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Abstract: The three-dimensional structure of chromatin in the cellular nucleus carries important
information that is connected to physiological and pathological correlates and dysfunctional cell
behaviour. As direct observation is not feasible at present, on one side, several experimental tech-
niques have been developed to provide information on the spatial organization of the DNA in
the cell; on the other side, several computational methods have been developed to elaborate ex-
perimental data and infer 3D chromatin conformations. The most relevant experimental methods
are Chromosome Conformation Capture and its derivatives, chromatin immunoprecipitation and
sequencing techniques (CHIP-seq), RNA-seq, fluorescence in situ hybridization (FISH) and other
genetic and biochemical techniques. All of them provide important and complementary information
that relate to the three-dimensional organization of chromatin. However, these techniques employ
very different experimental protocols and provide information that is not easily integrated, due
to different contexts and different resolutions. Here, we present an open-source tool, which is an
expansion of the previously reported code ChromStruct, for inferring the 3D structure of chromatin
that, by exploiting a multilevel approach, allows an easy integration of information derived from
different experimental protocols and referred to different resolution levels of the structure, from
a few kilobases up to Megabases. Our results show that the introduction of chromatin modelling
features related to CTCF CHIA-PET data, histone modification CHIP-seq, and RNA-seq data produce
appreciable improvements in ChromStruct’s 3D reconstructions, compared to the use of HI-C data
alone, at a local level and at a very high resolution.

Keywords: chromatin conformation; bayesian statistics; HI-C data; chromatin conformation capture;
CTCF CHIA-PET data; CHIP-seq; RNA-seq

1. Introduction

The three-dimensional organization of chromatin is involved in regulation of gene
function and connected with physiological and pathological correlates and dysfunctional
cell behavior. A advancement in chromatin studies was made possible with the develop-
ment of next-generation sequencing techniques [1], which enabled a number of methods
of Chromosome Conformation Capture and its derivatives, such as HI-C techniques [2].
These techniques provide information on how frequently the possible chromatin fragment
pairs are in close contact in a population of cells. Depending on the experimental details
and on the restriction enzyme used, the genomic resolution of HI-C can range from a
few kilobases to Megabases. The opportunity to observe the chromatin structure at mul-
tiple resolutions emerged recently, following investigations on the 3D structure of TADs
(Topologically Associating Domains) [3], broadly defined as portions of chromatin with
more internal than external interactions, are sometimes described as fairly isolated globular
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structures. TADs have a dynamic nature and play a role in gene expression and mainte-
nance of cellular identity [4]. Chromatin conformation is also associated with metabolic
activity: for example, transcription requires the DNA to be accessible to a large number of
enzymes, involved in all steps: from regulation to intiation, and to progression of the RNA
polymerases, often in multiple copies, along the transcribed DNA portion, extending up to
many tens of kilobases. This activity, in which the epigenetic code of histone modifications
has a role, as reviewed in [5], implies different degrees of chromatin compaction.

In addition to HI-C, other experimental techniques such as CHIP-seq using specific an-
tibodies and RNA-seq can provide information on geometrical features of chromatin [6–10].
CHIP-seq experiments allow the characterization of genomic loci by their association with
specific proteins, such as transcription factors or other DNA binding proteins (e.g., CTCF),
or by finer molecular details, such as histonic modifications, (e.g., acetylation, mono- or
three-methylation at specific histone sites), all of which are associated with distinct func-
tional genomic features. RNA-seq experiments provide information on which DNA loci
have been transcribed, identifying genomic portions that are accessible to the transcription
machinery, and loose enough to allow exposure of the sequence. Careful consideration
of all the information available suggests that some data can (or should) be redundant,
while others are complementary or mutually explanatory. In [11], Lieberman Aiden et al.
showed, by Principal Component Analysis, that the distribution of contacts in the HI-C
matrices correlates with the distribution of genes and with features of open or silent chro-
matin. For example, expressed genes are frequently marked by a chromatin state that
includes H3K27AC modification in their enhancer region and H3K4ME3 in their promoter
region, while repressed genes are often marked by the H3K27ME3 modification in their
body [12,13]. However, not all expressed genes bear such a mark, and not all marked genes
are necessarily expressed.

