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Simple Summary: Carbon nanotubes are revolutionary materials with applications in a lot of dif-
ferent areas. However, there is a rising concern regarding unlikely toxicity effects these materials 
may trigger. Due to this, the main aim of this paper is to develop a comprehensive approach to 
study toxicity effect of carbon nanotubes on the mitochondria F0F1-ATPase. We have employed a 
combination of experimental and computational study. In so doing, we have combined in vitro in-
hibition responses in submitochondrial particles with docking elastic network models, fractal sur-
face analysis, and Nano-quantitative structure toxicity relationship models (Nano-QSTR models). 
Results show that this method may be used for the fast prediction of the nanotoxicity induced by 
single walled carbon nanotubes (SWCNT), avoiding time- and money-consuming techniques, and 
may open new avenues toward to the better understanding and prediction of new nanotoxicity 
mechanisms. 

Abstract: Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity 
through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we 
have developed a new approach based on the combination of experimental and computational 
study, since the use of only one or few techniques may not fully describe the phenomena. To this 
end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with dock-
ing, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies sug-
gest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the con-
centration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes 
types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oli-
gomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Per-
formed docking studies denote the best crystallography binding pose obtained for the docking com-
plexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the ther-
modynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase com-
plex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-
pristine complex) = −5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interac-
tions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and 
fractal surface analysis were performed to study conformational perturbations induced by SWCNT. 
Our results suggest that interaction may be triggering abnormal allosteric responses and signals 
propagation in the inter-residue network, which could affect the substrate recognition ligand geo-
metrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In 
addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, 
using results of in vitro and docking studies. Results show that this method may be used for the fast 
prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming tech-
niques. Overall, the obtained results may open new avenues toward to the better understanding 
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and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and 
potential biomedical application in precision nanomedicine. 

Keywords: mitochondria; F0F1-ATPase; carbon nanotubes; computational nanotoxicology 
 

1. Introduction  
The coupled mechanical co-rotating between the γ and ε subunits that form the mi-

tochondrial F1-ATP synthase (complex V) favors the H+ protons flux necessary for ATP 
synthesis in all eukaryotic cells [1,2]. This bioenergetic process involves several synchro-
nized conformational changes which are critical for the survival or death of the cells [1]. 
In this regard, a few years ago, it was shown that under pathological conditions like 
chronic diseases such as cancer, Alzheimer’s disease, Parkinson’s disease, and mitochon-
drial encephalopathy, lactic acidosis (MELAS) syndrome, several toxic events, including 
nanotoxicity induced by single walled carbon nanotubes (SWCNT), may trigger 
F0F1ATPase dysfunction [3,4]. As a consequence, the ATP cellular reserves are abruptly 
consumed by a reverse biochemical reaction which paradoxically hydrolyses significant 
amounts of ATP, compromising the cellular homeostasis and viability [3,5,6]. Several 
chemical agents (including carbon nanoparticles) have shown a high affinity/selectivity 
by the bioenergetic mechanisms based on ATP hydrolysis, particularly nanoparticle-
based single-walled carbon nanotubes (SWCNTs), which have been studied by their se-
lective nanotoxicity effects on mitochondria (mitotropic behavior) [7–10].  

To the best of our knowledge, the toxicological modulation of mitochondrial ATP 
bioenergetic mechanisms released by the exposure with SWCNT-pristine and oxidized-
SWCNT (SWCNT-COOH) have been insufficiently characterized in order to explain the 
mitochondrial nanotoxicity induced by SWCNT. On the other hand, this mechanistic 
knowledge could be very useful to implement strategies on the named “precision mito-
chondrial nanomedicine” to improve selectivity for the treatment of brain, cardiac dis-
eases, and cancer using the mitotropic behavior of SWCNT to address active pharmaco-
logical principles as new targeting of the mitochondrial F0F1-ATPase [9–14]. In this con-
text, we hypothesize that SWCNT-pristine could act by mimicking the pharmacodynamic 
behavior of the Oligomycin A, which is the specific inhibitor of the mitochondrial ATP-
hydrolysis that modulates the activity of the c-ring-F0-ATP hydrolase subunit. However, 
in the case of the SWCNT-COOH, the F0-ATPase binding interaction could be more at-
tenuated by the presence of the carboxyl group.  

From the structural point of view, the c-ring-F0-ATP hydrolase subunit represents an 
uncoupling channel which is part of the mitochondrial permeability transition pore-in-
duced association to mitochondrial dysfunction and apoptosis [15,16]. Following this 
idea, we suggest that SWCNT could promote the selective inhibition of the F0-ATPase 
under pathological conditions like cancer where the F0F1-ATPase activity is abnormally 
exacerbated [16–19].   

In this regard, computational approaches like molecular docking simulation, elastic 
network models, fractal surface approaches linked to nano-quantitative structure–activ-
ity/toxicity relationships (Nano-QSAR/QSTR models), and others [9,20–23], could be effi-
ciently applied to the exhaustive exploration of the underlying mechanisms of mitochon-
drial bioenergetic dysfunction (pathological ATP-hydrolysis) from the structural point of 
view for therapeutic purposes.  

Protein structures cannot be investigated using the classical Euclidian mathematical 
approach. Due to this nature, surface and protein’s chain should be studied using the frac-
tal approach. It is well-known that the fractal dimensions (FDs) are directly associated to 
the backbone non-Euclidean geometry, as well as to the irregular geometric nature and 
fractal surface properties of the binding sites (ATPaseF0F1 binding sites). This is explained 
by the fact that most of the ligand–protein binding processes occur under strict conditions 
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of specificity and, at the same time, that these thermodynamic processes depend on sur-
face phenomena with a defined geometric pattern of stereospecificity and complementa-
rity with the cited binding sites [24]. For this instance, we thus suggest that small changes 
in the fractal geometry-based surface patterns could directly affect not only the native 
ATPaseF0F1 binding sites’ folding and solvent accessible surface in the unbound state 
(unoccupied ATPaseF0F1), but also the conformational entropy and thermodynamic sta-
bility of the formed docking complexes generated between the ATPaseF0F1 and the dif-
ferent single-walled carbon nanotubes tested [24,25]. In addition, elastic network models 
may also be used to study proteins since they may be able to predict global dynamics of 
proteins and proteins’ complexes [26–28]. Thus, these two methods can be used, together 
with other methods, to study conformational changes induced by SWCNT that may pro-
duce harmful effects, inactivation, and so on. 

Another relevant approach to study toxicity is computational nano-quantitative 
structure–activity/toxicity relationships (nano-QSAR/QSTR), which are essential tools to 
support the discovery process of toxicological effects of nanomaterials (SWCNT). Several 
approaches have been developed and applied recently to predict potential harmfulness of 
nanoparticles and nanomaterials [9–14,29]. These in silico tools have the quality of being 
versatile and reconfigurable to many problems. For example, the nano-quantitative struc-
ture–binding relationship (Nano-QSBR) models are a type of Nano-QSTR which are able 
to associate the physico-chemical properties of nanomaterials (nano-descriptors) with the 
theoretical free energy of binding (FEB values, kcal/mol) obtained from the molecular 
docking studies and also to experimental nanotoxicological outputs [13,14,30].    

