβ processing ↑ [76]

Human neuroblastoma SK–N–SH Alternative splicing(Exon
7 and 8 exclusion ↑) [57]

β–site APP–cleaving enzyme 1
(BACE1) and BACE–AS

Human neuroblastoma SK–N–F1
Brain from HuD O/E mice
Brain from AD patient

mRNA stability ↑ APP→ Aβ processing ↑ [76]

Brain Derived Neurotrophic
Factor (BDNF) long 3’UTR

Hippocampal neuron from E18 rat
Hippocampal, cortical neuron from
E17 mice
Mouse catecholaminergic neural
tumor cell CAD
Brain from HuD O/E mice

mRNA stability ↑ Dendritic maturation ↑ [68,69]

Calcitonin Gene–Related Peptide
(CGPR) pre–mRNA

Human cervical tumor Hela
Chinese hamster ovary (CHO) cell
Mouse testicular teratoma F9
Rat pheochromocytoma–derived cell
PC12
Human neuroblastoma SK–N–SH
Mouse teratocarcinoma P19
Rat medullary thyroid carcinoma
CA77

Alternative splicing
(Exon4 exclusion ↑) [48]

Calcium/Calmodulin Dependent
Protein Kinase II Alpha
(CaMKIIα)

Hippocampal neuron from E18–19
rat mRNA stability ↑ [84]

CDKN1A (p21) Rat pheochromocytoma–derived cell
PC12 mRNA stability ↑ Cell proliferation ↓ [83]

circHomer protein homolog1a
(cirHomer1a)

Brain (frontal cortex) from HuD K/O
and O/E mice Synaptic expression ↑ [60,86]

Growth Associated Protein 43
(GAP–43)

Rat pheochromocytoma–derived cell
PC12
Mouse embryonic stem cell AB2.2
Cortical neuron from E19 rat
Rat DRG/mouse neuroblastoma
hybrid cell F11
Brain from rat
Brain from HuD K/O and O/E mice

mRNA stability ↑
Transportation into
neurites ↑

Neurite outgrowth ↑ [43,54,61–67]

Glutaminase (Gls) Brain (cortex) from HuC, HuD
double K/O mice

Alternative splicing
(Gls–long isoform ↓) [88]

MYCN Human neuroblastoma NBL–W–N
Mouse fibroblast NIH 3T3 mRNA stability ↑ [81,82]

Neprilysin (NEP) Human neuroblastoma SK–N–SH mRNA stability ↑ Aβ levels ↓ by NEP [77]

Nerve Growth Factor (NGF) Hippocampal neuron from E18 rat mRNA stability ↑ Dendritic maturation ↑ [68]

Neuritin 1 (Nrn1/Cpg15)

Rat pheochromocytoma–derived cell
PC12
Human neuroblastoma SH–SY5Y
DRG neuron from rat
Cortical neuron from E18 rat
Hippocampal neuron from E18 rat
Rat DRG/mouse neuroblastoma
hybrid cell F11
Brain from HuD KO mice

Axonal localization ↑
mRNA stability ↑ [55,71,72]
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Table 1. Cont.

Target Study Systems Regulatory
Mechanism Function Ref.

Neurofibromatosis type 1 (NF–1)
pre–mRNA

Human cervical tumor cell Hela
Rat medullary thyroid carcinoma
CA77
Mouse embryonic stem cell R1
Cerebellar neurons from mice

Alternative splicing
(Exon23a skipping ↑)
Local transcription rate ↑
(NF–1 gene exon 23a)

[49,51]

Neuroserpin
Brain from rat
Rat pheochromocytoma–derived cell
PC12

mRNA stability ↑ (?) [45]

Neurotrophin 3 (NT–3) Hippocampal neuron from E18 rat mRNA stability ↑ Dendritic maturation ↑ [68]

NOVA Alternative Splicing
Regulator 1 (NOVA–1) Mouse motor neuronal cell NSC34 mRNA stability ↑

Translation ↑ Splicing activity [70]

Musashi–1 (MSI1)
Neural stem/progenitor cell (NSC)
in SVZfrom mice
Human neuroblastoma SH–SY5Y

mRNA stability ↑ [85]

Potassium voltage–gated channel
subfamily A member 1 (Kv1.1) Cortical neuron from E18–19 rat Translation ↑ [87]

