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Simple Summary: A link between telomere length and some age-related diseases has been identified,
including metabolic syndrome. So far, there is no mechanism to explain the origin or cause of telomere
shortening in this syndrome; however, oxidative stress is a constant factor. Therefore, we reviewed
scientific evidence that supported the association between oxidative stress and telomere length
dynamics, also examining how each of the metabolic syndrome components individually affects the
length. In this regard, there is strong scientific evidence that an increase in the number of metabolic
syndrome components is associated with a shorter telomere length, oxidative damage at the lipid
and DNA level, and inflammation, as well as its other components, such as obesity, hyperglycemia,
and hypertension, while for dyslipidemia, there is a little more discrepancy. The difficulty for the
correct treatment of metabolic syndrome lies in its multifactorial nature. Hence, there is a need to
carry out more studies on healthy lifestyles during aging to prevent and reduce oxidative damage
and telomere wear during aging, and consequently the progression of chronic degenerative diseases,
thus improving the living conditions of older people.

Abstract: A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute
to telomeric attrition and also plays an important role in the development of certain age-related
diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and bio-
chemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and
insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and
cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review
scientific evidence that supports the association between OxS with telomere length (TL) dynamics
and the relationship with MetS components in aging. It was analysed whether each MetS component
affects the telomere length separately or if they all affect it together. Likewise, this review provides a
summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric
DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the
development of age-related diseases, and finally, how the lifestyles can affect telomere length.

Keywords: metabolic syndrome; telomere; telomerase; oxidative stress; aging; lifestyles

1. Introduction
1.1. Structure and Function of Telomeres

Telomeres are DNA-protein complexes that are localised at the edge of chromosomes,
with more than 2000 repetitions of the “TTAGGG” sequence of non-coding double-strand
DNA and ending with a guanine rich single-stranded DNA [1,2]. Telomeres are necessary
for the stability and protection of genomic DNA and prevention of chromosomal fusion [3].
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In addition, they are involved in signaling pathways that regulate cell proliferation, thus
establishing the lifespan of a cell [4,5]. Hence, telomeres are considered biological clocks
that determine the number of divisions that a cell undergoes [6,7]. Telomeres are constituted
by protein complexes such as the telosome or shelterin complex, CTC1-STN1-TEN1 (CST)
complex, and associated proteins [8,9], whose general function is to guide the cell fate
through dynamic structural and organisational transitions [10].

Shelterin is a protein complex consisting of six subunits: telomeric repeat-binding
factor 1 (TRF1), telomeric repeat-binding factor 2 (TRF2), protection of telomeres protein
1 (POT1), repressor activator protein 1 (RAP1), TRF1-interacting nuclear factor 2 (TIN2),
and adrenocortical dysplasia protein homolog (TPP1) [10]. Meanwhile, the CST complex
is comprised of three proteins: conserved telomere protection component 1 (CTC1), sup-
pressor of cdc thirteeN 1 (STN1), and telomeric pathway with STN1 (TEN1) [11]. Shelterin
complex binds to the telomeres through TRF1 and TRF2. TRF1 is involved in the negative
regulation of the telomeric length (TL), by inhibiting the telomerase activity [12–14]. On the
other hand, TRF2 plays an important role in the cell cycle progression and the protection
against the chromosome end-to-end fusion. Both proteins present three helixes that bind
exclusively to the telomeric DNA through a Myb-type domain. The third helix of TRF1
recognises the TT sequence and binds to the DNA as a homodimer, preferably to double-
stranded DNA; then, it binds with TIN2, which confers the capacity to interact with TPP1
and POT1. On the other hand, the TRF2 homodimer binds to double-stranded DNA and
then, similar to TRF1, it binds to TIN2 [14–16].

POT1 interacts directly with the single-stranded DNA and can tangle with TPP1.
This protein plays different roles including avoiding segregation defects, chromosomic
instability, loss of telomeric sequences, chromosome end-to-end fusion, and unwanted
repairing activities [17–19]. Regarding the RAP1 subunit, it is known that this protein is
characterised for its dual function, as it participates in the control of gene expression, as
well as in chromosome maintenance [20]. In addition, it can interconnect with TRF2 [21].

TIN2 is another important protein of the shelterin complex that binds simultaneously
to POT1/TPP1 and TRF1/TRF2, and it avoids the wrong identification of damage in the
telomeric DNA [21,22] and, similar to TRF1, it can act as a negative regulator of the TL [4,14].
The TPP1 protein can assemble with the telomeres through POT1 and TIN2 [23,24], and it
also takes part as a recruitment factor for the telomerase enzyme through a region known
as the strictly conserved surface of TPP1 OB (TEL patch) [25] as well as in the stimulation
of the enzyme progression [26].

The synthesis of the complementary chain through the DNA polymerase α is neces-
sary to achieve telomere homeostasis [27]. However, this enzyme is not able to perform
this function without the participation of the single-strand DNA binding complex CST.
This protein complex promotes the duplex replication of the telomeres; that is why its elim-
ination leads to dysfunction, instability, and telomeric frailty [28,29]. The interaction of the
proteins CTC1 and STN1 limits the action of the telomerase to prevent the overextension of
the guanine rich single-stranded DNA overhang; hence, it is considered as a regulatory
step that limits telomere elongation [30,31]. On the other hand, TEN1 is a crucial protein
for the synthesis of the complementary chain, since its absence triggers alterations in the
replication restart; likewise, it participates in the telomere maintenance and protection and
is a negative regulator of the telomerase enzyme (Figure 1) [31–33]. Finally, without the
protective activity of each of these complexes, the DNA damage repair mechanisms could
wrongly process the edge of the chromosomes [34].
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Figure 1. Structure of the shelterin and CTC1-STN1-TEN1 (CST) complexes. The shelterin complex 
is made up of the proteins telomeric repeat-binding factor 1 (TRF1), telomeric repeat-binding fac-
tor 2 (TRF2), TRF1-interacting nuclear factor 2 (TIN2), adrenocortical dysplasia protein homolog 
(TPP1), protection of telomeres protein 1 (POT1), and repressor activator protein 1 (RAP1). TRF1 
and TRF2 subunits bind to the double-stranded telomeric DNA using Myb-type domains and the 
POT-1 subunit binds to the single-stranded. On the other hand, the CST complex made up of the 
proteins CTC1, STN1, and TEN1 inhibits the activity of the telomerase enzyme. 

1.2. Telomerase Structure and Function 
Every time a cell divides, about 25–200 bp of the telomeric sequence is lost, which is 

a phenomenon that is also known as “the end-replication problem” where DNA polymer-
ase cannot complete the terminal space of the double helix [35,36]. Hence, with the pur-
pose of properly making the replication happen, the telomerase enzyme is required, 
which is a ribonucleoprotein that helps in the maintenance of the telomere length, in the 
3’-OH chromosome end, through the transport and addition of tandem repeat RNA tem-
plates [37]. It has been established that when the telomeres are long enough, the presence 
of telomerase is not required, being necessary only when the TL falls within a critical range 
[38]. The human telomerase is constituted of two subunits that work simultaneously: the 
human telomerase RNA (hTERC, hTR, or TER) and the human telomerase catalytic sub-
unit (hTERT) [39]. hTERC is an RNA molecule that is necessary for the stability and pro-
cessing of the 3′ of the DNA; it contains a short complementary template of the telomeric 
DNA sequence [40]. hTERT has a reverse transcriptase activity and is responsible for add-
ing the new segment without altering the phenotypic and morphogenic characteristics of 
the cell [41]. Subsequently, telomerase uncouples, and the DNA polymerase begins the 
synthesis of the complementary fragment of the 5′ end, avoiding then the telomeric short-
ening that comes with every cell division [42]. 