Due to this, the QSAR (Nano-QSTR) paradigm has been applied since the beginning 
of the “nano revolution” as a useful methodology able to support toxicity profiling of na-
nomaterials and CNT [31–35]. Several approaches by many authors have been reported 
combining different molecular descriptors, methodologies, and algorithms, including ma-
chine learning and deep learning [34–42]. In this sense, it is strongly advisable to use 
Nano-QSTR approaches while performing toxicity profiling of CNT and nanomaterials, 
since they may be able to predict toxicity as well as directly correlate toxicity/activity with 
specific features of nanomaterials. In addition, in silico approaches are strongly encour-
aged by national and supranational authorities in the light of the European Union (EU) 
3R principles (replacement, reduction, refinement). Currently, the main limitation of these 
computational methods is to address a feasible mechanistic interpretation of the nanotox-
icity phenomena at the atomic level, in many cases [43].  

In this work, we propose for the first time a combination of computational modeling 
approaches, based on molecular docking simulations, elastic network models, fractal sur-
face approaches, and Nano-QSTR calculations, along with experimental validation to 
tackle the study of binding interactions between single-walled carbon nanotubes with the 
mitochondrial F0F1-ATPase to contribute to the rational drug design-based nanotechnol-
ogy, mitotarget drug discovery, and the new area of precision mitochondrial nanomedi-
cine.  

2. Materials and Methods 
2.1. Experimental Section 
2.1.1. Reagents and Solutions  

Sucrose, ethylene-glycol-bis (b-aminoethyl)-N,N,N0,N0-tetraacetic acid (EGTA), po-
tassium succinate (plus 2 mM rotenone), K2HPO4, and piperazine-N-2-ethanesulfonic 
acid (Hepes), dimetilsulfóxido (DMSO), and Biuret reagent. All other reagents were com-
mercial products of the highest purity grade available. Single-walled carbon nanotubes 
like SWCNT-pristine and carboxylated-CNT (SWCNT-COOH) with very low conductiv-
ity and semi-metallic properties were provided by Cheaptubes Company (http://cheap-
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tubes.com/shortohcnts.htm) for the execution of experimental in vitro assays using sub-
mitochondrial particles. All other reagents were commercial products of the highest pu-
rity grade available and were purchased from Sigma-Aldrich products 

2.1.2. Carbon Nanotubes’ Characterization 
For this instance, a Transmission Electron Microscope (TEM, Tecnai G2-12-SpiritBi-

otwin FEI-120 kV) was used to characterize the morphology of SWCNT-pristine and oxi-
dized carbon nanotubes such as SWCNT-COOH. The CNT were synthesized by using a 
catalytic chemical vapor deposition (CCVD) method and functionalized using a concen-
trated acid mixture of H2SO4:HNO3 mixed (2:1). On the other hand, in order to discover 
the molecular mechanisms of interaction inhibition of the carbon nanotubes with the F0-
ATPase, two types of single-walled carbon nanotubes (SWCNT-pristine and SWCNT-
COOH) were modeled by using the Avogadro software, which can be efficiently applied 
as an advanced molecule editor and visualizer for molecular modeling and computational 
chemistry. Herein, it is important to note that the in silico analysis was performed just for 
the purpose of proposing a theoretically rigorous mechanism to explain the potential in-
hibition of the single-walled carbon nanotubes used on the F0-ATP-ase inhibition. For this 
reason, the theoretically modeled SWCNTs should not be taken as exact copies from the 
structural point of view compared with the experimentally tested CNT (SWCNT-pristine 
and SWCNT-COOH) used in in vitro assays. In this sense, for computational purposes, 
several approximations were performed mainly based on the diameter and length of car-
bon nanotubes theoretically modeled compared with those experimentally evaluated, see 
Figure 1. 

 
Figure 1. On the right, Transmission Electron Microscope (TEM) images obtained of carbon nanotubes, such as (A) 
SWCNT-pristine and (B) SWCNT-COOH used in this study for the experimental in vitro assay. On the left, (C) represen-
tation of the length of the unoccupied F0-ATPase binding site, (D) and (E) representation of the lengths of the theoretically 
modeled SWCNT-pristine and SWCNT-COOH within the F0-ATPase used for the in silico assay of F0-ATPase inhibition. 
Additional details can be found in the Supplementary Information in Figure S1. 

2.1.3. Isolation of Rat Liver Submitochondrial Particles (SMP)  
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The frozen rat liver mitochondria (RLM) pellet was thawed and diluted with homog-
enization medium to contain 20 mg of protein/mL. The mitochondrial suspension was 
subjected to sonic oscillation four times for 15 s with 30 s intervals, using 80 watts at 4 °C 
[44–47]. The suspension was then centrifuged at 9750 × g for 10 min at 4 °C and the sub-
mitochondrial particles in the supernatant were isolated by additional centrifugation in a 
Sorval SV-80 vertical rotor for one hour at 15,000 rev/min at 4 °C, using discontinuous 
gradient containing 1 mL of 0.5 M sucrose and 1 mL of 2.0 M sucrose in 5 mM Tris-HCl, 
pH 7.4. Finally, the SMP were suspended in the isolation medium, and the final volume 
was adjusted to give a stock suspension containing 1 mg of protein/mL.  

2.1.4. Standard Incubation Procedure  
Mitochondria liver was isolated and submitochondrial particles (SMP) were ener-

gized with 5 mM of potassium succinate (plus 2.5 µM of rotenone) in a standard incuba-
tion medium consisting of 125 mM of sucrose, 65 of mM KCl, 2 mM of inorganic phos-
phate (K2HPO4), and 10 mM of HEPES-KOH, pH 7.4, at 30 °C [44–47]. 

2.1.5. Determination of Mitochondrial F0F1-ATPase Inhibition in Isolated Rat Liver Sub-
mitochondrial Particles (SMP) 

Isolated rat liver submitochondrial particles (isolated-F0F1-ATPase) (20 mg of pro-
tein) were incubated according to the following experimental groups: (1) untreated SMP, 
(2) SMP + DMSO (100 mM), (3) SMP + SWCNT samples (SWCNT-pristine, SWCNT-
COOH) in the range of concentration of 0.5–5 µg/mL, (4) SMP + Oligomycin A (1 µM) as 
a positive control, and (5) SMP + Oligomycin A (1 µM) + SWCNT samples at 5 µg/mL as 
an additional control assay. The reactions are started by addition of enzyme, such as H+-
c-ring/F0-ATPase (80 µg of protein). The total volume was 1 mL. After 10 min at 37 °C, the 
reaction was stopped by addition of 0.5 trichloroacetic acid, 30% (w/v). Phosphate re-
leased by ATP hydrolysis is measured on 0.5 mL of molybdate reagent (10 mM ammo-
nium molybdate in 2.5 M sulfuric acid), 1 mL of acetone, and 0.5 mL of 0.4 M citric acid. 
After each addition, the tubes are homogenized for 10 s in a vortex mixer. The mitochon-
drial F0F1-ATPase inhibition (F0-ATPase inhibition) for each treatment was calculated by 
measuring the absorbance at 355 nm [44–47]. Before all spectrophotometric F0-ATPase 
inhibition measurements, the blanks with each SWCNT were run and interference absorb-
ance peaks of SWCNT were not observed at 300–400 nm [44–47]. Furthermore, each 
SWCNT sample was added under continuous stirring by using magnetic stirrer cuvettes 
with the aim of preventing the agglomeration process for the SWCNTs during the F0F1-
ATPase inhibition assay. For this instance, a tip-sonication regime during 5–10 min was 
applied which prevents the SWCNT exfoliation into individual SWCNT samples 
(SWCNT-pristine, SWCNT-COOH), generating a non-agglomerated suspension in mon-
odisperse state before exposure to submitochondrial particle suspension [48–50]. 

