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Simple Summary: The gut microbiota (all microbes in the intestine) of fishes is known to play
an essential role in diverse aspects of their life. The gut microbiota of fish is affected by various
environmental parameters, including temperature changes, salinity and diet. This study characterised
the microbial composition in gut samples of Nile Tilapia collected from Lake Tana and the Bahir
Dar aquaculture facility centre applying modern molecular techniques. The results show clear
differences in the gut microbiota in fish from the Lake Tana and the ones from aquaculture. Further,
also significant differences were observed on the composition of the gut microbiota across sampling
months. Samples from the aquaculture centre displayed a higher diversity than the wild catch Nile
tilapia from Lake Tana even though there is also an overlapping of the detected microbial groups.
Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota
of Nile tilapia in Ethiopia. Future work will help to precisely explain the causes of these changes
and their influence of the health and growth of Nile tilapia in Ethiopian lakes as well as under
aquaculture conditions.

Abstract: The gut microbiota of fishes is known to play an essential role in diverse aspects of host
biology. The gut microbiota of fish is affected by various environmental parameters, including
temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to
have a further understanding of what comprises a healthy microbiota under different environmental
conditions. However, there is insufficient understanding regarding the effects of sampling season and
catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised
gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar
aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and
Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was
the most dominant in the aquaculture samples. The results of differential abundance testing clearly
indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across
sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were
significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre.
Significant differences were observed in microbial diversity across sampling months and between
wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture
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centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core
gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria
and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild
and aquaculture) on the diversity and composition of bacterial communities associated with the gut
of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on
the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the
causes of these changes using large representative samples of Nile tilapia from different lakes and
aquaculture farms.

Keywords: aquaculture; 16S rDNA; fish; bacterial community; lake

1. Introduction

Nile tilapia (Oreochromis niloticus) is widely distributed in Africa and is one of the most
preferred aquaculture fish species in the world [1]. It is a benthopelagic omnivorous fish
that feeds on algae, aquatic plants, small invertebrates, detritus and associated bacterial
films [2]. In fish farms, the major food items for Nile tilapia are commercial diets with a high
protein content and aquafeeds formulated from plant and animal processing products and
by-products, brewery wastes and poultry and fish by-products [3–5]. It is a fast-growing
fish capable of tolerating a wide range of environmental conditions [6,7]. The optimum
water temperature for rearing Nile tilapia is between 27 and 32 ◦C [8]. The fish begins to
die when the water temperature drops to 11 ◦C, and it cannot survive below 8 ◦C [9].

The gut microbiota plays important roles in a wide range of biological processes of
their host. They improve host health by facilitating nutrient and energy extraction through
fermentation of nondigestible dietary components in the intestine [10]. Gut microbial
communities also synthesise vitamins and amino acids [11]. Moreover, the gut microbiota
inhibits the performance of pathogenic microbes and hence enhances the health of the
fish [12]. The involvement of gut microbiota in fish nutrition, epithelial development,
immunity and vulnerability to disease is well documented [11].

Season is considered as the major factor affecting the composition of gut microbiota in
various fish species [13]. Al-Harbi and Naim Uddin [13] have reported seasonal variation
in gut microbiota in the intestine of hybrid tilapia. In their study, the total viable counts
(TVCs) of bacteria in the intestine varied between the early summer, summer, autumn and
winter seasons. Moreover, seasonal variations in gut microbiota in farmed Atlantic salmon
have been reported by Hovda et al. [14]. Similarly, the composition of intestinal lactic acid
bacteria (LAB) has been observed to vary between seasons for Atlantic salmon [15], silver
carp (Hypophthalmichthys molitrix), common carp (Cyprinus carpio), channel catfish (Ictalurus
punctatus) and deep bodied crucian carp (Carassius cuvieri) [16]. Water temperature has
been reported to affect LAB composition more than the physiological difference among
the four fish species studied by Hagi et al. [16]. The composition of the gut microbiota in
fish can also be influenced by other environmental parameters, such as salinity [17,18] and
diet [19]. Moreover, captivity has also been reported to be one of the factors influencing the
composition and diversity of the gut microbiota of fishes [20–22].