It is to notice that other accessory proteins are required for the telomerase to be fully 
functional, including dyskerin pseudouridine synthase 1 (DKC1), which is involved in 
telomere maintenance, ribosomal RNA biosynthesis, and pseudouridylation [43], and the 
telomerase Cajal body protein 1 (TCAB1), which is capable of associating with the te-
lomerase and directly moving it towards the telomere. It is known that a TCAB1 depletion 
impedes hTERC from binding to Cajal bodies (nuclear regions that participate in the or-
ganisation of the genome, genic expression and RNA splicing fidelity) [44–46]. Some pro-
teins are located in the Cajal bodies and can interact with the hTERC subunit [47] denom-
inated: H/ACA ribonucleoprotein complex subunit 1 (GAR1), H/ACA ribonucleoprotein 
complex subunit 2 (NHP2), and H/ACA ribonucleoprotein subunit 3 (NOP10), considered 
key biomolecules of the small nucleolar RNAs (snoRNAs); thus, these proteins participate 
in post-transcriptional mechanisms such as methylation and ribosomic RNA modifica-
tions [48]. It has been observed that patients that present mutations in NHP2 or NOP10 

Figure 1. Structure of the shelterin and CTC1-STN1-TEN1 (CST) complexes. The shelterin complex is
made up of the proteins telomeric repeat-binding factor 1 (TRF1), telomeric repeat-binding factor 2
(TRF2), TRF1-interacting nuclear factor 2 (TIN2), adrenocortical dysplasia protein homolog (TPP1),
protection of telomeres protein 1 (POT1), and repressor activator protein 1 (RAP1). TRF1 and TRF2
subunits bind to the double-stranded telomeric DNA using Myb-type domains and the POT-1 subunit
binds to the single-stranded. On the other hand, the CST complex made up of the proteins CTC1,
STN1, and TEN1 inhibits the activity of the telomerase enzyme.

1.2. Telomerase Structure and Function

Every time a cell divides, about 25–200 bp of the telomeric sequence is lost, which is a
phenomenon that is also known as “the end-replication problem” where DNA polymerase
cannot complete the terminal space of the double helix [35,36]. Hence, with the purpose
of properly making the replication happen, the telomerase enzyme is required, which is a
ribonucleoprotein that helps in the maintenance of the telomere length, in the 3’-OH chro-
mosome end, through the transport and addition of tandem repeat RNA templates [37]. It
has been established that when the telomeres are long enough, the presence of telomerase is
not required, being necessary only when the TL falls within a critical range [38]. The human
telomerase is constituted of two subunits that work simultaneously: the human telomerase
RNA (hTERC, hTR, or TER) and the human telomerase catalytic subunit (hTERT) [39].
hTERC is an RNA molecule that is necessary for the stability and processing of the 3′ of
the DNA; it contains a short complementary template of the telomeric DNA sequence [40].
hTERT has a reverse transcriptase activity and is responsible for adding the new segment
without altering the phenotypic and morphogenic characteristics of the cell [41]. Sub-
sequently, telomerase uncouples, and the DNA polymerase begins the synthesis of the
complementary fragment of the 5′ end, avoiding then the telomeric shortening that comes
with every cell division [42].

It is to notice that other accessory proteins are required for the telomerase to be fully
functional, including dyskerin pseudouridine synthase 1 (DKC1), which is involved in
telomere maintenance, ribosomal RNA biosynthesis, and pseudouridylation [43], and
the telomerase Cajal body protein 1 (TCAB1), which is capable of associating with the
telomerase and directly moving it towards the telomere. It is known that a TCAB1 de-
pletion impedes hTERC from binding to Cajal bodies (nuclear regions that participate
in the organisation of the genome, genic expression and RNA splicing fidelity) [44–46].
Some proteins are located in the Cajal bodies and can interact with the hTERC subunit [47]
denominated: H/ACA ribonucleoprotein complex subunit 1 (GAR1), H/ACA ribonucle-
oprotein complex subunit 2 (NHP2), and H/ACA ribonucleoprotein subunit 3 (NOP10),
considered key biomolecules of the small nucleolar RNAs (snoRNAs); thus, these proteins
participate in post-transcriptional mechanisms such as methylation and ribosomic RNA
modifications [48]. It has been observed that patients that present mutations in NHP2 or
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NOP10 present low levels of hTERC subunit in peripheral blood, which leads to alterations
in the telomere [49].

Other proteins that play an essential role in the assembly or remodeling of the telom-
erase are ATPases pontin and reptin (Figure 2) [50,51]. Both proteins participate in telom-
erase biogenesis, particularly in the S phase of the cell cycle. The reptin/pontin/TERT
complex is considered an immature complex, also known as pre-telomerase with low cat-
alytic activity, which can subsequently rearrange to form the mature TERC/TERT/DKC1
complex with a high catalytic activity [52].
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Figure 2. Scheme of the telomerase complex, consisting of two main subunits: telomerase RNA
(TERC) that contains the RNA template region, and telomerase catalytic subunit (TERT), which is
responsible for adding the new segment. Adrenocortical dysplasia protein homolog (TPP1) acts
as a telomerase recruiter. In addition, the accessory proteins for the enzyme to be fully functional
are shown: Dyskerin, H/ACA ribonucleoprotein complex subunit 1 (GAR1), telomerase Cajal
body protein 1 (TCAB1), H/ACA ribonucleoprotein complex subunit 2 (NHP2), and and H/ACA
ribonucleoprotein subunit 3 (NOP10). The pontin and reptin proteins are in charge of its remodeling
and assembly.

The activity of the telomerase enzyme is limited in most somatic cells, causing the
telomeres to shorten, which finally leads to replicative senescence (an irreversible arrest
of the cell cycle). However, the activity of this enzyme can be reactivated in between 80
and 90% of the distinct types of cancer. There is no evidence of another broadly expressed
gene among all known cancers [38,53,54]. In addition, 5–10% of the tumors use a molecular
mechanism denominated the alternative lengthening of telomeres (ALT) that provides
the capacity of maintaining the telomere length even without telomerase [54,55]. The
carcinogenic transformation also seems to depend on certain types of responses such as
oncogenic activation or tumor suppressors inactivation such as p53 [41]. Similarly, the
elongation of the TL is related to the immortal cell phenotype, which is considered as a
hallmark of neoplasic cells [56]. Thus, the activity of this enzyme can be used as a key
diagnostic tool for cancer, while its inhibitors could be used as antitumoral agents [6,57].