The method proposed here enables the elaboration of plausible 3D chromatin confor-
mations through the integration of several pieces of information. The integration of data
at different resolutions permits the derivation of structural properties that are not easily
deduced using the different data separately. A number of computational methods have
been developed to determine the 3D structures of chromosomes from contact-frequency
matrices [14–17]. Many of these methods transform contact frequencies into Euclidean
distances, and then reconstruct the structure by solving a distance-to-geometry problem
(for example, see [17]). This frequency-to-distance transformation, however, presents a
major problem, as it invariably produces geometrically inconsistent distance sets [18,19].
To avoid the drawbacks of this strategy, we reject the derivation of distances from the
contact frequencies, and adopt an iterative multiscale procedure to derive the 3D structure
directly from the contact frequencies. In previous work [20], we introduced ChromStruct,
a method to infer a set of spatial chromatin conformations starting from the contact in-
formation of HI-C experiments. This method is based on a multiscale chromatin chain
model made of consecutive and partially penetrable beads of different sizes. The algorithm
automatically divides the contact matrix into variable-size diagonal blocks, and recon-
structs the related 3D structures independently for each block. This is made possible by
the fact that the chromatin chain presents regions, such as the TADs, with many internal
interactions between pairs of loci and interact much less with other regions of the chain.
Each diagonal block is used to estimate the structure of the related sub-chain by sampling
a solution space generated by a score function based on both data-fit and implicit, soft,
geometrical constraints. The sub-chains thus obtained are then modeled as single beads in
a coarser-scale chain and the procedure iteratively repeats following the same rules used
for the finer scales, until no more isolated blocks are detected in the binned data matrix,
i.e., the entire chromosome is modeled. The whole chain is then reconstructed iteratively
from the coarsest to the finest scale, by substituting each bead with the corresponding
sub-chain at the finer scale, maintaining its 3D orientation (see Figure 1). The intention
of our sampling of the solution space is not to find a unique consensus, but a family of
solutions. This is consistent with the fact that hi-c data derive from millions of cells, where
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different configurations contribute. The ChromStruct sampling strategy does not search
for a global minimum, but explores the solution space to find a number of configurations
with similar scores. An advantage of the ChromStruct strategy is that the score function is
designed to allow the user to introduce and integrate different features and data sources,
even at different resolution levels.

Figure 1. Flow of ChromStruct: (blue) the input HI-C contact frequency matrix is subdivided in
diagonal blocks. (red) Chromatin fibre is modeled as a chain of partially penetrable beads and
subdivided into sub-chains. (green) Geometrical perturbations are performed in the quaternion
algebra and the solution space is sampled by a Bayesian method. (violet) As the last step, a multilevel
3D reconstruction generates chromatin output conformations (gray) that are compatible with input
and constraints.

In this paper, we present an extension of ChromStruct, which allows the HI-C data
to be integrated with data derived from other experimental techniques, and demonstrate
its use with histone modification specific CHIP-seq, RNA-seq and CTCF CHIA-PET data.
The algorithm browses different resolution levels, from the smallest sub-TAD to the entire
chromosome, enabling the investigation of the details of folding inside the TADs, at the
intermediate structures of nested domains, and at the macroscopic organization of the
compartments at the coarsest scale. HI-C experiments provide information on contact
frequencies between portions of the chromatin fiber; histone mark CHIP-seq data provide
additional information about DNA geometry and 3D occupancy; RNA-seq data provide
information about gene expression and, therefore, on the compactness of DNA; finally,
CTCF CHIA-PET data inform us about loops that bring distant genome elements into
spatial proximity. We introduce these data in the score function as geometrical information.
Our results show that the introduction of CTCF CHIA-PET data, RNA-seq and CHIP-seq
information can produce more detailed conformations at very high resolutions (few kb),
while at lower resolution, such improvement is not perceived.