2.1.6. Statistical Procedures for the Mitochondrial Assays Using SMP 
The one-way analysis of variance (ANOVA) followed by a post hoc Newman–Keuls 

multiple comparison test was used in order to determine statistical differences between 
F0-ATPase inhibition assays as independent unrelated experimental groups. In this con-
text, the Newman–Keuls test was used as a multiple and tiered comparison procedure to 
identify experimental group statistical means that are significantly different from each 
other from the different experimental conditions evaluated, namely: (i) untreated submi-
tochondrial particles control (SMP as F0-ATPase), (ii) DMSO-treated SMP, (iii) CNT-
treated SMP (i.e., SWCNT-pristine or SWCNT-COOH at 1–5 µg/mL), (iv) Oligomycin A-
treated SMP (Oligomycin A is a specific F0F1-ATPase inhibitor used as a positive control), 
and (v) treated SMP mixed with SWCNT or SWCNT-COOH at concentration of 5 µg/mL 
+ Oligomycin A (1 µM). All the biochemical tests, by using isolated rat liver mitochondria 
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(RLM) and submitochondrial particles (SMP), were performed at least three times in trip-
licate. Normality and variance homogeneity were verified using Shapiro–Wilks and 
Levene tests respectively, before using one-way ANOVA. In all cases, significance level 
was set at 5%. 

2.2. Theoretical Section 
2.2.1. Molecular Docking Study  

Docking simulations were performed using Autodock tools mixed Autodock Vina to 
understand the strength of biochemical interactions across CNT family members 
(SWCNT-pristine and oxidized-CNT (SWCNT-COOH)) and oligomycin A on F0-ATPase. 
These in silico binding interactions were performed only to explain hidden biophysical 
and pharmacodynamic mechanisms observed in the mitochondrial in vitro assays. For 
this instance, only two types of single walled zigzag SWCNTs (Hamada index n = 8, m = 
0) were modeled, like SWCNT (8.0) and SWCNT-COOH (8.0) as F0F1-ATPase ligands in 
order to reproduce and model some critical experimental conditions from CNT-proper-
ties, like CNT-functionalization linked to observed F0-ATPase inhibition (ATP-hydrolysis 
inhibition) in isolated RLM and isolated SMP. Following this idea, the F0F1-ATPase C10 
ring with oligomycin A from yeast (Saccharomyces cerevisiae) as the receptor (protein data 
bank (PDB) ID: 5BPS, Resolution 2.1Å) was obtained from the RCSB Protein Data Bank 
(PDB) [51]. It is important to note that c-ring-F0-ATPase subunit PDB X-ray structure from 
Saccharomyces cerevisiae (5BPS) can be used in the context of the present docking ap-
proaches, taking into account that mitochondrial c-ring-F0-ATPase subunit PDB X-ray 
structure from Rattus norvegicus with oligomycin A has not been crystallized and included 
in the RCSB PDB [51]. However, the oligomycin A pharmacodynamics mechanism is 
highly conserved in Rattus norvegicus according to previous experimental evidences [17]. 

Before the molecular docking, ATPase C10 ring molecular structure was optimized 
using the AutoDock Tools 4 software for AutoDock Vina. The algorithm includes the re-
moval of crystallographic water molecules and all the co-crystallized ATPase C10 ring 
ligand molecules, such as oligomycin A (Oligo A: C45H74O11 ID: EFO) from ATPase C10 
ring chains (B, E, K, L, M, O). Oligomycin A is a recognized classical inhibitor of F0F1-
ATPase inhibition and it was used as a control to compare the affinity and/or relevant 
interactions by the re-docking procedure.  

This theoretical algorithm was performed to the c-ring F0-ATPase subunit using a 
grid box size with dimensions of X = 22 Å, Y = 22 Å, and Z = 22 Å, and the c-ring F0-
ATPase subunit grid box center X = 19.917 Å, Y = 19.654 Å, and Z = 29.844 Å to evaluate 
the interaction of SWCNT + c-ring–F0-ATPase [52], considering the oligomycin A envi-
ronment to evaluate the SWCNT-surface affinity in the c-ring F0-ATPase subunit active 
binding site.  

The docking free energy of binding output results (or FEB values) is defined by affinity 
(like ΔGbind values) for all docked poses of the formed complexes (SWCNT-F0ATPase) and 
includes the internal steric forces of a given ligand (SWCNT), which can be expressed as the 
sum of individual molecular mechanics terms of standard chemical potentials as: van der 
Waals interactions (ΔGvdW), hydrogen bond (ΔGH-bond), electrostatic interactions (ΔGelectrost), and 
intramolecular interactions (ΔGinternal) ligands (SWCNTs) from empirically validated Auto-
dock Vina scoring function based on default Amber force-field parameters [20–22].  

2.2.2. Local Perturbation Response Induced by SWCNT on the F0-ATPase Subunit 
In parallel with docking simulation, a new elastic network model was performed to 

propose a potential mechanism based on the SWCNT propensity to perturb the intrinsic 
motion of F0-ATPase subunit binding residues involved in the docking interactions. For 
this purpose, the F0-ATPase is represented as a network or graph of the inter-residue con-
tacts from Cα-F0-ATPase atoms of a residue and the overall potential is simply the sum 
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of harmonic potentials between interacting nodes (F0-ATPase residues). The network in-
cludes all interactions within a cutoff distance < 4 Å. Information about the orientation of 
each interaction with respect to the global coordinates system is considered within the 
force constant matrix and allows prediction of perturbed anisotropic motions [53]. The 
force constant of the F0-ATPase protein system can be described by a Kirchhoff or Hessian 
matrix (Hi,j) to evaluate potential perturbations induced by the SWCNT ligand in the 
transduction properties of the F0-ATPase enzyme according to the following Equation (1): 

𝐻𝑖𝑗 = 𝐻1,1 𝐻1,2 … … … … … … … … … . 𝐻1,𝑁𝐻2,1 𝐻2,2 … … … … … … … … … . 𝐻2,𝑁. .    … … … … … … … … … … . .𝐻𝑁,1 𝐻𝑁,2 … … … … … … … … .  𝐻𝑁.𝑁                (1)   

where each Hi,j is a 3 × 3 matrix which holds the anisotropic information regarding the 
orientation of residues (i, j nodes). Each such sub-matrix (or the “super element” of the Hi,j 
Hessian matrix) is defined by the Equation (2) as: 
 