On the other hand, researchers have determined an association between the levels
and/or the activity of the telomerase and metabolic disorders such as type 2 diabetes
mellitus (T2DM), hypertension, dyslipidemia, and psychological stress [58,59]. For exam-
ple, in animal models, it has been identified that a lower telomerase activity caused by
a TERC subunit deficiency affects the capacity of replication of β-pancreatic cells, caus-
ing alterations in insulin secretion and glucose intolerance [58]. Conversely, it has been
suggested that non-controlled hypertension is associated with high telomerase activity
in leukocytes [60]. Based on the above, it can be proposed that metabolic disorders are
key factors that can trigger the dynamics of telomerase activity behavior. In addition, it is
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important to highlight that many metabolic disorders are associated with changes in TL in
aging [61].

2. Telomeric Length and Cell Fate in Aging

Normally, when telomeres reach a critically short length in one or more chromosomes,
they no longer have the capacity to safeguard the genome integrity [62]. For example, it
is estimated that the minimal number of repetitions for the correct maintenance of the
telomere must ≥500 bp [63], and at least 12.8 TTAGGG repetitions prevent chromosomes
from end-to-end fusion [64]. This leads the cell to limit the proliferation through processes
such as senescence, which is a mechanism that permanently blocks cell division, and
apoptosis (programmed cell death) [57,65,66].

During aging, there is a major drawback when TL is shortened, as organ regeneration
capacity is limited with possible modifications in gene expression even before the onset of
senescence or apoptosis [67,68]. Senescent cells are generally eliminated from the tissue by
the immune system. However, the impaired immune system of aged individuals fails to
clear all the senescent cells; thus, the ones that remain in the tissue are non-functional cells
that can jeopardise the tissue architecture and function [7]. In other words, senescent cells
are accumulated through aging and in some cases promote the appearance of cancer in the
tissue [68–72].

The above can be attributed to the fact that senescent cells are metabolically active
and can influence the surrounding cells through the secretion of growth factors, cytokines,
chemokines, and matrix-remodeling enzymes, also known as Senescence-Associated Secre-
tory Phenotype (SASP), which can be associated with the structural and functional decay
of the tissue, also triggering tumorigenesis [71].

There are new encouraging strategies to attenuate health decline at older ages or to
delay aging. One of them is through the elimination of senescent cells by compounds called
senolytics or by senomorphic compounds that inhibit or attenuate the SASP [73,74]. The
research on such molecules has been growing in recent years, and therefore, the association
between senolytics and senomorphics with other age-related diseases has come to light.
Regarding the latter, it has been observed that the acute administration of lithium carbonate
is able to reduce the SASP of human astrocyte-derived induced pluripotent stem cells
(iPSCs) [75]. In addition to the above, the administration of this compound is also involved
in telomere length dynamics, since chronic treatment in a triple transgenic experimental
model of Alzheimer’s disease increases TL in the hippocampus and parietal cortex in
a tissue-specific manner [76]. Furthermore, its long-term use is associated with longer
TL in peripheral blood leukocytes from bipolar patients [77]. Therefore, pharmacological
targeting of these compounds could transform geriatric medicine by preventing or delaying
telomeric attrition and/or the onset of metabolic diseases such as metabolic syndrome
(MetS), where senescence could be contributing by increasing systemic inflammation and
insulin resistance in T2DM [74,78–81]. Although the effect of senolytics has been proven,
we should not lose sight of the fact that senescence also participates in beneficial processes
for health, such as tissue repair and protection against the development of carcinogenic
processes, among others [82].

Telomeres do not trigger apoptosis by themselves, but the absence of the protein TRF2
in the shelterin complex does trigger this process because the DNA without a telomere is
identified as damaged, which is a process regulated by proteins such as p53 and the kinase
Ataxia Telangiectasia Mutated (ATM) [83,84].

Telomeric shortening is not exclusive of somatic cells; it can also occur in gametic
cells. For example, in human oocytes, telomere shortening leads to apoptosis in embryonic
cells [85], being more frequent in aged women, with the possibility of miscarriage, birth
defects, and infertility [86]. On the other hand, TL shortening in spermatocytes is evident in
men with a low concentration of spermatocytes (oligozoospermia) that is directly associated
with the age of the parents at the moment of conception [87], which predispose to apoptosis
in spermatic cells [88] and male infertility [89].
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3. Reactive Oxygen Species and Antioxidants

The mitochondrion plays a crucial role for cell survival, as it is involved in ATP
production by electron transport enzyme complexes in the respiratory chain, in which reac-
tive oxygen species (ROS), such as superoxide radical (O2

•−) are invariably produced by
electron transfer to molecular oxygen. This happens particularly in complexes I (Nicotine
adenine dinucleotide reduced (NADH) ubiquinone oxidoreductase) and III (ubiquinol–
cytochrome c oxidoreductase) of the mitochondrial inner membrane [90].

Under physiological conditions, ROS act as second messengers that participate in
several signaling pathways to maintain the homeostasis, growth, and normal development
of aerobic organisms [91,92]. However, Oxidative Stress (OxS) occurs when there is an
imbalance of oxidants (such as ROS) and antioxidant mechanisms, where the presence of
the first is in a higher proportion [93,94]. As mentioned earlier, ROS such as the O2

•− are
generated by the electron transport chain and, in the presence of transition metals such
as Fe3+, transforms into hydrogen peroxide (H2O2), which together with O2

•− becomes
hydroxyl radical (•OH) through Fenton and Haber–Weiss reactions [95]. Hydroxyl radical
and oxygen singlet (1O2) can generate DNA adducts, such as thymine glycol or 8-hydroxy-
2′-deoxyguanosine (8-OHdG). The last one results from the binding of the •OH to the
eighth carbon of the guanine [96]. 8-OHdG transforms into its oxidised form 8-oxo-7,8-
dihydro-2′-deoxyguanosine (8-oxodG) through a keto-enol tautomerism reaction, which
is considered the most abundant oxidative injury, with about 100,000 8-oxodG generated
every day in a single cell [97,98].

Despite all the damage that elevated ROS levels may induce, the organisms are en-
dowed with antioxidant defense mechanisms, which are synthesised de novo (endogenous)
or acquired through the diet (exogenous). These systems are capable of counteracting or
eliminating directly or indirectly the ROS and/or its derivatives, such as reactive nitro-
gen species (RNS) or reactive sulfur species, to maintain redox homeostasis [99,100]. For
example, O2

•− can be rapidly transformed by the enzyme superoxide dismutase (SOD)
into H2O2, which is converted into less toxic products by the enzyme catalase (CAT) or
glutathione peroxidase (GPx) [90]. However, oxidative damage increases gradually over
time because antioxidant defense mechanisms decline with age [101]. It has been proposed
that OxS theory is a direct cause for aging, which is based on the molecular disorder gener-
ated by the free radical accumulation [102]; this disorder may cause oxidative damage in
several biomolecules and alterations in redox homeostasis, resulting in the appearance of
age-related diseases [103–106].