2. Results

In this work, we describe an extension of ChromStruct to integrate information derived
from HI-C experiments with further geometrical data derived from histone specific modifi-
cation (H3K27ME3) CHIP-seq, RNA-seq and CTCF CHIA-PET experiments. These data are
obtained through different laboratory approaches; this is advantageous from a scientific point
of view, because they refer to conformational information from different perspectives. For
example, portions of DNA showing a high degree of H3K27 three-methylation are enriched in
repressed genes and are, therefore, more compact [13], whereas portions where RNA-seq signal
the presence of expressed genes are more expanded. A score function that can be interpreted
as a log-posterior probability evaluated by applying the Bayes rule manages the relevance of
the geometric information available, rewarding the configurations that are consistent with
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the data of different nature and penalizing the ones that appear discordant or uncertain as
geometrical interpretations of multiple experimental data. ChromStruct samples the solution
space generated by this score function by an approximated simulated annealing [21]. In our
experiments, we considered chromosome 12 of human hematopoietic progenitor cells. We
collected HI-C contact matrix at a 5 kb resolution, RNA-seq data, H3K27ME3 CHIP-seq data
at 20 bp resolution [8] and CTCF CHIA-PET data [22] (see Section 4 for details). With these
data, we compared the ChromStruct’s reconstructions using HI-C data alone and using HI-C
data integrated with H3K27ME3-CHIP-seq, RNA-seq and CTCF CHIA-PET data.

2.1. High-Resolution Configurations

ChromStruct takes HI-C contact frequency matrices as the first input. These can be
very large (as in the case of chromosome 12 at 5 kb resolution), and in order to manage the
amount of data and lower the computational costs, the first step of the algorithm consists
in the division into blocks, respecting the fractal structure of the TADs [21]. The block-
detection algorithm (based on Moving Average on sliding triangles on the main diagonal,
described in detail in [21,23]) found 2097 diagonal blocks with an average genomic size
of 12 fragments of 5 kb (i.e., 60 kb). To analyze the behavior of the new score-function
at a 5 kb resolution, we selected a smaller 3.5 Mb portion of chromosome 12, containing
50 blocks, and a variety of chromosomal features, as reported in Table 1. As shown,
16 blocks are interested by Histone 3 Lysine 27 three-methylation, 9 by gene expression and
in 7 blocks, we have CTCF-mediated internal contacts. Because repression and expression
have opposite effects, the score-function annihilates their contribution in the few blocks in
which both are contained.

The score function allows the fiber’s curvature to be higher in portions of chromatin
with H3K27ME3 and penalizes high curvatures in portions interested by expressed genes.
The bead diameters also depend on whether they belong to expressed or silent areas
(see Section 4 for details). The CTCF feature is modeled as an increase in contact frequency
within the HI-C matrix, for the pairs characterised by CTCF-coupling, so as to represent a
stronger constraint for their proximity (see Section 4 and Supplementary). Figure 2 shows
the comparison between the distributions of correlations between the contact matrices
calculated from the estimated configurations and the original HI-C contact matrix for the
block in the portion of chromosome 12 considered. In the left panel, we consider the
blocks interested by active genes, in the central panel the blocks interested by H3K27ME3,
associated with repression and, in the right panel, all blocks with CTCF mediated contacts.
The boxplots show that, at a 5 kb resolution, the integration of geometrical information
other than HI-C contacts improves the correlation between the synthetic contact matrices
and the original contact matrix. The introduction of additional geometrical constraints in
our experiments thus allows, at this resolution level, the reconstruction of more accurate
high-resolution configurations.

Figure 2. Comparison of distributions of Pearson correlation between contact matrices obtained with
ChromStruct and original contact matrix for blocks belonging to a 3.5 Mb portion of chromosome 12.
Blocks interested by expressed genes (left), H3K27ME3 (centre), and CTCF CHIA-PET (right) show
a higher correlation if the relevant information is used.
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Table 1. Presence of structural information derived from H3K27ME3 CHIP-seq, RNA-seq and CTCF-
binding experiments for 3.5 Mb portion of chromosome 12 [111.5 Mb–115 Mb], corresponding to
blocks from 1750 to 1799 identified by block-detection algorithm.