Special AT–rich DNA–binding
protein 1 (SATB1)

Neural stem/progenitor cell (NSC)
in SVZ
from HuD KO mice

mRNA stability ↑ NSC differentiation ↑ [75]

Superoxide Dismutase 1 (SOD1)
long 3′UTR

Human neuroblastoma SH–SY5Y
Brain from ALS patients mRNA stability ↑ [80]

Tau Rat pheochromocytoma–derived cell
PC12Mouse teratocarcinoma P19

Transportation into
neurites ↑ Neurite outgrowth ↑ [53,78,79]

Others: mTORC–responsive
genes Mouse motor neuronal cell NSC34 Translation ↑ [52]

II. Non–neuronal cells or
other tissues

Autophagy Related Gene 5
(ATG5)

Mouse insulinoma βTC6
Pancreatic islet from HuD KO mice,
db/db mice

Translation ↑ Autophagosome
formation ↑ [89]

CDKN1B (p27)

Human embryonic kidney cell 293T
and human cervical tumor Hela
Mouse insulinoma βTC6 and MIN6
Pancreatic NET from patients

Translation ↑ or ↓ Cell proliferation ↑ or ↓ [47,90]

HuD mRNA Human cervical tumor HelaRat
medullary thyroid carcinoma CA77

Alternative splicing(Exon
6 inclusion ↑) [91]

Hu Antigen R (HuR) Mouse teratocarcinoma P19 Alternative
polyadenylation ↑ [50]

Insulin Induced Gene 1 (Insig1) Mouse insulinoma βTC6 Translation ↑ TG accumulation ↓ [92]

Insulinoma–Associated Protein 1
(INSM1) Mouse insulinoma βTC6 mRNA stability ↓ [93]

Ikaros (IK)
Thymocyte from N3–Ictg,
N3–Ictg/pTα−/− and pTα–/– mice
Human T–All cell line Molt–3

Alternative splicing (Ik–6,
8, 5/7, 9 ↑) T cell lymphomagenesis [42]

Matrix Metallopeptidase–2 and
–9 (MMP–2 and –9)

Human oral squamous cell
carcinoma HSC3 mRNA stability ↑ (?) [39]

Mitofusin 2 (Mfn2) Mouse insulinoma βTC6Pancreatic
islet from HuD KO mice Mitochondria fusion ↑ [94]

Potassium Voltage–Gated
Channel Subfamily H Member 2
(KCNH2)

Human embryonic kidney 293 Alternative
polyadenylation ↓

Kv11.1a isoform
expression ↑
Kv11.1 channel current
↑

[95]

Preproglucagon (Gcg) Mouse glucagonoma αTC1
Pancreatic islet from HuD KO mice Translation ↑ Glucagon biosynthesis [29]
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Table 1. Cont.

Target Study Systems Regulatory
Mechanism Function Ref.

Preproinsulin2 (Ins2) Mouse insulinoma βTC6
Pancreatic islet from HuD KO mice Translation ↓ Insulin biosynthesis [28,56]

Vascular Endothelial Growth
Factor–A and –D (VEGF–A and
VEGF–D)

Human oral squamous cell
carcinoma HSC3 mRNA stability ↑ (?) [39]

↑means its upregulation (increase). ↓means its downregulation (decrease). →means from APP to Aβ.