Likewise, OxS can influence cellular fate, since it has been proposed that ROS are
triggers of senescence and apoptosis. For example, it has been observed that fibroblasts
treated with low concentrations of H2O2 become senescent, while treatment with a high
concentration leads to apoptosis [107]. Other in vitro studies have revealed that cells with a
normal TL and telomerase expression show greater resistance against apoptosis compared
to cells from older organisms [108]. Thus, higher concentrations of ROS upregulate the
signaling pathways associated with cell death [109,110].

4. Telomere Shortening and Oxidative Stress

Due to the high content of guanines in the telomeric region, it is susceptible to ox-
idative damage. Thus, the adduct can be found in this region at a higher proportion,
even seven times more, compared to genomic DNA [111,112]. The molecule 8-oxodG is
considered as a pre-mutagenic lesion that is capable of inadequately binding to adenine,
leading to transversions GC-TA, which subsequently generates several alterations such as
single-strand brakes, inadequate replication of the telomeric DNA, accelerated telomere
shortening [113], and if the DNA damage repair mechanisms fail, it can lead to cellular
physiology modifications, senescence, or apoptosis [91].

It has been postulated that even without oxidative damage, the telomeres would
shorten with every mitotic cycle, and the aging process would happen inevitably. However,
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during the aging process, OxS is a major factor that significantly contributes to the telomere
shortening rate [114,115].

In addition, it has been proposed that the oxidative damage induced by ROS induces
a tissue-specific reduction of the TL, which is derived from the antioxidant capacity of
each tissue [116,117]. The damage generated by OxS can interfere with the assembly of
the telomere maintenance proteins such as TRF1, TRF2, and POT1 with the DNA; even a
single 8-oxodG lesion can induce a 50% reduction in the levels of such proteins, leading to
telomeric instability [118]. Meanwhile, it has been observed that senescent cells’ 8-oxodG
levels are 35% higher compared to control cells by inducing cell growth arrest [119].

Another event linking OxS and rapid telomere attrition is given by the loss of the en-
zyme peroxiredoxin-1 (PRDX1), where the DNA damage sensor-dependent repair involved
in the base excision repair (BER) mechanism, known as poly(ADP-ribose)-polymerase-1
(PARP1), is inefficient [120]. This condition causes the accumulation of telomeric single-
strand DNA breaks (SSBs), which in turn become potentially lethal telomeric double-strand
breaks (DSBs) [121]. DSBs are repaired by the high-fidelity template-dependent homol-
ogous recombination (HR) repair pathway or error-prone non-homologous end joining
(NHEJ) [122]. For example, alterations in HR repair generated by the inhibition of PARP1
activity cause SSBs to persist, leading to genomic catastrophe and telomeric shortening,
and ultimately apoptosis [120,123].

5. Telomere Length and Age-Related Diseases and Oxidative Stress

Aging is defined as a gradual and adaptive process that is characterised by a decline
in the biological response to maintain or recover homeostasis against the challenges that
a person faces during the lifespan in a given environment [124]. It is estimated that in
2050, the percentage of people over 60 years may reach 22%. This means that in the world,
there will be around 2000 million people belonging to this age group [125]. That is why it
is necessary to count on opportune interventions that allow elderly people to contribute
to social development and prevent them from turning into a crisis factor for healthcare
structure [126].

It is well accepted that telomeres help stabilise the nuclear genome with high fidelity,
but this function declines with age in the post-reproductive stage [1]. The loss of telomeric
repetitions as well as the enzymatic activity of the telomerase are dynamic processes that
regulate differentially during each stage of life [6,56]. Thus, short telomere length is a
biomarker of aging that incites the cell to develop certain diseases, limiting with it the over-
all health status of a person [127]. Several studies support the association between a short
telomere with age-related diseases and their complications, such as T2DM, cardiovascular
diseases, myocardial infarction, cataractogenesis, osteoporosis, MetS, neurodegenerative
diseases such as Alzheimer’s disease, and sleep disorders; as well as dementia, cognitive
decline and premature mortality (Figure 3) [127–135]. In that same order, researchers
have identified gene variations in human leukocytes, specifically a single nucleotide poly-
morphism (SNP) rs3772190 in the TERC locus, which is associated with a short TL and
longevity [136]. It has been suggested that antioxidants could reduce the telomere short-
ening rate during aging, but when it comes to transformed cells, the effect may not be
wanted [2,137]. To date, there has been no other inherent mechanism that explains the
origin and/or causes of the telomere shortening in these pathologies. However, OxS seems
to be constant [138].
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There is evidence that points out that besides age, there are other factors related to
telomere attrition, among them the lifestyle, diet, as well as environmental and social
response to which the individual is subjected [134,139], and at a cellular level, chronic
inflammation and oxidative damage [140,141], which may compromise the immune system
functions [142,143]. As for OxS, it should be noted that it is associated with short telomeres
in aging, which have been found in recent studies in people over 65 years old with high
iron levels [144] and sarcopenia [145]. Likewise, it has been observed an increase in
lipoperoxidation [146,147] is associated with a higher risk of death [148], a decay in the
overall antioxidant state, and the activity of the GPx in erythrocytes from healthy people
>60 years old compared to young adults. Therefore, these findings suggest that an advanced
age predisposes to an increase in OxS [147].

6. Damage Repair of the Telomeric DNA

The habitual genomic DNA damage repair mechanisms must be modified or sup-
pressed in the telomeric regions in order not to be recognised and processed as DSBs [55].
Telomeric DNA repair is known to be not as efficient as in other chromosomal areas, since
there is evidence that shows that the genome of human cells put through OxS is repaired
in the first 24 h, while the telomeric regions can remain unrepaired for up to 19 days [149].
Similarly, telomeric DNA repair is less efficient in aged cells, where it possibly has an im-
pact on genome stability [150]. On the other hand, it has been proposed that cell senescence
originates as a consequence of irreparable damage to telomeric DNA [151].

Telomeric DNA can be repaired by BER and to a lesser extent by nucleotide excision
repair (NER) and mismatch repair (MMR) [152]. In general, it is speculated that BER
repairs the small lesions in the DNA; on the contrary, NER eliminates the bigger ones [153].
Likewise, some products generated by oxidation, such as 8-oxodG, are identified by BER,
while the 5′8-cyclopurines are recognised by NER [154]. Surprisingly, the proteins shelterin,
TRF1, TRF2, and POT1 help in the repair process by increasing the speed of individual
steps of the BER long-patch repair and with that protecting the telomeric DNA from
degradation [155].

Oxidative damage in the DNA is repaired mainly by the enzyme 8-oxoguanosine
DNA glycosylase-1 (OGG1), which is a glycosylase that has the capacity of excising directly
the 8-oxodG lesion from the nuclear or mitochondrial DNA [156]. It is known that some
telomeric structures such as 3′-overhang, D-Loop, and fork-opening are eliminated with
lower efficiency by the OGG1 [157]. A decrease in the expression of OGG1 may lead to the
accumulation of oxidant lesions associated with tumoral phenotypes [158,159].

Hence, a malfunction in the repair mechanisms is associated with accelerated aging
and chromosome instability, which predisposes to mutagenesis, carcinogenesis, or mor-
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phological nuclear abnormalities such as nuclear buds, micronucleus, and nucleoplasmic
bridges [160].