Lake Tana, the largest lake in Ethiopia, is situated on the basaltic plateau of the north-
western highlands of the country. Abundant wetlands, swamps, marshes and floodplains
can be found all around the shores of the lake and its tributaries [23]. Lake Tana is well-
known for its impressive diversity and unique fish species. Approximately 68% of the fish
species in Lake Tana are endemic [24]. The large African barbs, Nile tilapia and African
catfish are the most economically important fishes from the lake. Moreover, the lake is the
source of the Blue Nile, a transboundary river of political importance.

Given the important roles of gut microbiota in host health, the assessment of gut
microbiota may constitute an important aspect to manage the health of Nile tilapia and
hence reduces production losses during aquaculture practices. Baseline information on
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the variations in gut microbiota in Nile tilapia sampled in different months representing
different seasons is necessary to understand which microbial communities are dominant
and most beneficial. However, there is no such study for Lake Tana, the lake with impres-
sive fish diversity and uniqueness [24]. Therefore, in this study, we characterised the gut
microbiota of Nile tilapia from Lake Tana and compared it with samples from a nearby
aquaculture facility centre. We assessed the influence of sampling season on the Nile tilapia
gut microbiota by analysing the samples collected in April, May, June, July and August
representing dry season, pre-rainy season and main-rainy season. Sedimentation, increased
trend of eutrophication and toxigenic cyanobacteria are reported as major problems of the
Lake Tana basin [25] and these factors believed to show seasonal fluctuation due to the
variation of amount of rainfall in each season. In addition, differences between the gut
microbiota composition of wild fish from Lake Tana and farm fish from aquaculture facility
centre were investigated. We hypothesised that the gut microbiota will change throughout
the year as well as differ depending on the habitat, in this case natural versus artificial
water bodies. This would support findings that differences on environmental variables
play a role in shaping the intestinal microbiota of fish [12]. This information could be used
to enhance the economic benefits of aquaculture since it enables proper feed composition
and enrichment with the necessary probiotics.

2. Methods and Materials
2.1. Specimen Collection and Sampling Sites

The specimens were collected from Lake Tana and the Bahir Dar aquaculture facility
centre at the Amhara Regional Agricultural Research Institute (ARARI), which is located
close to Lake Tana. The aquaculture centre gets water from the lake. Lake Tana is a
high-altitude lake (1800 m above sea level) and covers a surface area of 3200 km2. Its
trophic status changed to mesotrophic and eutrophic due to nutrient loads [26]. Lake Tana
is a shallow lake with an average depth of 8 m and a maximum depth of 14 m. Lake
Tana basin lies between latitudes 10◦95′ and 12◦78′ N and longitudes 36◦89′ and 38◦25′

E. The climate of Lake Tana is divided roughly into four seasons: the main rainy season
(July–September), dry season (December–April), pre-rainy season (May–June) and post-
rainy season (October–November) [27]. The mean annual rainfall of the catchment area
is approximately 1280 mm [28]. The lake is fed by several tributary rivers, of which four
are permanent: Megech, Rib, Gumara and Gilgel Abay and the Blue Nile is the only out
flowing river (Figure 1).
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2.2. Fish Sampling and Processing

A total of 47 adult male Nile tilapia samples were collected from the landing site of
Lake Tana, and seven samples were supplied by the Bahir Dar aquaculture facility centre
(Table 1). For the Lake Tana samples, specimen collection was performed on a monthly basis
from April to August 2018. The aquaculture samples were collected in August 2018. For
comparison of the wild population with the aquaculture samples, only samples collected in
August from Lake Tana were used. All fish samples after collection were treated similarly
as previously reported [29]. Briefly, the fish were killed by high doses of clove oil [30] and
aseptically dissected after washing the outer surfaces and instruments using 70% ethanol.
The hindgut luminal contents were collected as described by Ghanbari et al. [31] and placed
in sterile screw cap tubes containing sterile phosphate-buffered saline and glycerol. The
samples were stored at −20 ◦C until further processing.

Table 1. Samples used in this study.