3.1. Regulation of RNA Metabolism by HuD in Neuronal Systems

Since HuD was first discovered in the brain, its role as an essential regulator gov-
erning post–transcriptional control of neuronal gene expression has been extensively
reported in drosophila and vertebrates (reviewed in [23,24]). HuD affects diverse neuronal
gene expression by regulating mRNA turnover, translation, and splicing. Several studies
have demonstrated the role of HuD as a stabilizer of neuronal mRNAs. For example,
HuD increases the stability of growth associated protein 43 (GAP43) mRNA in neurons
and promotes neurite outgrowth [43,61–67]. HuD also mediates post–transcriptional
control of essential target mRNAs for the brain or neuronal functions, including brain–
derived neurotrophic factor (BDNF) [68,69], nerve growth factor (NGF) [68], neurotropin–3 (NT–
3) [68], neuro–oncological ventral antigen 1 (Nova1) [70], neuritin 1 [71,72], neuroserpin [45],
acetylcholinesterase (AchE) [73,74], and special adenine–thymine (AT)–rich DNA–binding pro-
tein 1 (SATB1) [75], thereby regulating neuronal differentiation, neurogenesis, dendritic
maturation, neuronal plasticity, synaptic transmission, and dynamic signaling pathways
in neuronal systems. Further, HuD regulates the expression of mRNAs involved in the
pathogenesis of neurodegenerative diseases or cancer, including amyloid precursor protein
(APP), β–site APP–cleaving enzyme 1 (BACE1), lncRNA BACE1AS [76], neprilysin (NEP) [77],
tau [78,79], superoxide dismutase 1 (SOD1) [80], and MYCN [81,82]. In addition to targets
found in neuronal tissues, HuD promotes stabilization of target mRNAs also expressed in
other tissues, such as p21 [83], Ca2+/Calmodulin–dependent protein kinase II α (CaMKIIα) [84],
and musashi 1 (MSI1) [85]. Additionally, an interesting study recently demonstrated that
circRNAs, such as cirHomer1a, could be molecular targets of HuD [60,86].

With a few exceptions, HuD generally promotes expression of target genes by enhanc-
ing translation of their mRNAs. HuD–mediated translational enhancement of Nova1 [70],
potassium voltage–gated channel subfamily A member 1 (also known as Kv1.1) [87], and several
mTORC–responsive genes [52] has been demonstrated in neuronal cells. In addition to
turnover and translation of target mRNAs, HuD is also involved in regulating alternative
splicing of calcitonin gene–related peptide (CGRP) pre–mRNA [48], neurofibromatosis type 1
(NF1) pre–mRNA [49], APP mRNA [57], and glutaminase mRNA [88].

3.2. Regulation of RNA Metabolism by HuD in Non–Neuronal Systems

HuD generally increases the stability of target mRNAs in neuronal cells; however, it de-
creases the amount of insulinoma–associated 1 (INSM1) mRNA in cooperation with miR–203a
in pancreatic β–cells [93]. In OSCC cell line HSC3 cells, HuD knockdown downregulated
vascular endothelial growth factor (VEGF)–A and –D, and matrix metallopeptidase (MMP)–2 and
–9 mRNAs [39]. These studies determined that target mRNA abundance is altered by HuD
knockdown and suggest that HuD regulates mRNA turnover by interacting with decay
factors such as microRNAs, AUF1, and TTP in a co–operative or a competitive manner.
However, the direct involvement of HuD in the regulation of mRNA stability warrants
further investigation.

Several studies have reported that HuD mediates translational control of several target
mRNAs in pancreatic β–cells. HuD suppresses translation of preproinsulin 2 (Ins2) mRNA,
while enhancing the expression of preproglucagon (Gcg), insulin–induced gene 1 (INSIG1),
autophagy–related gene 5 (ATG5), p27, and mitofusin 2 (Mfn2) mRNAs [28,29,89,90,92,94].
These results imply that HuD has a function in the maintenance of glucose homeostasis and
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β–cell function, and its dysregulation might be involved in the pathogenesis of metabolic
diseases such as diabetes.

In addition to translational control of target mRNAs, HuD is also involved in the
regulation of splicing and polyadenylation. HuD regulates its own expression by promoting
exon 6 inclusion of HuD mRNA [91]. Additionally, HuD alters the Ikaros (IK) isoform profile
by regulating alternative splicing of IK mRNAs in mouse thymocytes and human T–acute
lymphoblastic leukemia (T–ALL) cell line Molt–3 cells in a Notch3–dependent manner [42].
Further, HuD increases the Kv11.1 channel current by affecting alternative polyadenylation
of mRNA transcripts of potassium voltage–gated channel subfamily H member 2 (KCNH2),
which encodes the Kv11.1 potassium channel [95].

HuD–mediated RNA regulation in non–neuronal cells is relatively unknown com-
pared to that in neuronal systems, but further studies will enable us to explore the specific
role of HuD in certain types of cells expressing HuD.