Likewise, new evidence indicates that telomeric dysfunction causes the transcription
of telomeric non-coding RNAs (tncRNAs) that in turn control the DNA damage response
(DDR) [161]. This transcription gives rise to a type of long noncoding RNAs (lncRNA)
known as TERRA (Telomeric repeat-containing RNA) that are involved in the maintenance
and processing of unprotected telomeres, chromosomal end heterochromatin formation,
and telomerase activity [162–165]. Inhibition of tncRNAs by sequence-specific telomeric
antisense oligonucleotides (tASOs) has been observed to prevent DDR activation [166] and
cellular senescence both in vivo and in vitro, thereby improving homeostasis in fibroblasts
from patients with Hutchinson–Gilford progeria syndrome (HGPS), which is characterised
by premature aging and extending lifespan in an HGPS transgenic mouse model [161].
Similar to senolytics and senomorphics, inhibiting these ncRNAs with tASOs may be a
promising step to prevent telomeric dysfunction, improve age-related diseases, and have a
translational impact on MetS.

7. Relationship of Oxidative Stress with the Metabolic Syndrome and
Telomeric Length

Advanced age is a risk factor for diseases that generally develop in a chronic and
overlapping way—that is, they are long-lasting and associated with each other [167].
Among them is the MetS [168], whose prevalence among the youth from 20 to 29 is less
than 10%; while in adults aged 60 and over, it increases by 50% [169,170].

MetS is defined as a set of biochemical and clinical alterations characterised by obesity,
dyslipidemia, arterial hypertension, insulin resistance, and hyperglycemia, presenting a
prothrombotic and pro-inflammatory state [171]. This syndrome is a risk factor for cognitive
decline, dementia, frailty, T2DM, and cardiovascular diseases, whose pathophysiology is
associated with an increase in OxS [172,173].

In the same vein, it is assumed that both aging and MetS generate OxS, but the impact
of the syndrome on this imbalance is much more significant than the produced by age, since
the pro-oxidant state is manifested in each of its components, predisposing to metabolic
and cardiovascular complications and organ damage, especially in the elderly [174–176].
A positive association between MetS components and OxS levels has been reported by
cumulative effects; that is, a greater presence of components leads to higher levels of
OxS [177]. Currently, it is under discussion whether OxS is the cause or consequence of
MetS; however, it is hypothesised that both may be true [178].

In patients with MetS, there are alterations in the antioxidant protection mechanisms
and in the inflammatory process; for example, high concentrations of H2O2 decreased the
gene expression of SOD and increased the levels of interleukin 1 beta (IL1β) in peripheral
blood mononuclear cells (PBMCs) [179]. Similarly, an increase in transition metals such
as iron or copper can generate OxS and exacerbate it, since high concentrations of these
metals in serum [180,181] are associated with obesity [182], hypertriglyceridemia, low high-
density lipoprotein-cholesterol (HDL-C) levels [183], hypertension [184], blood glucose,
and increased predisposition to T2DM [185].

Likewise, the presence of this syndrome predisposes to an increase in free radicals
(FR), which are accepted as underlying mechanisms for mitochondrial dysfunction and an
accumulation of oxidation products at the level of DNA (8-oxodG), lipids (prostaglandin
F2 alpha (PGF2α), malondialdehyde (MDA) and 4-hydroxynonenal (HNE) [186–188],
carbonylated proteins (PCO) [189], low-density lipoproteins (LDL) [190], and carbohydrates
(glyoxal and methylglyoxal) [174,191], which are associated with a decrease in antioxidant
defense mechanisms due to low levels of vitamins C, E, and carotenoids [192–194], reduced
glutathione (GSH) [195] and the enzymatic activity of SOD, GPx [196], and CAT [189].
This redox imbalance leads to an increased risk of metabolic complications [197,198]
and acceleration of telomeric attrition in the pathogenesis of MetS [199] (Table 1). The
consequences of MetS at the telomere length level can be so serious that it can even affect
the offspring, since the children of mothers with MetS may have shorter telomeres [200],
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which predisposes to a greater risk of presenting some chronic non-communicable diseases
and mortality [201].

On the other hand, MetS has been positively associated with an increase in telomerase
levels and activity [189,202] and inversely with oxidised low-density lipoprotein (Ox-LDL),
which leads to senescence and risk of chronic diseases such as atherosclerosis [190,203] or,
in the worst scenario, to the development of malignant tumors [204], since this condition is
associated with a higher risk of colorectal cancer, as well as salivary glands and mortality
from breast cancer in women [205,206]. In addition, in men, there is an increased risk of
pancreatic cancer and Hodgkin’s lymphoma of the thyroid [206]. Hence, the increasingly
apparent link between MetS and cancer.

Similarly, there is information linking MetS components or OxS to telomere length
in in vivo and in vitro models. For example, in a chimeric mouse model in which 100% of
its cells were derived from embryonic cells with longer telomeres than normal (hyperlong
telomeres) and lower levels of LDL and cholesterol, better tolerance to glucose and insulin
were observed, and they are evidently thinner compared to mice of the same genetic
origin as well as associated with a lower incidence of cancer and greater longevity [207].
In addition, in sheep and human fibroblasts under prooxidant or antioxidant culture
conditions, a positive correlation was found between the levels of DNA damage by OxS
and telomere shortening rates, independent of the donor [62]. Likewise, high levels of
glucose together with a persistent proinflammatory state results in a higher rate of telomere
erosion in aged human fibroblasts [208]. In human fibroblasts under hyperglycemia
conditions, TL decreases [209], while caloric restriction in leukocyte and skin samples from
rhesus monkeys apparently does not affect telomere length [210].
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Table 1. MetS and its association with telomere length.

Population with MetS Determinations Objective Findings Ref.

7370 patients
(56–73 years old).

Evaluation of the components of the MetS.
The average TL in leukocytes was determined by qPCR.

To investigate gender differences and
their association between TL and MetS.

An increase in the number of MetS components
is associated with shorter TL in the female

population.
[211]

2842 patients
(18–65 years old). Follow-up for 6 years

Evaluation of the components of the MetS.
Basal TL in leukocytes was determined by qPCR.

To associate TL with the metabolic
profile and with the MetS components.

Short TL is associated with higher MetS
component scores, which persist even after 6

years.
[212]

34 male patients
(55–68 years old).

Evaluation of the components of the MetS.
The TL in leukocytes was determined by TRF.

The bilateral ELC was determined by observation of a
deep cut in both ears through the earlobe.

To determine if the ELC is related to
telomeric shortening.

Bilateral ELC is a dermatological indicator
associated with excessive telomere loss in

patients with MetS.
[213]

400 women
(18–86 years old).

Evaluation of the components of the MetS.
The TL in leukocytes was determined by qPCR.

To determine the TL and its association
with the metabolic condition in obese

women.

TL is related to MetS and with a greater number
of metabolic abnormalities. [214]

115 subjects
(43–87 years old)

The TL in leukocytes was determined by qPCR.
Test 2hPG.

To establish the relationship between TL
with the different components of MetS,

glucose tolerance, and age.