Sampling Site Sampling Months No. of Samples Season

Lake Tana April 9 Dry season

Lake Tana May 8 Pre-rainy season

Lake Tana June 10 Pre-rainy season

Lake Tana July 8 Main rainy season

Lake Tana August 12 Main rainy season

Bahir Dar aquaculture centre August 7 Main rainy season

2.3. DNA Extraction, PCR Amplification of 16S rRNA and Amplicon Sequencing

DNA extraction of gut contents was performed using the PowerFecal® DNA Isolation
Kit (Qiagen, Hilden, Germany) with some modifications. Two-step PCR was conducted to
amplify the V3–V4 hypervariable region of the 16S rRNA gene for the Illumina MiSeq sys-
tem (Illumina, San Diego, CA, USA) following Shokralla et al. [32]. Details regarding DNA
extraction, the two PCR steps and PCR product purification steps have been published
previously [29]. High-throughput sequencing analysis of bacterial rRNA genes was per-
formed using an Illumina MiSeq paired-end (PE) 300 sequencing platform (San Diego, CA,
USA) at the Genomics Service Unit, Ludwig-Maximilian’s-Universität München, Germany.
The run was performed as a joint run together with other libraries.

2.4. Sequence Data Processing

Sequences were quality controlled with Cutadapt v. 0.11.1 [33] by removing regions
matching the adapter sequences and the remaining downstream sequence with the default
settings. Regions with low sequence quality were excluded with the same program with
the sliding window approach, allowing a minimum quality of 30. Trimmed reads with a
length below 200 bp were excluded. Paired reads were merged with PEAR v. 0.9.4 [34]
with the default settings, and overlapping sequences smaller than 200 bp were deleted.
Merged reads were checked if they contained the correct primer sequence information with
an in-house script presented in Curto et al. [35] with small modifications. A maximum
of two mismatches between primer sequences and reads were allowed, and matching
regions were trimmed out. USEARCH 6.0 was used to detect chimaeras based on the
RDP pipeline [36]. The reads were then clustered into operational taxonomic units (OTUs)
based on 97% identity using USEARCH. The OTU table was created by mapping reads to
OTUs with the ‘otutab’ command in USEARCH. Taxonomy was assigned for the generated
OTUs using the Ribosomal Database Project (RDP) classifier (Naive Bayesian rRNA classi-
fier) [37]. Data filtering was performed to remove low-quality or uninformative features
using default minimum counts of 4 and 20% prevalence in samples on MicrobiomeAna-
lyst [38] to improve the downstream statistical analysis. Data rarefaction to a minimum
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library size was performed to address the variability in sampling depth before further
downstream processing.

2.5. Data Analysis

The gut microbiota structure between sampling months and habitat was assessed
using the nonparametric univariate Mann–Whitney test. Comparison of bacterial taxa
abundance between sampling months and between Lake Tana (collected in August) and
the Bahir Dar aquaculture facility centre was performed using the linear discriminant
analysis effect size (LEfSe). A nonparametric Kruskal–Wallis (KW) sum-rank test was
used to detect features with significant differential abundance with respect to the groups
compared, followed by linear discriminant analysis (LDA) to estimate the effect size of
each differentially abundant feature [39]. Core microbiome analysis was performed using
the core function in the R package microbiome as described in MicrobiomeAnalyst [38].
The ‘core microbiota’ refers to a set of abundant microbial communities present in all
individuals from the same species [40]. To detect the core microbiome, 20% prevalence and
0.01% relative abundance were used.

Alpha diversity and beta diversity statistics were performed using the phyloseq
package as used in MicrobiomeAnalyst [38]. The alpha diversity of each sample was
assessed using the observed species, Shannon index and Simpson index. The observed
species calculates the actual number of unique taxa observed, while Shannon and Simpson
consider both evenness (abundance of organisms) and richness (number). Beta diversity
represents the variation of microbial communities between samples. The dissimilarity
matrix was calculated using compositional-based Bray Curtis distance method. To visualise
the dissimilarity matrix in lower dimensions, principal coordinate analysis (PCoA) was
used. The statistical significance of the clustering pattern in ordination plots was evaluated
using permutational multivariate analysis of variance (PERMANOVA), analysis of group
similarities (ANOSIM) and homogeneity of group dispersions (PERMDISP).

3. Results

A total of 130,848 sequences were obtained from the tilapia gut microbiome by Illumina
MiSeq sequencing. Overall, 1055 OTUs were identified from all samples analysed. Rarefac-
tion curves approached the saturation phase in all samples (Supplementary Figure S1).