4. Disease Relevance of HuD and Its Regulatory Mechanisms

HuD plays important roles in the dynamic regulation of gene expression by affect-
ing RNA metabolism, and its aberrant expression has been reported in several diseases,
including neurodegenerative diseases, diabetes, and cancer. Despite the significance of
HuD in gene regulation, little is known regarding control of HuD expression in response to
stress or the implication of HuD in disease pathogenesis. Herein, we describe the current
knowledge of HuD disease relevance as well as the regulatory mechanisms affecting HuD
expression, which are summarized in Table 2.

Table 2. Disease relevance of HuD.

Disease Disease Relevance of HuD Ref.

Alzheimer’s diseases (AD)

HuD mRNA and HuD protein ↑ in superior temporal gyrus
(STG) of AD patients [76]

HuD protein ↑ in the brain of AD patients [96]

nELAVL protein ↓ in hippocampus of AD patients [97]

Parkinson’s diseases (PD) Several SNPs (rs967582, 2494876, 3902720) were identified. [98–100]

Epilepsy
HuD mRNA↑ in dentate gyrus of kainic acid–induced

seizures model [67]

Dendritic localization of HuD protein ↑ in hippocampal
neurons of pilocarpine–induced seizure model [101]

Schizophrenia HuD mRNA ↑ in the dorsolateral prefrontal cortex from
patients with chronic schizophrenia [102]

Amyotrophic lateral sclerosis (ALS)
HuD mRNA and HuD protein ↑ in motor cortex of sporadic

ALS patients [80]

HuD protein ↑ in human iPSCs carrying the
FUSP525L mutation [103]

Neuroblastoma HuD mRNA was detected in primary NB tumor samples. [104]

Small cell lung carcinoma (SCLC)
HuD protein ↑ in serum from SCLC patients [105–107]

HuD mRNA ↑ in primary tissue from SCLC patients [108]

HuD mRNA ↑ in blood from SCLC patients [109]

Oral squamous cell carcinoma (OSCC) HuD (+) group is associated with poor prognosis of
OSCC patients. [39]

Pancreatic neuroendocrine tumor (PNET) HuD (–) group is associated with poor prognosis of
PNET patients. [90]

Type 2 diabetes mellitus (T2DM) HuD mRNA and HuD protein ↓ in islet from db/db mice [94]
↑means its upregulation (increase). ↓means its downregulation (decrease).
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4.1. Disease Relevance of HuD

Several studies have implicated HuD in the pathogenesis of neurodegenerative dis-
eases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS, also known as Lou Gehrig’s disease). Augmented expression of HuD in
the brain of patients with AD has been reported [76,96]. Increased expression of HuD may
contribute to AD development by increasing expression of mRNAs involved in amyloid–β
peptide (Aβ) production, including APP and BACE1 [76]. However, another study reported
a reduction of nELAV in the hippocampus of patients with AD and downregulation of
HuD after treatment with Aβ42 in human neuroblastoma SH–SY5Y cells [97]. Inconsistent
aberrant levels of HuD in AD can be attributed to different brain tissues analyzed between
study groups, and further investigation is warranted to clarify the relevance of HuD in AD.
In PD, several single–nucleotide polymorphisms (SNPs) were identified in HuD [98–100].
Genetic variations in HuD (rs967582, rs2494876, rs3902720) have been associated with
age–at–onset (AAO) in PD, while the biological roles of these variations in the regulation
of HuD protein abundance or binding affinity to its target mRNAs have not yet been
determined. A recent study reported increased levels of HuD proteins in human induced
pluripotent stem cells (iPSCs) carrying the P525L mutation on the FUS gene, which causes
ALS [103]. In addition, augmented HuD expression in the motor cortex of patients with
sporadic ALS has been associated with superoxide dismutase (SOD) dysregulation [80].

Aberrant expression of HuD also has been determined in various neurological disor-
ders, including epilepsy and schizophrenia. Upregulation of HuD mRNA in the dendritic
gyrus after kainic acid–induced seizures and increased dendritic localization of HuD pro-
tein in hippocampal neurons, following pilocarpine–induced seizures, were reported in
animal models [67,101]. nELAVL null mice displayed the spontaneous epileptic seizure
activity resulted from the impaired splicing of genes regulating cellular glutamate level [88].
Additionally, abnormal overexpression of HuD mRNA was observed in the dorsolateral
prefrontal cortex of patients with chronic schizophrenia [102]. Although the factors leading
to HuD dysregulation or its impact on the regulation of alternative splicing and turnover
of target mRNAs are unclear, these reports suggest that abnormal expression of HuD is
linked to the pathogenesis of various neurological diseases.