MetS is associated with shorter telomeres. For its
part, the 2hPG level showed a relationship with

TL regardless of the presence of MetS.
[215]

1808 patients
(18–65 years old)

Follow-up for 6 years

The TL in leukocytes was determined by qPCR.
Anthropometric and biochemical parameters.

To determine whether the components of
the MetS predict TL through time and if
the alterations are parallel to telomeric

attrition.

An increase in waist circumference and glucose,
as well as low HDL-C concentrations, are

associated with shorter TL.
[216]

8074 patients
(28–75 years old)

Follow-up for 10 years

The TL in leukocytes was determined by qPCR.
Anthropometric and biochemical parameters.

Evaluate the dynamics of TL and
identify the factors associated with

temporal changes in TL.

Conditions associated with MetS are factors that
accelerate telomere attrition. [217]

MetS: metabolic syndrome; TL: telomere length; qPCR: quantitative PCR; TRF: telomere restriction fragment analysis; ELC: diagonal earlobe crease; 2hPG: glucose tolerance reflected in 2-h post-load plasma
glucose levels; HDL-C: high-density lipoprotein-cholesterol.
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8. Components of the MetS and Its Relationship with Oxidative Stress and
Telomeric Length

A great variety of studies support that each of the characteristic MetS conditions
is related to OxS. For example, it is well established that fat accumulation is associated
with OxS at the systemic level, which is mainly due to a decrease in antioxidant enzymes
and an increase in fatty acids in adipocytes, due to the activation of the pro-oxidant en-
zyme nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase [218],
which is involved in the formation of ROS [219]. Similarly, it has been observed that
adiposity is associated with high plasma levels of lipoperoxidation due to an increase in
8-epi-prostaglandin F2α (8-epi-PGF2α), which leads to the appearance of complications,
such as insulin resistance [220]. At the transcriptional level, it also has a negative impact,
since it influences the gene expression of the shelterin complex, thereby altering the func-
tion of telomeres and triggering the inflammatory process and predisposition to chronic
diseases [221].

On the other hand, when there are altered basal blood glucose levels or glucose
intolerance, triglycerides (TG) levels and the 8-OHdG adduct are increased [222]. Likewise,
an increase in TG, total cholesterol, LDL cholesterol (LDL-C), and MDA are associated with
the decrease in the activities of the enzymes, GPx, and SOD in plasma [223].

Regarding the lipid profile, it is known that postprandial hypertriglyceridemia can
generate OxS, predisposing to the appearance of chronic cardiometabolic diseases [224],
while in animal models, it generates prediabetic neuropathy [225]. Furthermore, it has
been shown that low levels of HDL-C are related to an increase in lipoperoxidation and
hyperlipidemia in plasma [223,226]. It should be noted that this lipoprotein has been
conferred anti-inflammatory and antioxidant effects [227].

OxS can modulate blood pressure levels, since ROS directly influence the vascular
system through processes such as contraction and dilation or causing hypertension through
signal transduction pathways mediated by changes in the cellular redox state [228]. The
formation of O2

•− has been pointed out as a primary factor for the development and
evolution of hypertension, including insulin resistance [229]. Angiotensin II is a hormone
that is also involved in increasing blood pressure, alongside an increase in PGF2α that
exerts antinatriuretic and vasoconstrictor effects with endothelin production, which is
involved in the vascular damage caused by OxS [230,231].

Therefore, it can be assumed that OxS is involved in each of the MetS components
(Table 2), which in turn are associated with alterations in telomere length (Table 3) predis-
posing to the deterioration of the metabolic condition of the patients with MetS [134].
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Table 2. Components of MetS and its association with telomeric length and OxS.

Components of MetS Population Determinations Objective Findings Ref.

Obesity and OxS

59 subjects: (26–57 years old)
CTR (n = 20); Obese (n = 22);

Non-obese T2DM (n = 10) and
Obese-T2DM (n = 7).

TL was determined by qPCR.
Subcutaneous and visceral adipose tissue

from subjects undergoing abdominal
surgery. The size of the adipocytes was

determined by histological staining.
Lipid peroxidation by fluorometry.

To determine the association
between adipocyte size and

adipose tissue TL.

There is hypertrophy in adipocytes of
obese, T2DM, and obese-T2DM subjects
related to shortened TL. TBARS levels

were higher in obese-T2DM and T2DM.

[232]

Hypertension, insulin resistance,
and OxS 327 men: (40–89 years old).

The TL in leukocytes was determined by
TRF.

Determination of HOMA-IR.

To determine the association of
TL with insulin resistance, OxS,

and hypertension.

Hypertension, increased insulin
resistance, OxS, and age are associated
with shorter TL, being more evident in
hypertensive patients, largely due to

insulin resistance.

[233]

Hyperglycemia and
OxS

120 subjects: (38–71 years old)
CTR, with IGT, T2DM y T2DM−

atherosclerosis.

The TL in leukocytes was determined by
TRF.

Levels of TBARS, PCO, and CRP were
measured by standard methodologies.
IMT was assessed by ultrasonography.

To evaluate if the TL shortening
occurs in the IGT stage and if it is

greater in subjects with T2DM
and atherosclerosis.

TL is lower in patients with T2DM and
atherosclerosis. IGT and TL were

negatively correlated with TBARS, PCO,
and IMT. T2DM and TBARS are

significant determinants of shortening.

[234]

Hyperglycemia and OxS 21 subjects: (50–65 years old)
with T2DM.

TL was determined in monocytes by
FISH.

Oxidative damage by flow cytometry.
To establish if telomere

shortening characterises T2DM.

TL in the diabetic group was lower and
was associated with elevated levels of

8-oxoguanine.
[235]

Hyperglycemia and OxS
80 subjects: (49–56 years old)

T2DM (n = 40)
CTR (n = 40)

Lymphocyte TL was determined by TRF.
Determine MDA plasma levels using

TBARS.

To determine whether telomeric
shortening occurs in T2DM

patients.

TBARS levels showed a negative
correlation with shortened telomeres in

subjects with T2DM.
[236]

Hyperglycemia and OxS

621 patients: T2DM (n = 173)
(24–92 years old)

CTR (n = 448)
(18–61 years old).

The TL in leukocytes was determined by
qPCR.

TAOS was determined by a photometric
microassay.

The patients were also genotyped for the
UCP2 functional variants −866G> A and

A55V.

To determine the association
between TL and T2DM, OxS, and

gene variation in UCP2.

The shorter TL was associated with
T2DM attributed to high OxS.

Carriers of the UCP2 -866A allele have a
shorter TL compared to common

homozygotes.

[237]

MetS: metabolic syndrome; OxS: Oxidative Stress; CTR: control; TL: telomere length; qPCR: quantitative PCR; T2DM: Type 2 diabetes mellitus; TBARS: levels of thiobarbituric acid reactive substances; TRF:
telomere restriction fragment analysis; HOMA-IR: homeostatic model assessment insulin resistance; IGT: impaired fasting glucose; PCO: protein carbonyl content; CRP: C-reactive protein; IMT: carotid
intima-media thickness; FISH: fluorescent in situ-hibridization); MDA: malondialdehyde; TAOS: total antioxidant status; UCP2: a gene involved in the mitochondrial production of ROS.
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Table 3. Components of MetS and its association with telomeric length.