𝐻𝑖𝑗 = 𝛿2𝑉/𝛿𝑋𝑖𝛿𝑋𝑗 𝛿2𝑉/𝛿𝑋𝑖𝛿𝑌𝑗 𝛿2𝑉/𝛿𝑋𝑖𝛿𝑍𝑗𝛿2𝑉/𝛿𝑌𝑖𝛿𝑋𝑗 𝛿2𝑉/𝛿𝑌𝑖𝛿𝑌𝑗 𝛿2𝑉/𝛿𝑌𝑖𝛿𝑍𝑗𝛿2𝑉/𝛿𝑍𝑖𝛿𝑋𝑗 𝛿2𝑉/𝛿𝑍𝑖𝛿𝑌𝑗 𝛿2𝑉/𝛿𝑍𝑖𝛿𝑍𝑗                (2) 

 
The second partial derivatives are the harmonic potentials, V, between interacting 

F0-ATPase residues. These partial derivatives are formed by a simple matrix of cosines 
and the off-diagonal super elements of the Hi,j Hessian matrix are calculated according to 
Equation (3) as: 𝐻𝑖𝑗  
=    

⎣⎢⎢
⎢⎢⎢
⎢⎡−𝛾 𝑋𝑗 − 𝑋𝑖 𝑋𝑗 − 𝑋𝑖𝑆𝑖,𝑗2 −𝛾 𝑋𝑗 − 𝑋𝑖 𝑦𝑗 − 𝑌𝑖𝑆𝑖,𝑗2 −𝛾 𝑋𝑗 − 𝑋𝑖 𝑍𝑗 − 𝑍𝑖𝑆𝑖,𝑗2
−𝛾 𝑌𝑗 − 𝑌𝑖 𝑋𝑗 − 𝑋𝑖𝑆𝑖,𝑗2 −𝛾 𝑌𝑗 − 𝑌𝑖 𝑌𝑗 − 𝑌𝑖𝑆𝑖,𝑗2 −𝛾 𝑌𝑗 − 𝑌𝑖 𝑍𝑗 − 𝑍𝑖𝑆𝑖,𝑗2
−𝛾 𝑍𝑗 − 𝑍𝑖 𝑋𝑗 − 𝑋𝑖𝑆𝑖,𝑗2 −𝛾 𝑍𝑗 − 𝑍𝑖 𝑌𝑗 − 𝑌𝑖𝑆𝑖,𝑗2 −𝛾 𝑍𝑗 − 𝑍𝑖 𝑍𝑗 − 𝑍𝑖𝑆𝑖,𝑗2 ⎦⎥⎥

⎥⎥⎥
⎥⎤                

 

 

where γ = 0.5 is an interaction constant. The si,j is the instantaneous distance between 
nodes or residues i and j. The diagonal super elements are calculated by the Equation (4): 

𝐻 , = − 𝐻 ,,  
(𝟒) 

Herein, the force constant matrix Hi,j holds information regarding the F0-ATPase-
residues position/orientation. The inverse of the Hessian matrix is the covariance matrix 
of 3N multi-variant Gaussian distribution, where p is an empirical parameter according to 
the Equation (5) for the new off-diagonal elements of the Hessian matrix which hold the 
desired information on the residue fluctuations, including the F0-ATPase binding site res-
idues (i, j) involved in the SWCNT-F0-ATPase docking interactions.  
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𝐻𝑖𝑗  =  − 1𝑆𝑖,𝑗𝑝+2     𝑋𝑗 − 𝑋𝑖 𝑋𝑗 − 𝑋𝑖       𝑋𝑗 − 𝑋𝑖 𝑌𝑗 − 𝑌𝑖    𝑋𝑗 − 𝑋𝑖 𝑍𝑗 − 𝑍𝑖  𝑌𝑗 − 𝑌𝑖 𝑋𝑗 − 𝑋𝑖       𝑌𝑗 − 𝑌𝑖 𝑌𝑗 − 𝑌𝑖       𝑌𝑗 − 𝑌𝑖 𝑍𝑗 − 𝑍𝑖  𝑍𝑗 − 𝑍𝑖 𝑋𝑗 − 𝑋𝑖      𝑍𝑗 − 𝑍𝑖 𝑌𝑗 − 𝑌𝑖     𝑍𝑗 − 𝑍𝑖 𝑍𝑗 − 𝑍𝑖              (5) 

 
Then, we tackle the construction of the local perturbation response scanning maps 

(LPRS maps) by setting the following conditions: (i) unbound F0-ATPase as the control 
simulation experiment, (ii) oligomycin A + F0-ATPase, (iii) SWCNT-pristine + F0-ATPase, 
and (iv) SWCNT-COOH + F0-ATPase. 

2.2.3. Performing Nano-QSTR Approaches 
The Nano-QSTR models have been developed using a linear regression approach to 

predict the mitochondrial F0F1-ATPase inhibition values of the SWCNT studied herein. 
The values used for the development of the continuous model were obtained from molec-
ular docking experiments considering the free energy of binding (FEB values) obtained 
from the complexes SWCNT-pristine/F0-ATPase and SWCNT-COOH/F0-ATPase. For 
this purpose, two different sets for both ligands (SWCNT-pristine, SWCNT-COOH) were 
efficiently built. Considering the three recognized categories of geometric topologies as: 
zigzag-SWCNT (Hamada index m = 0, n > 0), amchair-SWCNT (Hamada index m = n), 
and chiral-SWCNT, characterized by the Hamada index (n, m), with m > 0 and m ≠ n, and 
with its enantiomers (or mirror images), presenting the Hamada index (m, n), which is 
different from (n, m), with no reflection symmetry [13,14]. Then, regression Nano-QSTR 
models were developed using the linear regression tool implemented in the Statistica® 
suite. 

The validation of the Nano-QSTR model was performed using the cross-validation 
module implemented in the software. This procedure is aimed at assessing the predictive 
accuracy of a model. The test randomly split the dataset into a training set and a validation 
set, ensuring that if an entry was included in the test set it could not be used in the vali-
dation set. In so doing, the model was developed using the cases in the training or learning 
sample, which, in our study, was 70% of the dataset. The predictive accuracy was then 
assessed using the remaining 30% of the dataset. In addition, we have also reported the 
applicability domain (AD) for both models. 