3.1. Temporal Comparison of Gut Microbiota of Wild Fish from the Lake

The gut bacteria of 47 Nile tilapia representing five months of sampling were exam-
ined to characterise their structure and to reveal the temporal differences between them. In
total, five phyla representing 19 genera were obtained from the analysis (Figure 2a, Supple-
mentary Figure S2). At the phylum level during May, June and July, the gut microbiota
was dominated by Firmicutes followed by Fusobacteria. However, in April and August,
Fusobacteria was dominant over Firmicutes. In each month, Bacteroidetes and Cyanobac-
teria were less abundant (Figure 2a). At the genus level, the gut microbiota was dominated
by Cetobacterium, Clostridium_sensu_stricto and Clostridium_XI (Supplementary Figure S2).

There was a significant difference in terms of abundance for some bacterial groups
among sampling periods. The results of differential abundance testing (Mann-Whitney test)
clearly indicated significant differences for the phyla Firmicutes (p-value: 0.000444), Fu-
sobacteria (p-value: 0.001407), Bacteroidetes (p-value: 0.013789) and Cyanobacteria (p-value:
0.034771) across sampling months. The abundance of Fusobacteria was higher during April
and August, and Firmicutes was lower during these months (Figure 3a,b). Bacteroidetes
were higher in August (Figure 3c), and a relatively higher Cyanobacteria abundance was
observed in May (Figure 3d). At the genus level, a total of 12 significantly different taxa
were detected from Lake Tana across the sampling months (Supplementary Table S1).

Linear discriminant (LDA) effect size (LEfSe) analysis of the gut bacteria of Nile tilapia
from Lake Tana at a default logarithmic LDA score of 2 showed that the taxon contribut-
ing most to the dissimilarity (effect size) for April was Peredibacter. Likewise, for May,
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Turicibacter, Daeguia and Bacillariophyta, for June, Clostridium_XI, Clostridium_sensu_stricto,
Paucisalibacillus and Bacillus, for July, Enterovibrio and Clostridium_XlVa and for August,
Cetobacterium and Paludibacter were found as taxa contributing most to the dissimilarity
(Figure 4a).

Analysis of the alpha diversity (observed, Shannon and Simpson indices) of the gut
microbiota of samples from Lake Tana showed that the gut microbiota diversity varied
significantly across the sampling months (p-values: 0.00020397, 0.00017971 and 8.96×10-05,
respectively) (Figure 5a–c). We found that April and August had lower diversities than the
other sampling months.

To visually display patterns of beta diversity, principal coordinate analysis (PCoA)
plots were made using the Bray-Curtis index distance method. Beta diversity analysis
revealed a clear separation of samples according to sampling months (from April to Au-
gust) with a global p-value < 0.001 for PERMANOVA (Figure 6a). Furthermore, statistical
analysis of beta diversity across the samples showed significant divergence of the microbial
communities present in the gut across fish sampling months because the ANOSIM tests in-
dicated a significant difference (R: 0.46066; p-value < 0.001). In addition, the nonsignificant
results of the PERMDISP test of the sampling months (PERMDISP F-value: 2.672; p-value:
0.045007) indicated that group dispersions were similar to each other.
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In our study, the core microbiota of all samples from Lake Tana and the Bahir Dar aqua-
culture facility centre comprised three phyla (Firmicutes, Proteobacteria and Fusobacteria)
(Figure 7a). The number of core genera presented in all samples was 10 (Figure 7b), and
the number of core genera for each month varied from 7 to 14 (Supplementary Figure S5).
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3.2. Comparison of Gut Microbiota between Wild and Captive Fish

To assess the gut microbiota differences between wild and aquaculture Nile tilapia
samples, samples of Lake Tana were compared with Bahir Dar aquaculture facility centre
samples. As indicated in Figures 2b and S3, the aquaculture samples were dominated by
Proteobacteria, whereas the lake was dominated by Fusobacteria.

Between the samples from the Lake Tana and the Bahir Dar aquaculture facility
centre, four phyla, Proteobacteria (p-value: 3.97×10-05), Chloroflexi (p-value: 0.000203),
Fusobacteria (p-value: 0.000616) and Cyanobacteria (p-value: 0.0009), were found to be
significantly different in Mann–Whitney test. The abundances of Proteobacteria, Chloroflexi
and Cyanobacteria were higher in samples taken from the aquaculture centre than those
taken from Lake Tana, and in contrast, the abundance of Fusobacteria was found to be
higher in the Lake Tana samples (Supplementary Figure S4). A total of 30 significantly
different genera were found from the comparison of samples from Lake Tana and the
aquaculture facility centre (Supplementary Table S2).