Components of MetS Population Determinations Objective Findings Ref.

Obesity 309 participants (8–80 years old).

The average TL in leukocytes was
determined by qPCR. Body fat was
determined by DXA. The volume of

adipose tissue was determined by MRI.
Anthropometric indicators.

To evaluate the relationship
between TL and adiposity.

Greater total and abdominal adiposity is
associated with shorter TL, suggesting
that obesity may accelerate the aging

process.

[238]

Obesity 2721 subjects: (70–79 years old).
Follow-up for 7 years.

TL in leukocytes was determined by
qPCR. Adipose levels: BMI, % of body fat

(DXA), and ACT scan to determine
visceral and subcutaneous fat.

To determine if TL can be a risk
factor for increased accumulation

of adipose tissue.
The shorter TL can be a risk factor for

adiposity. [239]

Obesity 2912 women: (40–70 years old).
TL in leukocytes was determined by

qPCR.
Anthropometric indicators.

To determine the association
between TL and anthropometric

indices.

Telomere shortening is associated with
obesity, the circumference of the waist

and hips. The normal weight maintains
the TL.

[240]

Obesity 3256 subjects: (14–93 years old).

The TL in leukocytes was determined by
qPCR.

Obesity indexes (BMI, waist
circumference, % body fat, waist-hip ratio,
and waist-height). High sensitivity CRP

test.

To determine the association
between TL and obesity rates.

TL is inversely associated with all obesity
parameters and with CRP. [241]

Obesity and insulin resistance 49 subjects: (21–43 years old).
Follow-up for 10 years.

The TL in leukocytes was determined by
TRF.

Determination of HOMA-IR.
To determine if insulin resistance

accelerates telomere attrition.

An increase in body weight and
HOMA-IR is associated with a decrease

in TL and with aging.
[242]

Obesity, TG, and hypertension 72 subjects: (45–60 years old).

The TL in leukocytes was determined by
TRF.

Subcutaneous adipose tissue samples
were obtained from patients undergoing

surgical procedures.
Anthropometric and biochemical

parameters.

To establish the relationship
between TL in adipose tissue

cells, with age and obesity.

TL was negatively associated with BMI,
TG, and SBP in obese patients, which

could contribute to their comorbidities.
[243]

TG and hyperglycemia 218 patients: (45–60 years old)
T2DM (n = 142); CTR (n = 76).

TL was measured by qPCR.
Biochemical and anthropometric data

were collected.

To assess whether metabolic
status contributes to premature

aging.

TL was reduced in men with T2DM and
inversely correlated with TG and total

cholesterol.
[244]

TG 142 patients: (40–79 years old).
Follow-up for 10 years.

TL was measured by qPCR.
Biochemical and anthropometric data

were collected.

To investigate the effects of
bariatric surgery-induced weight

loss on TL.

TL was inversely associated with baseline
plasma TG and cholesterol

concentrations.
[245]

TG, HDL-C, glucose, and blood
pressure 7252 subjects: (20–84 years old)

The TL in leukocytes was determined by
qPCR.

Anthropometric and biochemical
measurements.

To examine the associations
between TL and 17

cardiovascular biomarkers.

TL was inversely associated with BMI,
waist circumference, % fat, TG, blood

pressure, and CRP and positively with
HDL-C

[246]
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Table 3. Cont.

Components of MetS Population Determinations Objective Findings Ref.

TG and HDL-C 360 patients: (18–70 years old)

The TL in leukocytes was determined by
qPCR.

Anthropometric and biochemical
measurements.

To determine the association
between TL and coronary risk

factors.

There is no association between TL and
coronary risk factors, including

cholesterol, TG, and HDL-C
[247]

HDL-C 6468 patients: (19–85 years old)

The TL in leukocytes was determined by
qPCR.

Anthropometric and biochemical
measurements.

To investigate whether
lipoproteins are associated with

TL.

TL is not associated with LDL-C and TG
but is positively associated with HDL-C

when telomere length is shorter.
[248]

HDL-C 8892 subjects: (41–42 years old)
TL was measured by qPCR.

Anthropometric and biochemical
measurements were made.

To determine the relationship of
TL with cardiometabolic risk

profile.

A positive association was found
between HDL-C and TL. [249]

Hypertension 163 men: (60–64 years old).
Lymphocyte TL was determined by TRF.

Extracranial carotid plaques were
evaluated by ultrasonography.

To examine the relationship
between TL and atherosclerotic

plaques with the presence of
hypertension

A shorter TL is associated with a greater
predisposition to carotid artery

atherosclerosis
[250]

Hypertension
3097 subjects:

(23–76 years old)
Hypertensive (n = 1415)

Meta-analysis
The TL in leukocytes was determined by

qPCR and TRF.

To determine if TL is related to
hypertension

Telomeres are shorter in hypertensive
than in normotensive individuals. [251]

Hypertension
767 subjects: (30–80 years old).

CTR (n = 379)
Hypertensive (n = 388)

The relative length of the telomeres of the
leukocytes was determined by qPCR

To investigate the association
between TL and the risk and

prognosis of hypertension

TL is significantly lower in patients with
hypertension than in normotensive

subjects.
[252]

Hypertension 98 twins: (18–44 years old)
The TL in leukocytes was determined by

TRF.
Anthropometric measurements

To investigate the relationship
between TL and pulse pressure.

TL showed an inverse relationship with
pulse pressure. [253]

Hyperglycemia

272 subjects: (61–76 years old)
CTR (n = 104)

T2DM (n = 103)
T2DM + MI (n = 65)

The TL in leukocytes was determined by
qPCR.

Glycaemic control markers: HbA1c,
glucose, and waist–hip ratio.

To determine TL and its
association with glycaemic

control.

Patients with T2DM + MI have shorter TL
than subjects with T2DM and CTR.

Glycaemic control markers showed an
inverse correlation with TL.

[254]

MetS: metabolic syndrome; TL: telomere length; qPCR: quantitative PCR; DXA: dual-energy X-ray absorptiometry; MRI: magnetic resonance imaging; BMI: body mass index; CTR: control group; CRP: C-reactive
protein; TRF: telomere restriction fragment analysis; HOMA-IR: homeostatic model assessment insulin resistance; TG: triglycerides; SBP: systolic blood pressure; T2DM: type 2 diabetes mellitus; HDL-C:
high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; MI: myocardial infarction; HbA1c: glycated hemoglobin.
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9. Telomere Length and Inflammation in the MetS

Telomere shortening, as mentioned above, is associated with many conditions includ-
ing MetS, which also presents a low-grade inflammatory state [255]. In other words, it does
not cause an injury or loss of the infiltrated tissue [256] that is associated with alterations
in the circulating levels of cytokines and acute phase reactants. A vicious cycle appears
to be created between the inflammatory process that contributes to telomere dysfunction
and aging, while attrition can promote low-grade inflammation [257] and ultimately reflect
some type of disability or decrease in life expectancy.