Block Dimension (kb) Tot Contacts Data Corr 1 a Corr 2 b

1750 75 272 Expr genes 0.128 0.134
1751 50 102 Expr genes 0.489 0.428
1752 65 295 Expr genes 0.246 0.191
1753 55 142 Expr genes 0.264 0.217
1754 100 133 Expr genes, CTCF 0.219 0.219
1755 70 41 Expr genes, CTCF 0.251 0.242
1756 65 158 Expr genes 0.358 0.295
1757 85 128 Expr genes, CTCF 0.286 0.217
1758 100 211 Expr genes 0.222 0.204
1759 45 89 Expr genes 0.320 0.371
1760 70 247 Expr genes 0.325 0.341
1761 70 153 0.113 0.185
1762 50 149 0.137 0.280
1763 55 178 0.322 0.364
1764 70 168 0.056 0.119
1765 100 228 0.133 0.161
1766 50 81 Expr genes 0.154 0.186
1767 45 163 Expr genes 0.346 0.255
1768 40 343 0.164 0.201
1769 55 268 0.222 0.160
1770 50 78 Expr genes, CTCF 0.326 0.204
1771 60 38 Expr genes 0.178 0.244
1772 110 389 Expr genes 0.303 0.235
1773 70 90 0.041 0.136
1774 100 637 0.230 0.178
1775 50 86 0.184 0.163
1776 80 383 H3K27M3 0.233 0.236
1777 45 77 H3K27M3 0.582 0.499
1778 60 143 0.306 0.318
1779 65 179 CTCF 0.408 0.342
1780 55 77 0.428 0.443
1781 85 66 CTCF 0.305 0.304
1782 105 249 0.324 0.241
1783 50 39 0.473 0.443
1784 85 218 0.330 0.313
1785 63 45 CTCF 0.209 0.210
1786 70 123 0.230 0.257
1787 45 104 H3K27M3 0.423 0.291
1788 70 283 0.145 0.131
1789 70 142 0.081 0.123
1790 45 80 0.202 0.224
1791 35 30 0.220 0.258
1792 65 185 H3K27M3 0.425 0.392
1793 70 208 H3K27M3 0.407 0.303
1794 50 53 −0.05 0.014
1795 40 168 H3K27M3 0.449 0.373
1796 140 1659 H3K27M3 0.250 0.286
1797 70 240 H3K27M3 0.266 0.155
1798 60 289 H3K27M3 0.233 0.150
1799 65 264 0.141 0.063

a Pearson correlation between original Contact Matrix in input and synthetic Contact Matrix produced by
ChromStruct integrating HI-C, CHIP-seq, RNA-seq and CTCF data. b Pearson correlation between original Contact
Matrix in input and synthetic Contact Matrix produced by ChromStruct using HI-C data only.
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2.2. Low-Resolution Configurations

Our algorithm reconstructs the chains at lower resolutions by binning the blocks at
the current resolution level and associating them into single beads in the lower-resolution
chain [24] with sizes derived from the three-dimensional structures at the previous level.
As shown in Table 2, the fine details at a 5 kb resolution are not visible at lower resolutions.
Indeed, the information related to CHIP-seq and RNA-seq is only detected at the same
resolution for which these data are relevant. At lower levels, their introduction no longer
highlights significant differences compared to the use of HI-C data only. The correlation
between the original HI-C contact matrix of the whole chromosome 12 and the synthetic
contact matrices obtained by pooling 100 conformations generated by ChromStruct using HI-C
data only and 100 conformations generated using HI-C, H3K27ME3-CHIP-seq, RNA-seq
and CTCF CHIA-PET data, show no significant differences. A reconstruction of the selected
portion of chromosome 12 [111.5 Mb–115 Mb] at a 5 kb resolution is represented in Figure 3a;
a reconstruction of the whole chromosome at 500 kb resolution is shown in Figure 3b.