The taxa found by LEfSe to be differentially abundant between samples of Lake
Tana and aquaculture facility centre are shown in Figure 4b. The genera Cetobacterium,
Romboustia and Peredibacter were significantly enriched in Lake Tana. On the other hand,
genera such as Defluviicoccus, Methyloparacoccus and Sterolibacterium were significantly
more abundant in the aquaculture samples.

To assess the effect of the environment on gut microbiota diversity, samples from Lake
Tana were compared with samples from the Bahir Dar aquaculture facility centre. The
alpha diversity (observed p-value: 0.00043447, Shannon p-value: 3.96×10-05 and Simpson
index p-value: 3.96×10-05) clearly showed that samples from the aquaculture facility centre
had higher diversity than the wild Nile tilapia samples from Lake Tana (Supplementary
Figure S6a–c).

The Beta diversity analysis revealed a clear separation of samples from Lake Tana
and the Bahir Dar aquaculture facility centre (PERMANOVA F-value: 26.286; R-squared:
0.60726; p-value < 0.001) (Figure 6b). The ANOSIM test also indicated a significant dif-
ference between the two groups of samples (R: 0.93432; p-value < 0.001). In addition, the
PERMDISP test showed a nonsignificant result (F-value: 2.3542; p-value: 0.14334). From
this, the PERMANOVA result was found to be due to the average community composition
differences.

From the comparison of Lake Tana and aquaculture facility centre samples, a total of
26 core genera were detected (Supplementary Figure S7). At the phylum level, the phyla
Fusobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Chloroflexi and Cyanobacteria
were detected (Figure 7c).

4. Discussion
4.1. Overall Core Microbiota Composition

The gut microbiota of fish is involved in the digestion of food materials and can influ-
ence the nutrition, growth, reproduction, general population dynamics and health status of
the host fish [41]. These microbial communities are sensitive to rearing environments [42].
In this study, gut microbiota of Nile tilapia from Lake Tana and aquaculture centre were
investigated, considering potential variation with respect to season and catching site.

The concept of a core gut microbiota has been suggested for certain fish species [40,43,44].
Trophic level, habitat and host phylogeny are reported as the major determinant factors for
the core gut microbiota of fishes [17]. The core gut microbiota of all samples of Nile tilapia
used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. Similar to our
study, Fusobacteria, Firmicutes and Proteobacteria represented the dominant components
in the gut microbiota of Eastern African Cichlid Fishes [43]. The core gut microbiota of
Nile tilapia from Lake Awassa and Chamo in Ethiopia was dominated by Proteobacteria,
Firmicutes, Fusobacteria, Cyanobacteria and Actinobacteria [29]. All these core phyla have
been previously reported as part of gut microbiota and hence have roles in the biology of
fishes. Proteobacteria are often facultatively or obligately anaerobic and capable of tolerating
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a range of toxic conditions and are thought to contribute to the homeostasis of the anaerobic
environment of the gut [45]. Firmicutes are involved in the fermentation of dietary fibres
and regulate intestinal dietary fat absorption [46,47]. Fusobacteria are butyrate-producing
anaerobic bacteria that are capable of fermenting amino acids and carbohydrates [48]. Due
to the production of butyric acid in the gut, Fusobacteria possess immunomodulatory and
anti-inflammatory properties [49]. In our study, the dominant genus from Fusobacteria
was found to be Cetobacterium, which can produce vitamin B12 [50]. Enrichment of these
taxa in the gut might solve deficiency of this vitamin in the diet. This might be the reason
why juvenile tilapia had no dietary vitamin B12 requirement [51].