Finally, the performance of the model was evaluated using the residuals, R and R2, 
and other relevant statistics. Regarding the molecular descriptors (MD), we used the 
DRAGON 7.0® software to calculate the variables that have been used for the development 
of the models. This software suite is able to calculate up to 7500 different descriptors, be-
longing to very different classes, such as topological, two-dimensional (2D), three-dimen-
sional (3D), connectivity, and so on [54]. In order to select the best subset of MD, we have 
performed a feature selection process using a forward stepwise methodology [35] for both 
models. At the end of this procedure, we were able to develop the pristine and the car-
boxylate model using respectively two and three MD belonging to the topological class. 
The two MD used in the SWCNT-pristine model are the Narumi geometric topological 
index (GNAR) and the electro-topological positive variation (MAXDP). The Narumi index 
of a graph G is defined as the product of the degrees of all its vertices: NK(𝐺) =  𝑑 (𝑣 )    (1)

The MAXDP is calculated as follows: 
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𝑆 = 𝐼 +  ∆𝐼  𝐼 +  𝐼 − 𝐼𝑑 + 1  (2)

which is calculated as the maximum positive value of ΔIi. 
Regarding the SWCNT-COOH model, the continuous model was developed using 

three MD, one is the same GNAR used for the pristine model. The other two are defined 
as follows: The first one is the path/walk Randic shape indices that are calculated by sum-
ming, over the non-H atoms, the ratios of the atomic path count over the atomic walk 
count of the same order k and then, dividing by the total number of non-H atoms (nSK). 
Since path/walk count ratio is independent of molecular size, these descriptors can be 
considered as measures of molecular shape. Dragon calculates path/walk shape indices 
from order 2 up to 5, and the index of first order is not provided as the counts of the paths 
and walks of length one are equal and, therefore, the corresponding molecular index 
equals one for all molecules. The formula in this case is not reported in the Dragon man-
ual. 

Finally, the last molecular descriptor used is the so-called lopping centric index 
(LOC), which is calculated as the mean information content derived from the pruning 
partition of a graph:              𝐿𝑂𝐶 = 𝑘  𝑛𝑛𝑆𝐾 ∗  𝑙𝑜𝑔 𝑛𝑛𝑆𝐾 (3)

where nk is the number of terminal vertices removed at the kth step and nSK is the number 
of non-H atoms. 

All the information regarding the descriptors employed in the nano-QSTR models 
can be retrieved from the Dragon webpage (https://chm.kode-solutions.net/prod-
ucts_dragon_descriptors.php). 

3. Results and Discussion 
3.1. CNT Effects on Submitochondrial Particles (SMP)  

Herein, we present the in vitro assay on the inhibitory effect of the SWCNT ligands 
(SWCNT-pristine, SWCNT-COOH) at the range of concentration of 0.5–5 µg/mL over F0-
ATPase using isolated rat liver submitochondrial particles (isolated F0F1-ATPase) from 
mitochondrial inner membrane. In general, we can see that the tested SWCNT exhibit high 
ability to act as F0-ATPase inhibitors (ATP-hydrolysis) at a range of concentration of 3–5 
µg/mL. Besides, a concentration dependence with significant statistical difference (p < 
0.05) when compared with SMP (untreated SMP group) and the DMSO-treated SMP was 
observed. We note an oligomycin A-like pattern (positive control group used) for both 
SWCNT ligands in a range of concentration of 3–5 µg/mL without significant statistical 
difference (p > 0.05) when compared with oligomycin A (Figure 1). According to this, the 
treated SMP from mixed CNT ligand (5 µg/mL) plus oligomycin A (1 µM) showed the 
strongest F0-ATPase inhibition (p < 0.05) when compared with untreated SMP and the 
DMSO-treated SMP, and the remaining CNT-treated SMP (3–5 µg/mL). This may suggest 
a strong synergistic effect on F0-ATPase inhibition (mitochondrial nanotoxicity). Details 
of these experimental results can be seen in Figure 1. 

3.2. Modeling F0ATPase Inhibition Induced by SWCNTs  
Herein, molecular docking was carried out in order to evaluate the influence of the 

carbon nanotubes (SWCNT-pristine and SWCNT-COOH) on the F0-ATPase inhibition re-
sponse. The best docking binding pose from each modeled CNT (SWCNT-pristine, 
SWCNT-COOH) theoretically suggests that these CNT could act in the same biophysical 
environment as the oligomycin A based on hydrophobic non-covalent interaction (π-π 
interactions) involving phenylalanine hydrophobic residues (Phe 55 and Phe 64 of the 
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chains C, D, and M), which are critically involved in the F0-ATPase inhibition (ATP-hy-
drolysis) in the F0-ATPase subunit active binding site, see Figure 2. 

 
Figure 2. (A) Schematic representation of carbon nanotubes (CNT) interacting with isolated rat 
liver submitochondrial particles (SMP as F0-ATPase). (B, C) Results of experimental in vitro evalu-
ation of the F0-ATPase inhibition induced by CNT (i.e., CNT as SWCNT-pristine or SWCNT-
COOH) using F0-ATPase under the different conditions described in the Material and Methods 
Section as treatments: (i) untreated submitochondrial particles control (SMP as F0-ATPase), (ii) 
DMSO-treated SMP, (iii) CNT-treated SMP (1–5 µg/mL), (iv) oligomycin A-treated SMP (oligomy-
cin A is a specific F0F1-ATPase inhibitor used as a positive control), and (v) treated SMP mixed 
with SWCNT or SWCNT-COOH at concentration of 5 µg/mL + oligomycin A (1 µM) to mimick 
synergistic effects on F0-ATPase inhibition, which was performed as an additional control group. 
Results are representative of three experiments (n = 3). Symbols (*, **, #) were used to denote sta-
tistical differences (p < 0.05) between the evaluated experimental groups used in the in vitro assay 
containing the SMP. 

The free energy of binding (FEB) values of the formed docking complexes follow the 
order: FEB (oligomycin A/F0-ATPase complex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-
ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = −5.9 kcal/mol, with 
interatomic distance of interaction lower than 5 Å, in all the cases. Besides, we note the 
presence of π-π interactions, like Y-shaped and pseudo parallel-displaced motif-orienta-
tion preferences, for both single-walled carbon nanotubes. Besides, more electrostatically 
favored interactions in the CNT-sidewall than the CNT-tips were observed in both simu-
lations (SWCNT-pristine and SWCNT-COOH). This was probably due to better orienta-
tion and stability between the planar-benzene-quadrupoles formed between van der 
Waals surface from the modeled SWCNT and the phenylalanine hydrophobic residues 
(Phe 55 and Phe 64) of the F0-ATPase binding site and interacting in the same biophysical 
environment as the F0-ATPase-specific inhibitor (oligomycin A) [17]. Please, see Figure 3. 
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Figure 3. Snapshots selection from molecular docking interactions obtained from the best binding poses of the ligands as 
(A) superimposed representation of oligomycin A and SWCNT-pristine, and (B) superimposed representation of oligo-
mycin and SWCNT-pristine and SWCNT-COOH interacting with critical phenylalanine hydrophobic residues (Phe 55 
and Phe 64: labelled red) which belong to the target chains C, D, and M in the F0-ATPase subunit receptor. Please note 
that oligomycin A (labelled green) corresponds to the control simulation experiment used here as a reference due to this 
ligand being the specific inhibitor of the F0-ATPase in all cases. 
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Next, we carried out the theoretical modeling based on the local perturbation re-
sponse scanning maps (LPRS maps). The LPRS maps are based on elastic network models 
(ENM models) and have been widely recognized to study relevant conformational 
changes promoted from distance-based fluctuations in the alpha carbons (C(α)) of a given 
target protein (as F0-ATPase under unbound and bound states) at the atomistic and mo-
lecular level [53]. It is well-known that the ENM models could explain a large number of 
the conformational differences based on the perturbation patterns of the network formed 
by the target residues evaluated (Phe 55 and Phe 64). In this instance, LPRS maps generate 
comprehensive visualizations of the F0-ATPase inhibition response, which allows to eval-
uate allosteric signal propagations in response to external perturbations under the pres-
ence of a given ligand (i.e., the oligomycin A as a F0-ATPase-specific inhibitor, SWCNT-
pristine, and SWCNT-COOH). The results can be seen in Figure 4. 