Two main reasons can explain the different behaviour at high- and low-resolution.
First, the information contained in the HI-C contact matrix and the one derived from
histone-mark immuno-precipitation sequencing and RNA-sequencing are not independent.
This can be seen in Figure 3c, where the right-hand side, with higher contact density
(more yellow in the contact matrix), contains fewer genes (ENCODE tract), and is more
interested by Histone 3K27 three-methylation. The opposite is visible in the part on the left.
As Lieberman-Aiden et al. demonstrated in [11], HI-C contact matrices already contain a lot
of structural information correlated with the distribution of genes and with the features of
open chromatin. The second reason is that ChromStruct, in its multi-level approach, already
takes into account the existing correlation between contact density and compactness of the
chromatin fiber. Specifically, ChromStruct sets the size of every bead in inverse proportion
to its number of contacts [21]. Blocks with many contacts reasonably correspond to more
compact fiber portions, while blocks with few contacts are likely to correspond to more
expanded and more easily transcribed areas. As in large-scale geographical maps, the
fine details, such as minor roads or buildings, are not visible but appear when the scale is
progressively refined. In our case, the presence of high-resolution details does not affect the
overall appearance at large scales, which is completely determined by low-resolution data.

Table 2. Pearson correlations between synthetic contact matrices and original HI-C contact matrix of
the whole chromosome 12 for two populations of conformations: using HI-C data only (Experiment
1) and using HI-C, CHIP-seq, RNA-seq and CTCF-binding site data (Experiment 2).

HI-C Contacts RNA-seq CHIP-seq CTCF-Binding Nr of Runs Correlation a

Experiment 1 100 0.7188371

Experiment 2 100 0.6963284
a Pearson correlation of the original HI-C contact matrix and the ChromStruct’s synthetic contact matrix at the first
reconstruction-step resolution (average dimension of blocks is 800 kb).

From our experiments, we observe that ChromStruct, equipped with the score function
described in Section 4, makes it possible to investigate the spatial organization to a high
degree of detail, introducing more precise information in the reconstruction at very high
resolution (5 kb). Moving to lower resolutions, these details are not delineated; however,
the macroscopic structure and the various dimensions remain consistent with the structural
information derived by HI-C contact matrices alone.
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Figure 3. (a) Reconstruction of a portion of chromosome 12 [from 111.5 Mp to 115 Mp], at a 5 kb
resolution (starting point in black, end point in purple); in green, the part of chromatin interested
by active genes and more expanded; in red, the part interested by H3K27ME3, more compact.
(b) Reconstruction of the whole chromosome 12 at a 500 kb resolution: the part in green, interested
by active genes, is not only more expanded, but also outermost in the total chromosome. (c) Rep-
resentation of HI-C, CHIP-seq and RNA-seq data referred to the same portion of chromosome 12
at a 5 kb resolution (plot from ENCODE). The areas with active genes show a lower concentration
of H3K27ME3, while the areas with fewer genes, which are more methylated and more compact,
correspond to higher HI-C contact frequencies (more yellow in the contact matrix heatmap). (d)
Plot of CHIP-seq and RNA-seq information in ChromStruct’s input: 1, −1 or 0 score for every bin
associated to expressed genes, H3K27ME3 and none, respectively (see Supplementary for details).

3. Discussion

The organization of chromatin at the resolution levels between the wrapping of DNA
around histones and the chromosomal domains is not yet completely explained. Experi-
ments of Chromosome Conformation Capture, and in particular those of HI-C type, have
contributed to consistent hypotheses on the organization of chromatin within the nucleus.
The relationship between the chromatin 3D structure and epigenetic states has been high-
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lighted since the early times of Chromatin 3D studies [3] and has been exploited to confirm
the validity of 3D reconstructions and to derive further information on chromatin biolog-
ical features [25–28]. However, the introduction of epigenetic information a priori, as a
means for the more detailed elaboration of 3D reconstruction, has been attempted only
recently [12,29–31]. As many of the experiments on epigenetic features provide information
at different levels of resolution, a multilevel approach appears necessary [15,32]. The intro-
duction of different information at different resolution levels also tests the correctness of
the available data; the Bayesian approach reinforces information that is consistent from a
topological point of view and tends to cancel information coming from conflicting inputs.
From our experiments, it emerged that the introduction of data related to three-methylation
of Histone 3 Lysine 27, gene expression and CTCF-mediated coupling in the score-function
of ChromStruct allows the reconstruction of more accurate conformations at a local level,
at a resolution of the same order of magnitude as the data introduced.