4.2. Seasonal Variation of Gut Microbial Communities

The results of this study showed that the gut microbiota of Nile tilapia from Lake Tana
were dominated by the phyla Firmicutes and Fusobacteria. These results were in agreement
with the findings of a gut microbiota study performed on Nile tilapia of Lake Nasser in
Egypt, where they reported that Fusobacteria was the dominant phylum [52]. Ray et al. [53];
however, in their study, Firmicutes were less abundant, contradicting our results where
they were the dominant phylum along with Fusobacteria. Inconsistency among studies
on the dominant phyla showed, varying between Firmicutes [29,54] and Proteobacteria,
Firmicutes and Cyanobacteria [55]. At the genus level, the gut microbiota was dominated
by Cetobacterium, Clostridium_sensu_stricto and Clostridium_XI, which was different from
other studies. Lukassen et al. [56] showed Cetobacterium as one of the predominant genera
from the intestinal digesta of tilapia from a Brazilian reservoir. The observed discrepancies
in microbiota composition may be due to several factors, including rearing environmental
conditions, diet composition and genetic lineage. The gut bacterial communities of Nile
tilapia larvae were significantly affected by the rearing environment (recirculating or active
suspension systems) [42]. Diet type influences the diversity and difference of gut bacterial
community of tilapia [57,58]. Moreover, a strong correlation between genotype and gut
microbial assemblages in fish were reported recently [59].

Our data further confirm the temporal variation in terms of bacterial abundance in
accordance with a number of previous studies on catfish [60] and Nile tilapia [61]. Our
study indicated significant differences in the phyla Firmicutes, Fusobacteria, Bacteroidetes
and Cyanobacteria across sampling months. At the genus level, a total of 16 significantly
different taxa were detected (Supplementary Table S1). The abundance of Firmicutes was
lower in April and August, whereas, for Fusobacteria, the reverse occurred (Figure 3a,b).
The possible explanations might be the differences in nutrient inputs to the lake and
possibly the variations in the availability of food sources in the water bodies during
different months of the year. Seasonal fluctuation of nutrient loading in Lake Tana was
reported recently [62]. Significant temporal differences in zooplankton abundance in Lake
Tana were reported by Dejen et al., [63] and the highest densities of zooplankton were
recorded during the dry season (November–April). Moreover, a significant difference in
phytoplankton biomass during the sampling months was reported from Lake Tana [64].
Similarly, Wondmagegne et al. [65] found that the phytoplankton density in Lake Tana
reached the highest points during the dry season and the pre-rainy season. Since Nile
tilapia is an omnivorous fish capable of feeding both phytoplankton and zooplankton,
the abundance of these food sources may be the reason for the seasonal variation in its
gut microbiota.

In our study, the genera Cetobacterium (Fusobacteria) and Paludibacter (Bacteroidetes)
were found to be the main contributors to the variation in August (Figure 4a). Cetobacterium
is a microaerotolerant bacterium that is able to digest carbohydrates and peptides [53].
Paludibacter has been reported to have a fermentative metabolism and is able to utilise
various sugars [66]. In addition, from Firmicutes, various taxa (both aerobic and anaerobic)
have been found to be the main contributors to the variation and from this, it may be noted
that there is a synergetic interaction in the gut. Firmicutes are involved in the degradation
of dietary fibres [46]. The high abundance of Cyanobacteria observed likely supports their
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importance as food sources. Cyanobacteria are known to be important food sources for Nile
tilapia [67,68]. The taxon contributing the most to this phylum was Bacillariophyta, which
corresponds to chloroplasts of diatoms. A study by Mohamed et al. [67] indicated that
Bacillariophyta was one of the main taxa present from cyanobacteria in the faecal samples of
Nile tilapia, indicating consumption of the others as food. Diatoms constitute part of the
biofilm present in freshwater systems [69], which given the detritivores feeding behaviour
of Nile tilapia may be an import source of nutrients. As shown by our results they are
affected both by season and aquaculture activity. Thus it is important to evaluate their
importance for Nile Tilapia fitness.

The monthly variation in gut microbiota diversity observed could be associated
with the availability of food sources and physicochemical variation in the lake. The
effect of the rearing environment on the gut microbiota of Nile tilapia was reported by
Giatitis et al. [42], and likewise, temporal variations in plankton abundances in Lake Tana
have been reported [65]. A culture-dependent study on farm O. niloticus showed that
bacterial flora are more diverse in the autumn and spring seasons than in the winter
season [61]. Diversity and seasonal changes in gut lactic acid bacteria were also recorded
by Hagi et al. [16] for catfish and carp. The effect of seasonality on the diversity of the gut
microbiota of Tench (Tinca tinca L.) has also been reported by Dulski et al. [70].