It has been proposed that an increase in body mass index (BMI) stimulates the release of
inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), C-
reactive protein (CRP), and fibrinogen. Thus, it is considered that a cumulative inflammatory
load due to the combination of high levels of IL-6, TNF-α, and CRP is associated with greater
probabilities of a short TL in older adults with MetS [241,246,258–262].

A transcription factor that plays a key role in the inflammatory process as well as in the
regulation of the catalytic subunit of the telomerase is the nuclear factor-kB (NF-kB) [263].
Given the fact that, in an injury response, NF-kB is activated by pro-inflammatory signal-
ing mediated by TNF-α, a robust endogenous ROS generator, via c-Myc inducing rapid
translocation of NF-kB, which ultimately leads to the increased expression and activation
of the TERT subunit of telomerase [264]. It has also been observed that when telomerase
is overexpressed, the non-phosphorylated accumulation of NF-kB-p65 is induced in the
nucleus, without affecting its signaling and probably increasing its stability by avoiding
the recognition of degradation mechanisms mediated by the ubiquitin/proteasome system.
In addition, its accumulation is positively associated with IL-6 gene expression [265,266]. It
is also known that the expression of RAP1, a component of the shelterin complex, acts as
a modulator of the NF-kB [267]. There is evidence that supports the fact that an increase
in ROS levels is associated with an increase in the expression of the TNF-α and NF-kB. In
addition, the activation of p53 leads to the induction of NF-kB dependent pro-inflammatory
cytokines, which may precipitate the development of T2DM [268].

When an alteration in the homeostasis of pro-inflammatory and anti-inflammatory
adipokines occurs, caused by obesity, it can induce insulin resistance and lead to the
development of MetS [269]. Some molecules are altered in this syndrome, as they are
associated with increased adiposity, as in the case of monocyte chemoattractant protein
(MCP-1). On the contrary, other adipokines with anti-inflammatory properties such as
adiponectin (ApN) are decreased [270]. The latter is related to inhibition of the expression
of TNF-α in adipose tissue and the cells of the immune system such as macrophages [271].
A positive association has even been observed between TL and adiponectin, bringing
positive effects against accelerated aging [272].

In aged animals, TERT gene expression is negatively correlated with weight, while
TNF-α and MCP-1 have a positive correlation, suggesting that age and weight are factors
that impact telomerase expression. This can generate an alteration in the function of
telomeres in adipose tissue, thereby predisposing to an inflammatory state and age-related
chronic diseases [221].

On the other hand, it is recognised that suppressing the chronic inflammatory process
may be a key factor for greater longevity [273] and health. In this regard, the consumption
of chayote reduces the concentration of TNF-α and maintains telomerase levels [189,274].
Meanwhile, telomerase activator (TA-65), a natural compound used in traditional Chinese
medicine, can lengthen telomeres and reduce levels of inflammation mediated by TNF-α
and CRP in patients with MetS [275,276].

10. Effect of Healthy Lifestyles on Oxidative Stress and the Telomere Length

The dynamics of telomere length can depend on the type of lifestyle that the person
develops. For example, healthy habits include aerobic exercise such as running [277], which
causes an increase in the expression of the catalytic subunit of the telomerase hTERT and
the protein TPP1 [278]; Tai Chi practice also improves telomerase activity [279], which is
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probably attributable to an increase in the activity of endogenous SOD and GPx enzymes
and a reduction of lipoperoxidation during aging [280,281]; and intensive activities such
as skiing, badminton, or basketball are related to a much longer TL [282]. It should be
noted that the exercise must be personalised, since the effects are variable according to the
frequency, duration, type, intensity, and chronological age of the individual [283].

Similarly, nutritional status is another factor that influences telomere length [284]. For
example, the long-term supplementation of foods that are rich in omega-3 (n-3) polyun-
saturated fatty acids (PUFA) [285], vitamins such as vitamin A [286], B or folate [287], C,
E [288], and D [289], carotenoids such as lutein and zeaxanthin [290,291], polyphenols [292],
fiber [293], greater adherence to the Mediterranean diet, or a diet rich in vegetables and
fruits (whole grains, nuts, tea, coffee, and legumes) or consumption of eggs, fish, seaweed,
minerals such as copper, iron, magnesium, and calcium [294–297], delay the shortening
of the TL in older adults through glycated hemoglobin (HbA1c) [284,288]. These effects
are mainly attributable to the overexpression of endogenous antioxidants that cause a
decrease in OxS and mitochondrial dysfunction [298] or they are also attributable to its
anti-inflammatory properties [299].

Likewise, some supplements have been used for therapeutic purposes, such as resver-
atrol, a polyphenolic compound found in grapes, which increases telomerase activity by
increasing the expression of the catalytic subunit hTERT in a dose-dependent manner
in patients who suffered from myocardial infarction [300] and improved glucose (gly-
cated hemoglobin) and insulin levels in middle-aged subjects with T2DM [301], conferring
hypoglycaemic, antioxidant, and anti-inflammatory properties [302]. Similar properties
have been attributed to chayote, which maintains telomerase levels associated with an
increase in SOD and a decrease in OxS together with a decrease in TNF-α in patients with
MetS [189,274]. Additionally, in vitro studies have shown that turmeric roots cause an
increase in TERT activity, which can have a favorable effect on telomere length [303].

Unhealthy lifestyles include sleep deprivation and its disorders, such as insomnia [304]
and obstructive sleep apnea [305], which have considerable adverse effects during aging
that are associated with increased lipoperoxidation [306] and with telomeric attrition com-
pared to older adults with longer periods of sleep (>7 h per night) [307,308]. A similar
effect is observed in psychological stress in terms of OxS and TL, also showing lower telom-
erase activity [309]. Regarding smoking, there are contradictory results over the TL [310];
however, most studies suggest that there is a shortening of telomeres in smokers [311]
associated with lipoperoxidation [312]. In addition, the consumption of sugary carbonated
beverages is associated with shorter telomeres [313], even if the consumption starts from
the early stages of life and before the development of obesity [314]. Similarly, a higher
intake of processed meat or heavy alcohol consumption may result in the reduction of the
TL [315,316]. Hence, malnutrition with a high intake of fats, sugars, and sodium, along
with a low intake of fruits and vegetables, predisposes to constant OxS levels, thereby
accelerating the appearance of MetS.

11. Conclusions

MetS is characterised by a series of different metabolic abnormalities associated with
OxS and decreased antioxidant protection mechanisms. This predisposes to telomere
length shortening, which in turn is aggravated by the cumulative effects of its components,
such as obesity, hyperglycemia, and hypertension, while dyslipidemia shows a discrepancy
in these associations. The difficulty for the correct treatment lies in its multifactorial
nature and in the use of drugs that are used simultaneously for long periods and with
possible side effects. Therefore, new interventions are necessary, such as promoting healthy
lifestyles with physical activity, the use of nutraceuticals, senolytics or inhibitory antisense
oligonucleotides. Such interventions delay the telomeric attrition and decrease or suppress
the oxidative state, thus helping to respond on time to the control of the different conditions
of the MetS to prevent the development of chronic degenerative diseases and improve the
living conditions of these people.
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