4. Materials and Methods
4.1. Data Origin and Treatment

The HI-C, CHIP-seq and RNA-seq data used for the experiment refer to human
CD34 hematopoietic progenitor cells (GM12878) [8,33]. Data on CTCF-mediated coupling,
obtained through CHIA-PET experiments, were downloaded from GEO accession number
GSM1872886. To create contact frequency matrices, fastq data were translated into sam
format with the BOWTIE2 program, using the HG19 alignment as reference genome.
Through HICEXPLORER, the sam files were first transformed into bam format, and then
into Hierarchical Data Format. We used the R package DIFFHIC [34] (choosing Bonferroni
correction to lower the False Discovery Rate [35]) to create contact matrices at 5 kb.

In order to introduce information derived from Chromatin IP and RNA-seq, it is neces-
sary to consider the size resolution of these data. Data from RNA sequencing experiments
provide information on transcribed genes; these were introduced as a binary 1-dimensional
array at a 5 kb resolution (“1” if the bin is interested by expressed genes, “0” otherwise).
In the case of the Histone 3 Lysine 27 three-methylation mark, which is associated with
repressed genes [36], CHIP-seq data are reported at a resolution of 20 base-pairs, making it
necessary to bin the data at the resolution of HI-C contact matrices (5 kb). Once binned,
they are introduced as a binary 1-dimension array (“1” if the binned data point exceeds the
threshold of 300, “0” otherwise). Finally, CTCF specific capture HI-C precipitation data
inform about two DNA segments that are found in close contact. The segments can be at
any genomic distance, and can span between TADs; therefore, this information can either
be inserted at a 5 kb resolution, when the two DNA segments lie in the same TAD, or at
a lower resolution, when the DNA segments involved belong to different TADs. CTCF
CHIA-PET contact features are introduced as a binary matrix, at the same dimension and
same resolution of the HI-C contact matrix (“1” if the couple of beads correspond to a
binding site, “0” otherwise). This matrix, multiplied by a scalar factor and added to the
HI-C contact matrix, enforces the proximity constraints for binding sites (further details
in Supplementary). Features are modelled as binary 1- and 2-dimensional arrays in order
to be easily introduced into the score-function; however, other modelling approaches are
possible, perhaps weighing features distributions.

4.2. Volume Considerations

The interphase nucleus of a typical cell is a roundish structure of about 5 micrometers
in diameter. The fraction of the volume actually occupied by chromatin (DNA + histone
octamers) is about one third. Historical histological observations describe Eu- and Hetero-
chromatin as two distinct states; recent CRYOEM studies [37] have further characterized
this distinction, and shown a Chromatin Volume Concentration (CVC) that ranges from
12% to 50%. From these values, and following the distribution reported, we can attribute a
CVC of 20% to euchromatin (the transcriptionally active portion of DNA) and of 40% to
heterochromatin (the silent, repressed portion). Based on these considerations, we reduced
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the bead diameters by 10% in repressed portions and increased them by 10% in active
portions. Our score-function is also designed to modulate the density of CVC to plus
or minus 50%, respectively, for regions that contain expressed genes and silent regions,
by decreasing and increasing the admissible curvature of the thread.

4.3. Solution Space Sampling

The score function that generates the solution space for each sub-chain C to be esti-
mated has the following form:

Ξ(C) = ΦHiC(C) + µ1ΦChIP(C) + µ2ΦRNA(C) + λΨ(C) (1)

where ΦHiC, ΦChIP and ΦRNA are the data-fit terms corresponding to HI-C contact data,
CHIP-seq data and RNA-seq data, respectively, Ψ instead is the constraint term.
Parameters µ1, µ2 and λ are intended to balance the mutual influence of the different terms.

The term ΦHiC forces bead pairs with many mutual contacts to be close to each other:

ΦHiC(C) = ∑
i,j∈L

nij[dij − (ri + rj)]
2 (2)

where nij is the contact frequency of the i-th and j-th beads, dij is the distance between their
centroids, and ri and rj are their radii. L is a subset of contacts in each sub-chain, made of
the pairs exceeding a pre-defined percentile of the contact frequencies in the related block.