Differential expression of HuD is associated with certain types of cancer, including
SCLC, OSCC, neuroblastoma (NB), and pancreatic neuroendocrine tumor (PNET). In pa-
tients with SCLC, a more aggressive form of lung cancer, HuD protein was found in patient
serum [105–107] and HuD mRNA was detected in primary tissues and blood [108,109].
In OSCC, HuD expression was associated with differentiation, metastasis, and invasion of
cancer cells, and HuD–positive OSCC cases were associated with a poor survival rate [39].
High HuD mRNA levels were also reported in primary tumor tissues of patients with
NB and in several NB cell lines [104,110]. Higher HuD expression was associated with a
better clinical outcome in NB, which suggests a role of HuD in decreasing malignancy [104].
Concurring with these results, another study revealed a positive correlation between tumoral
HuD loss and significantly reduced survival of patients with PNET. The HuD level was
significantly corelated with tumor size and progression of PNET [90]. Although changes in
HuD expression in the process of cancer and tumor development are unclear, aberrant
HuD levels may provide useful markers for disease diagnosis or prognosis.

In addition to cancer, the disease relevance of HuD has been demonstrated in diabetes,
one of the metabolic diseases resulting from impaired glucose homeostasis. Using an animal
model of type 2 diabetes mellitus (T2DM), the levels of HuD mRNA and protein were
reduced in the pancreas of db/db mice, suggesting HuD caused β–cell dysfunction [92].

As reported above, HuD is abnormally expressed in several diseases. Although dif-
ferential regulation of HuD in pathological conditions has not been fully elucidated,
understanding the molecular mechanisms fine–tuning HuD expression is critical for thera-
peutic intervention.



Biology 2021, 10, 361 9 of 15

4.2. Regulation of HuD Expression

Elucidating the molecular mechanisms modulating HuD expression is required to fully
understand how HuD–mediated gene regulation affects RNA metabolism. Several studies
have described the regulation of HuD expression by a variety of factors at the transcrip-
tional, post–transcriptional, and post–translational levels.

First, several regulatory mechanisms of HuD transcription have been identified.
Neurogenin 2 (Ngn2), the basic helix–loop–helix transcription factor, promotes transcrip-
tion of HuD by binding to E–boxes in its promoter region, which is essential during
neuronal differentiation of P19 cells [22]. SATB1, one of the target mRNAs of HuD,
also functions as a transcriptional activator of HuD [75]. Interestingly, HuD and SATB1
cooperatively regulate neural stem and progenitor cell neuronal differentiation via a pos-
itive feedback network; HuD stabilizes SATB1 mRNA, and SATB1 promotes transcrip-
tion of HuD. Activation of Notch3 signaling contributes to upregulation of HuD expres-
sion in thymocytes, which in turn, promotes HuD–mediated splicing of IK mRNAs [42].
In mouse pancreatic β–cells, insulin signaling was shown to be responsible for upregu-
lated HuD expression through the IR–IRS–Akt–FoxO1 axis after glucose stimulation [28].
Additionally, thyroid hormone T3 represses transcription of HuD in rat PC12 and mouse
N2a cells, and T3 level was inversely correlated with HuD mRNA in the rat brain [111].

Second, HuD expression can be also regulated at the post–transcriptional level.
Alternative splicing of HuD mRNAs generate different HuD isoforms exhibiting variable
localization patterns, which have been suggested to play different roles in neuronal differen-
tiation and development [22,38]. Neuronal Hu proteins are responsible for exon 6 inclusion
of HuD mRNA [91]; however, detailed mechanisms regulating the alternative splicing
of HuD mRNA by cis–elements or specific trans–factors have not been fully elucidated.
microRNA–375 (miR–375) downregulates HuD expression by destabilizing HuD mRNA and
suppressing its translation, thereby affecting neuronal differentiation [27]. microRNA–129–
5p (miR–129–5p) decreases HuD expression and inhibits neurite outgrowth [112]. A recent
study reported that RBP Celf1 functions as a translational repressor of HuD during neo-
cortical neurogenesis [113]. Celf1 suppresses translation of HuD mRNA by binding to its
5′UTR region in glutamatergic neurons. Isoform–specific translational repression of HuD
mRNAs by Celf1 has been shown to play an important role in neurodevelopment.