4.3. Comparison of Wild and Captive Fish Gut Microbiota

In our study, the aquaculture samples were dominated by Proteobacteria. Similar to
our study, Proteobacteria was reported as the dominant phylum in the gut of genetically
improved farmed tilapia [55] and juvenile O. niloticus [71]. Proteobacteria is a major phylum
of Gram-negative bacteria that plays a key role in preparing the gut for colonization by
strict anaerobes by consuming oxygen and lowering the redox potential in the gut [72].
The higher abundance of Proteobacteria in the farm could be related to the high abundance
of Proteobacteria in the aquaculture environment, which has been reported to be involved
in the degradation of organic matter and nitrogen fixation [73–75].

In this study, there were significant differences between samples from Lake Tana
and the Bahir Dar aquaculture facility centre in terms of the abundance of the phyla
Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria. In addition, a total of 30
significantly different genera were detected (Supplementary Table S2). The abundances of
Proteobacteria, Chloroflexi and Cyanobacteria were higher in samples from the aquaculture
facility centre than in those from Lake Tana (Supplementary Figure S4). Moreover, the
study indicated unique taxa for both groups of samples (Figure 4b). Similar findings were
reported by Dehler et al. [20] for a comparison of Atlantic Salmon parr between samples
from a recirculating aquarium and open loch. In their study, the phyla Chloroflexi, Chloro-
plast, Tenericutes and Verrucomicrobia were only found in samples from the recirculating
aquarium. According to Delport et al. [76], in the gut of Australian sea lion, Proteobacteria
contributed more to captive than to wild Australian sea lion populations.

The alpha diversity clearly showed that the samples from the aquaculture facil-
ity centre had a higher diversity than the wild Nile tilapia samples from Lake Tana
(Supplementary Figure S6a–c). This could be due to the different types of feed and habitats
of the aquaculture and lake. The effect of different dietary nutrient compositions and form
(live feeds or pelleted diets) on gut microbiota of fish was reviewed by Ringo et al. [77]. In
contrast to our findings, the gut of wild Atlantic Salmon parr [20], Killifish Fundulus hete-
roclitus [21], flatfish Paralichthys adspersus [22] and Malaysian Mahseer Tor tambroides [78]
had a higher microbial diversity than the farm specimens. This has been reported to
vary depending on the animal [79]. For example, in mammals, the alpha diversity of gut
bacteria increases, remains consistent or declines in captivity [79]. The authors mentioned
that host traits, such as gut physiologies, dietary alteration, reduced contact with a social
network and mode of feeding, are likely to influence the gut bacteria stability or change
it in captivity in studied mammals. From the beta-diversity analysis, we observed that
captivity determined the bacterial community clustering in the gut microbiota of Nile
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tilapia. In accordance with this, substantial differences in intestinal microbial community
composition and diversity were observed between wild and farm Salmon [80].

5. Conclusions

To the best of our knowledge, this is the first characterization of the gut microbiota of
Nile tilapia using a 16S rRNA sequencing approach for Lake Tana. This study indicates
evidence of an impact of season and captive effect on the gut microbiota of Nile tilapia.
In our study, the diversity and composition of bacteria associated with the gut of Nile
tilapia varied between sampling months and habitat types (wild and aquaculture centre).
Firmicutes, Proteobacteria and Fusobacteria were abundant in the guts of all Nile tilapia
samples, indicating that these phyla are members of the core microbiota. To precisely
explain the role of seasonality, rearing habitat, physico-chemical parameters of the envi-
ronment and food source diversity in shaping gut microbiota composition and diversity,
further studies are needed with large representative samples of Nile tilapia from different
lakes and aquaculture farms. However, this study significantly extends the base knowledge
of the effect of seasonality and captivity on the gut microbiota of Nile tilapia.
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7/10/3/180/s1. Figure S1: Rarefaction curve. Figure S2: Taxonomic composition of bacterial com-
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of the bacterial community at the phylum level using a stacked plot of aquaculture samples and
Lake Tana samples collected in August. Figure S4: Core microbiota analysis of Lake Tana samples at
genus level for each sampling months.(a) April, (b) May, (c) June, (d) July, (e) August. Figure S5: Core
microbiota analysis of Lake Tana and aquaculture facility centre at genus level. Figure S6: Alpha
diversity measured at the OTU level across all the samples for comparison of Lake Tana and the
Bahir Dar aquaculture facility centre. Each sample is coloured based on the sources of the samples.
(a) Observed, (b) Shannon index, and (c) Simpson index. Figure S7: Core microbiota analysis of
Lake Tana and aquaculture facility center at Genus level. Table S1: Important features identified
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