By controlling the maximum distance between the beads in the sub-chain, the term
ΦChIP increases the curvature of a sub-chain affected by methylation. Due to this term,
regions with high concentration of Histone modification H3K27ME3 (associated to repres-
sion) are steered to be more compact:

ΦChIP(C) = [ max
i,j∈LCHIP

(dij)− dmin]
2 (3)

where LCHIP is the set of all pairs (with the exception of the pairs located on the two main
diagonals) if the block is interested by H3K27ME3, the empty set otherwise. The value dmin
is derived as follows:

dmin(C) = dc

5/6
√

RIS
6π

(4)

and represents the estimate of the minimum size that a bead can assume at the resolution
of RIS (in our case 5 kb) with the diameter of the chromatin fiber equal to dc (in our case
30 nm). The term ΦChIP gives little penalty if the maximum distance between the beads of
a sub-chain is close to dmin.

The term ΦRNA acts by controlling the minimum distance between non-adjacent
beads in the subchain, thus reducing its curvature and makes regions with active genes
more expanded:

ΦRNA(C) = [ min
i,j∈LRNA

(dij)− dmax]
2 (5)

where LRNA is the set of all pairs if the block is interested by expressed genes, and the
empty set if not. The value dmax represents the estimate of the maximum size for a bead at
the resolution of RIS and with a chromatin’s diameter of dc:

dmax(C) = dc

5/6
√

RIS
3π

(6)

The term ΦRNA gives little penalty if the minimum distance between the beads of a
sub-chain (except for consecutive ones) is at least dmax.

When any two beads in C interpenetrate, one of the terms in brackets becomes negative.
The maximum data-fit penalisation of this situation occurs when dij = 0, and in Equation (2)
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ϕij assumes the finite and unmodifiable value nij(ri + rj)
2. The constraint term Ψ is needed

to control this penalisation:

Ψ(C) = ∑
i,j∈C

ri + rj

2dij

[
1−

{c[dij − (ri + rj)]}b

1 + {c|dij − (ri + rj)|}b

]

where c is a scale factor that makes the terms in braces dimensionless, and the exponent b is
an odd natural. For dij near zero, ψij behaves as (ri + rj)/dij, whereas in an interval around
(ri + rj) it behaves as (ri + rj)/(2dij) and, for dij sufficiently larger than (ri + rj), it goes
rapidly to zero. Parameter b tunes the slope of the transitions between the different zones;
large values of b produce abrupt transitions. Term Ψ is intended to prevent any two beads
from interpenetrating more than some fraction of their sizes. Note that, when adjacent or
genomically close beads are involved, modulating the allowed mutual interpenetration is
also effective to avoid knots and to constrain the local curvature of the chain.

In order to allow easy setting of the geometric parameters related to the data resolution,
the size of the beads, the diameter of the fibre, the mechanism of subdivision into TADs
and the coefficients of the score function, ChromStruct is equipped with a Graphical User
Interface (GUI). The GUI, illustrated in Figure 4, also allows users to insert the input data
from dialog boxes: the HI-C matrix (required) and the CHIP-seq, RNA-seq and CTCF-
binding arrays (optional). Guidelines for GUI’s use are detailed in the Supplementary
Materials.

Figure 4. Graphical User Interface of ChromStruct. Three groups of quantities are displayed: the first (GEOMETRY)
includes geometrical features, the second (METHOD) sets up the TADs extraction and the score function, and the third
(ALGORITHM) is only related to the Simulated Annealing parameters.

5. Conclusions

Using multilevel approaches in computational biology is, in some cases, necessary:
on the one hand, this strategy makes it possible to parallelise the algorithms, greatly
reducing the computational cost. On the other hand, it becomes possible to introduce data
obtained from experiments that produce results at different scales, and to analyse biological
structures navigating between different scales.

We have made ChromStruct suitable for introducing information at different reso-
lutions, so as to be able to exploit and integrate as much knowledge as possible on the
three-dimensional organization of chromatin, also deriving from different biological exper-
iments and also belonging to different dimensional scales.
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