Third, HuD protein can be regulated by post–translational modification, including methy-
lation and phosphorylation. Coactivator–associated arginine methyltransferase 1 (CARM1),
also known as PRMT4, methylates Arg residues of HuD protein (Arg236 in PC12 cells
and Arg248 residue in MN–1 cells), leading to decreased stability of HuD–mediated p21
mRNA [114,115]. Methylation of HuD by CARM1 seems to be essential for the transition
of neuronal precursor cells from proliferation to differentiation by negatively regulating
HuD–mediated gene expression. In addition to methylation, phosphorylation of neuronal
Hu proteins by protein kinase C (PKC) has been reported [67,76,115]. PKCα induces phos-
phorylation of the Thr residue in neuronal Hu proteins, which in turn, promotes GAP–43
mRNA stabilization in SH–SY5Y cells [116]. PKC contributes to neuronal differentiation by
affecting HuD–mediated RNA metabolism, which directly regulates binding between HuD
and target mRNAs, or by regulating factors that affect HuD functions, such as CARM1, in
an indirect manner [68,77].

As described above, several factors regulating HuD expression have been identi-
fied (Figure 1), but the detailed mechanisms of regulation warrant further investigation.
Additional studies examining specific regulators directing HuD abundance or activity are
expected to provide novel insights to facilitate the development of treatments for diseases
caused by HuD malfunction.
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Figure 1. Regulation of HuD expression. Several factors affect HuD expression. Ngn2, SATB1,
IR/IRS/AKT/FoxO1, notch3, and thyroid hormone T3 regulate transcription of HuD gene.
Celf1, miR–375, miR–129–5p and alternative splicing are involved in post–transcriptional and
translational control of HuD mRNA. CARM1 and PKC mediate post–translational regulation of
HuD protein.

5. Concluding Remarks and Perspectives

RBPs function as critical effectors of gene expression and their malfunctions are impli-
cated in disease pathology, including RBP gene mutations, altered RBP expression, and aggre-
gation and sequestration of RBPs with RNAs or other proteins. Therefore, approaches that
restore the abundance or function of RBPs have great potential for clinical applications [10,117].
HuD, an RBP in the Hu family, is a versatile protein that regulates various aspects of RNA
metabolism, including splicing, stability, and translation of target mRNAs, and is therefore
involved in various cellular processes, including cell growth, apoptosis, differentiation,
and metabolism. The majority of studies have focused on the role of HuD in neuronal
systems; however, accumulating evidence indicates that HuD is also expressed in non–
neuronal cells, such as pancreatic β–cells, thymocytes, and SCLC, and its differential
expression is implicated in the pathogenesis of several diseases. In this review, we sum-
marized the current knowledge of molecular targets, disease relevance, and regulatory
mechanisms of HuD.

Despite continued studies elucidating HuD–mediated gene regulatory mechanisms,
several questions remain unanswered. Which characteristics of HuD are distinct from
those of other Hu proteins? What mechanism contributes to cell–type specific expression
and function of HuD? What signals or cellular conditions regulate HuD expression at the
transcriptional, post–transcriptional, and post–translational level during disease develop-
ment? Besides HuD abundance, which mechanisms determine subcellular localization and
binding affinity to its interacting partners? What signals or stimuli affect the binding of
HuD to target mRNA? What mechanisms determine competitive or cooperative association
between HuD, miRNA, and other RBPs on target mRNAs? Addressing these questions
based on systemic and/or integrated approaches using multi–omics analysis will enhance
our knowledge of HuD–mediated gene regulation.

Although neuronal and non–neuronal cells express HuD, we still do not know how
the detailed mechanisms regulating HuD expression or HuD–mediated RNA regulation are
different among cell types. What are the common characteristics of HuD–expressing cells?
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Do common signaling pathways direct HuD expression in neuronal and non–neuronal
systems or not? Do both systems have a common mechanism or cell type–specific mecha-
nisms in mRNA regulation? Further studies enable us to fully explore the gene networks
regulated by HuD, thus improving our understanding of diseases associated with aberrant
HuD expression for therapeutic intervention.
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