 
Figure 4. Perturbation response analysis for the F0-ATPase inhibition response. (A) LPRS map obtained for the unbound 
F0-ATPase as the control simulation experiment. Individual LPRS maps obtained from the best docking complexes (in the 
bound state for all the ligands tested) with intensity bar color representing the i,j residue perturbations (on the right) for: 
(B) oligomycin A/F0-ATPase complex, (C) SWCNT-pristine/F0-ATPase complex, and (D) SWCNT-COOH/F0-ATPase 
complex. All the LPRS maps were established in range of the low-frequency normal modes in order to capture relevant 
fluctuations associated with F0-ATPase catalytic function across the different conditions simulated. 

The results on LPRS maps show that both single-walled carbon nanotubes (SWCNT-
pristine and SWCNT-COOH) promote a significant change in the perturbation patterns 
of the network of target residues compared with the physiological condition represented 
by the unbound state of F0-ATPase. In this regard, we note abrupt perturbations in several 
blocks of residues more pronounced for the SWCNT-pristine (strong F0-ATPase inhibi-
tion) than the SWCNT-COOH (moderate F0-ATPase inhibition) during the interaction 
with the F0-ATPase. Interestingly, the LPRS map of the SWCNT-pristine/F0-ATPase com-
plex mimicked the toxicodynamic behavior of the oligomycin A/F0-ATPase complex, in-
ducing strong F0-ATPase inhibition (see Figure 4B, C), suggesting a similar pattern of al-
losteric network perturbation. However, the LPRS map obtained from the SWCNT-
COOH/F0-ATPase complex (Figure 4D) exhibits a pattern of perturbation less affected 
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when compared with the physiological condition depicted for the F0F1ATPase unbound 
state (Figure 4A), maintaining a certain structural and functional coupling between the 
residues composing the F0-ATPase network, suggesting the presence of a moderate nano-
toxicity-based F0-ATPase inhibition. The relevance of these results is that strong local per-
turbations similar to those observed in Figure 4A, B are able to induce strong allosteric 
perturbations in the j-effector residues from the F0-ATPase receptor, affecting its mito-
chondrial catalytic function (ATP-hydrolysis) involving the signal transduction of the per-
turbations from the block of i-sensor residues which trigger abnormal signals’ propaga-
tion across the inter-residue network for j-effector F0-ATPase residues. We could suggest 
that considering the SWCNT docking position, both ligands (SWCNT-pristine >> 
SWCNT-COOH) can theoretically disrupt the H+-proton flux dynamic in the mitochon-
drial H+-F0-ATPase subunit, compromising the coupling between oxidative phosphoryla-
tion and electron transport in the respiratory chain, inducing potential bioenergetic dys-
function and the mitochondria nanotoxicity [9]. 

In order to quantify potential fractal geometrical perturbations, a fractal surface anal-
ysis was carried out to model changes-based perturbations in the geometric surface of the 
binding effector residues of the F0-ATPase under unbound and bound states (i.e., under 
SWCNT-pristine and SWCNT-COOH interactions) [9]. Several fractal dimensions (FDs, 
namely: DBW, DB+BW, and DW+BW) were calculated using the box-counting methods from the 
LPRS maps previously obtained [55]. The Fractal Theory allows the mathematical model-
ing of the geometric complexity (across multiple scales) and self-similarity (scale-invariant 
structure) from non-Euclidean real or virtual objects (such as the tested SWCNT). One of 
the most important properties in the fractal modeling is the degree of self-similarity. Then, 
a topological fractal dimension near to 2 is categorized-like, high complexity (i.e., high 
variety of geometrical information after the docking interaction) and low self-similarity; 
in contrast, a topological fractal dimension closer to 1 informs about little complexity and 
high self-similarity after the docking interaction. Herein, the non-Euclidean geometrical 
patterns were included according to the fractal dimension, like FDBW, that describes the 
surface geometric perturbations in the border of the LPRS map fractal pattern [55]. The 
FDB+BW characterizes the surface geometric perturbations on the white background, and 
the FDW+BW characterizes the fractal perturbations pattern on the black background from 
the LPRS images calculated for each simulation condition, see Figure 5. 

Herein, the obtained FDs are related to the F0-ATPase surface and backbone non-
Euclidean geometry [9,55]. FDs inform about how the F0-ATPase folding, packing den-
sity, solvent accessibility, and binding interaction properties could be perturbed under the 
presence of different ligands forming docking complexes (oligomycin A/F0-ATPase com-
plex, SWCNT-pristine/F0-ATPase complex, and SWCNT-COOH/F0-ATPase complex). In 
this context, we suggest that, in the bound state (i.e., during the docking interaction), the 
SWCNT-pristine led to higher F0F1-ATPase nanotoxicity-based allosteric perturbations 
than its carboxylate analogous (SWCNT-COOH) based on their obtained values for the 
fractal dimensions (FDBW), such as SWCNT-pristine/F0-ATPase complex (FDBW = 1.29) < 
SWCNT-COOH/F0-ATPase complex (FDBW = 1.45), which quantitatively exhibits very 
similar features-based fractal dimension (DBW, DBBW, and DWBW) compared to physiological 
condition (unbound F0-ATPase (FDBW = 1.45)) used as a control for comparison purposes. 
It is well-known that slight variations in the fractal dimension as observed in the bound 
state for the docking complexes SWCNT-pristine/F0-ATPase and SWCNT-COOH/F0-
ATPase (Figure 5C, D, respectively) are sufficient to induce changes in the geometry and 
roughness of the active site of F0-subunit of the F0F1-ATPase.  

These results fit well with the previous LPRS maps, strongly suggesting that the 
SWCNT-pristine/F0-ATPase complex (FDBW = 1.29) mimicked the nanotoxicological be-
havior of the specific F0F1-ATPase inhibitor (oligomycin A) with very close calculated 
fractal dimension for oligomycin A/F0-ATPase complex (FDBW = 1.32), both lower than the 
physiological condition of unbound F0-ATPase cited above (Figure 5A). As previously 
cited, a FD ≈ 2 reveals a high variety of geometrical information and low self-similarity, 
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while FD ≈ 1 represents little complexity and high self-similarity. On the other hand, the 
FD values obtained for FDB+BW and FDW+BW remain as unperturbed around 1.85 in all the 
cases, revealing high complexity of geometrical information [9,55]. 

 
Figure 5. Fractal spectrum based on the box-counting method performed to obtain the slopes of the linear regression yields 
from binary black/white LPRS maps image-processing. These slopes represent the fractal dimensions (FD: DBW, DB+BW, and 
DW+BW) for the best docking complexes, namely: (A) unbound F0-ATPase, (B) oligomycin A/F0-ATPase complex, (C) 
SWCNT-pristine/F0-ATPase complex, and (D) SWCNT-COOH/ F0-ATPase complex. 

The results of fractal surface perturbation suggest that the SWCNT-pristine can in-
duce significant changes in the geometrical selectivity of the F0-ATPase, like oligomycin 
A. It is well-known that perturbation (global and local perturbations) in the three-dimen-
sional spatial arrangement of atoms composing effector residues (j-effector allosteric res-
idues) of proteins can be studied using their FDs. Fractal surface perturbations could neg-
atively impact on catalytic function of F0-ATPase, irreversibly affecting the structural 
properties of the binding cavities, which are of paramount importance in the complemen-
tary processes like substrate recognition and ligand geometrical specificity . Probably, top-
ologically perturbed van der Waals fractal surface of F0-ATPase after the docking interac-
tion with SWCNT-COOH could theoretically explain the moderate mitochondrial nano-
toxicity observed from the SWCNT-COOH/F0-ATPase docking complex (refer to Figure 
4A, D). 

Lastly, we carried out a nano-quantitative structure–toxicity relationship approach 
(Nano-QSRT models) in order to evaluate the influence of additional geometric properties 
of the ligands SWCNT-pristine and SWCNT-COOH based on the well-known relation-
ship between the topology geometry based on the n, m Hamada index with their nano-
toxicological properties (i.e., SWCNT-mitotoxicity).  

3.3. Performed Nano-QSTR Models 
As reported in the Material and Methods Section, the Nano-QSTR model for SWCNT-

pristine was developed using only two variables belonging to the topological index category. 
The observed versus predicted values and the other relevant statistics are reported in the Ta-
bles 1 and 2, and Figure 6, respectively. In addition, we have also reported the AD in Figure 7. 
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Table 1. Results of the Nano-QSTR regression model for mitochondrial F0-ATPase inhi-
bition induced by SWCNT-pristine. 

SWCNT-Pristine (n, m) 
Data 

Observed 
Data 

Predicted 
Data 

Residuals Cross-Validation (a, b) 

amchair 3.3 −20.00000 −18.93350 −1.06650 training 
amchair 4.4 −19.70000 −18.83954 −0.86046 training 
amchair 5.5 −18.80000 −18.77444 −0.02556 training 
amchair 6.6 −18.50000 −18.72592 0.22592 validation 
amchair 7.7 −18.20000 −18.68908 0.48908 training 
amchair 8.8 −17.50000 −18.66083 1.16083 training 
amchair 9.9 −17.20000 −18.63872 1.43872 training 

chiral 3.2 −17.20000 −16.28865 −0.91135 validation 
chiral 4.1 −17.20000 −15.58908 −1.61092 training 
chiral 4.2 −17.00000 −15.84427 −1.15573 training 
chiral 4.3 −16.30000 −15.96788 −0.33212 training 
chiral 5.1 −16.20000 −15.56891 −0.63109 validation 
chiral 5.2 −16.20000 −15.44925 −0.75075 training 
chiral 5.3 −16.00000 −15.63349 −0.36651 training 
chiral 5.4 −16.00000 −15.72809 −0.27191 training 
chiral 6.1 −16.00000 −15.26864 −0.73136 validation 
chiral 6.2 −15.90000 −15.19863 −0.70137 training 
chiral 6.3 −15.90000 −15.37446 −0.52554 training 
chiral 6.4 −15.90000 −15.47126 −0.42874 training 
chiral 6.5 −15.80000 −15.39773 −0.40227 validation 
chiral 7.1 −15.70000 −15.02346 −0.67654 training 
chiral 7.2 −15.40000 −15.17288 −0.22712 training 
chiral 7.3 −15.40000 −15.10112 −0.29888 training 
chiral 7.4 −15.20000 −15.24345 0.04345 validation 
chiral 7.5 −15.20000 −15.34078 0.14078 training 
chiral 7.6 −15.20000 −15.28875 0.08875 training 
chiral 8.1 −15.00000 −15.03210 0.03210 training 
chiral 8.2 −15.00000 −14.77537 −0.22463 validation 
chiral 8.3 −14.90000 −15.23422 0.33422 training 
chiral 8.4 −14.80000 −15.08583 0.28583 training 
chiral 8.5 −14.70000 −15.15833 0.45833 training 
chiral 8.6 −14.70000 −15.24567 0.54567 validation 
chiral 8.7 −14.70000 −15.20136 0.50136 training 
chiral 9.3 −14.60000 −14.79209 0.19209 training 
chiral 9.4 −14.50000 −15.12489 0.62489 training 
chiral 9.5 −14.50000 −15.11612 0.61612 validation 
chiral 9.6 −14.50000 −15.09848 0.59848 training 
chiral 9.7 −14.30000 −15.29203 0.99203 training 
zigzag 3.0 −14.30000 −15.37860 1.07860 training 
zigzag 4.0 −14.10000 −14.00654 −0.09346 validation 
zigzag 5.0 −13.70000 −14.00654 0.30654 training 
zigzag 6.0 −13.70000 −13.79221 0.09221 training 
zigzag 7.0 −13.60000 −13.62087 0.02087 training 
zigzag 8.0 −13.30000 −13.48024 0.18024 validation 
zigzag 9.0 −12.90000 −13.36294 0.46294 training 

Datasets: training (a) and validation sets (b). 



Biology 2021, 10, 171 16 of 22 
 

 

 
Figure 6. Results of observed versus predicted values obtained for the Nano-QSTR regression 
model performed for the SWCNT-pristine data. 

 
Figure 7. Applicability domain for SWCNT-pristine data. 

Table 2. Results of the relevant statistical parameters obtained from the Nano-QSTR regression 
model for SWCNT-pristine. 

Statistical Parameters Value 
Multiple R 0.911445 
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Multiple R² 0.830731 
Adjusted R² 0.819811 

Sum of squares Model 77.70196 
Degrees of freedom Model 2 

Mean squared errors Model 38.85098 
Sum of squares Residual 15.83245 

Degrees of freedom Residual 31 
Mean squared errors Residual 0.510724 

F 76.07035 
P 0 

As can be seen in the Tables 1 and 2, the Nano-QSTR model shows an overall high 
accuracy and goodness of fit, thus indicating that this model can be used for a continuous 
prediction of the likelihood of induced mitochondria nanotoxicity inhibition on F0F1-
ATPase by interaction with SWCNT-pristine (f(FEB_1)). In this regard, the best Nano-
QSTR regression model is based on the linear Equation (9) as: f(FEB_1) = −8.24425(GNar) + 0.614121(MAXDP) − 2.87142      (4)

Afterward, we performed a Nano-QSTR model for SWCNT-COOH. For this instance, 
was carried out a QSTR regression model by using three variables, as in the case of the previ-
ous model (i.e., using SWCNT-pristine). Herein, the results obtained on observed versus pre-
dicted values, and the other relevant statistical parameters, are summarized in the Tables 3 
and 4, and Figure 8, respectively. In addition, we have also reported the AD in Figure 9. 

Table 3. Results of the Nano-QSTR regression model for mitochondrial F0-ATPase inhibition in-
duced by SWCNT-COOH. 

SWCNT-COOH (n, m) Data 
Observed 

Data 
Predicted 

Data 
Residuals 

Cross-Validation (a, b) 

amchair 3.3 −34.80000 −33.04305 −1.75695 training 
amchair 4.4 −33.10000 −31.92664 −1.17336 training 
amchair 5.5 −32.30000 −31.36844 −0.93156 training 
amchair 6.6 −32.30000 −30.81023 −1.48977 validation 
amchair 7.7 −29.80000 −30.53113 0.73113 training 
amchair 8.8 −29.10000 −30.25203 1.15203 training 
amchair 9.9 −29.00000 −29.97293 0.97293 training 

chiral 3.2 −28.50000 −26.92826 −1.57174 validation 
chiral 4.1 −27.90000 −26.16358 −1.73642 training 
chiral 4.2 −27.60000 −27.01059 −0.58941 training 
chiral 4.3 −26.90000 −25.00316 −1.89684 training 
chiral 5.1 −26.70000 −28.51704 1.81704 validation 
chiral 5.2 −26.60000 −24.71436 −1.88564 training 
chiral 5.3 −26.40000 −25.08549 −1.31451 training 
chiral 5.4 −26.40000 −24.19447 −2.20553 training 
chiral 6.1 −26.30000 −27.20385 0.90385 validation 
chiral 6.2 −25.90000 −24.54620 −1.35380 training 
chiral 6.3 −25.40000 −25.47553 0.07553 training 
chiral 6.4 −25.00000 −24.13724 −0.86276 training 
chiral 6.5 −24.80000 −24.44496 −0.35504 validation 
chiral 7.1 −24.70000 −25.21534 0.51534 training 
chiral 7.2 −24.60000 −26.28422 1.68422 training 
chiral 7.3 −24.50000 −24.04522 −0.45478 training 
chiral 7.4 −24.30000 −24.52728 0.22728 validation 
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chiral 7.5 −24.30000 −23.88676 −0.41324 training 
chiral 7.6 −24.30000 −23.32855 −0.97145 training 
chiral 8.1 −24.10000 −26.95336 2.85336 training 
chiral 8.2 −24.10000 −23.51211 −0.58789 validation 
chiral 8.3 −24.10000 −25.39320 1.29320 training 
chiral 8.4 −24.00000 −24.63822 0.63822 training 
chiral 8.5 −23.70000 −24.27680 0.57680 training 
chiral 8.6 −23.50000 −22.90990 −0.59010 validation 
chiral 8.7 −23.50000 −24.89841 1.39841 training 
chiral 9.3 −23.00000 −23.42979 0.42979 training 
chiral 9.4 −22.60000 −24.13724 1.53724 training 
chiral 9.5 −22.50000 −23.71859 1.21859 validation 
chiral 9.6 −22.40000 −23.16039 0.76039 training 
chiral 9.7 −22.20000 −23.53151 1.33151 training 
zigzag 3.0 −22.10000 −25.42752 3.32752 training 
zigzag 4.0 −21.70000 −20.86901 −0.83099 validation 
zigzag 5.0 −21.50000 −20.86901 −0.63099 training 
zigzag 6.0 −21.40000 −20.17126 −1.22874 training 
zigzag 7.0 −21.10000 −19.61305 −1.48695 training 
zigzag 8.0 −20.90000 −19.19440 −1.70560 validation 
zigzag 9.0 −17.30000 −18.91530 1.61530 training 

Datasets: training (a) and validation sets (b). 

 
Figure 8. Results of observed versus predicted values obtained for the Nano-QSTR regression 
model performed for the SWCNT-COOH data. 
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Figure 9. Applicability domain for SWCNT-COOH data. 

Table 4. Results of the relevant statistical parameters obtained from the Nano-QSTR regression 
model for SWCNT-COOH. 

Statistical Parameters  Value 
Multiple R 0.918915 
Multiple R² 0.844404 
Adjusted R² 0.828845 

Sum of squares Model 366.1187 
Degrees of freedom Model 3 

Mean squared errors Model 122.0396 
Sum of squares Residual 67.46364 

Degrees of freedom Residual 30 
Mean squared errors Residual 2.248788 

F 54.26905 
p 0.000000 

 
For the case of the SWCNT-COOH dataset, the final Nano-QSTR regression model to 

predict the mitochondrial F0-ATPase inhibition (f(FEB_2)) is represented by the linear Equa-
tion (10) as: f(FEB_2) = −1005.47(𝐺𝑁𝑎𝑟) − 1401.69(𝑃𝑊5) − 139.55(𝐿𝑂𝐶) − 2326.4   (5)

Overall, the proposed methodologies rigorously obey the Organization for Economic Co-
operation and Development (OECD) and the International Organization for Standardization 
guidelines for development of alternative methods for Computational Nanotoxicology [56]. 

4. Conclusions 
In the present study, we presented a combination of experimental and computational 

approaches to tackle the nanotoxicity of pristine and oxidized single-walled carbon nanotubes 
(SWCNT-pristine, SWCNT-COOH) based on the mitochondrial F0F1-ATPase inhibition. Ex-
perimental evidences supported that the in vitro F0F1-ATPase inhibition responses in submi-
tochondrial particles (SMP) are strongly dependent on the higher level of concentration (from 
3 to 5 µg/mL) in both types of single-walled carbon nanotubes (SWCNT-pristine and SWCNT-
COOH) evaluated. In addition, both types of carbon nanotubes show an interaction inhibition 
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pattern for the F0F1-ATPase enzyme, similar to the oligomycin A (specific F0F1-ATPase in-
hibitor). On the other hand, the best binding pose for the obtained complexes fit well with the 
previous experimental results. The free energy of binding (FEB values) for the formed docking 
complexes followed the affinity order: FEB (oligomycin A/F0-ATPase complex) = −9.8 
kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine 
complex) = −5.9 kcal/mol, with relevant interatomic distance of interaction lower than 5 Å, in 
all the cases, and with predominance of van der Waals hydrophobic interactions with critical 
F0-ATPase binding site residues (Phe 55 and Phe 64) belonging to the same biophysical envi-
ronment as the oligomycin A inhibitor. In addition, results on elastic network models (LPRS 
maps) show that the SWCNT-pristine can promote an abrupt perturbation in several blocks 
of residues (strong F0-ATPase nanotoxicity inhibition), more pronounced than the analogous 
SWCNT-COOH (moderate F0-ATPase nanotoxicity inhibition), triggering perturbations on 
the allosteric responses and abnormal signals’ propagation across the inter-residue network 
of the F0F1-ATPase. In accordance with this, results on the fractal surface of interactions based 
on the formed docking complexes (SWCNT-pristine/F0F1-ATPase >> SWCNT-COOH/F0F1-
ATPase) suggest that the SWCNT-pristine interactions topologically affect the van der Waals 
fractal surface and geometric properties of F0-ATPase compared to physiological condition 
(unbound F0-ATPase). We suggest that the SWCNT-pristine perturbations could negatively 
impact on catalytic function of F0-ATPase (mitochondrial ATP-hydrolysis), by irreversibly af-
fecting the structural properties of the binding cavities in the F0-subunit. Lastly, the predictive 
Nano-QSTR models showed that a linear correlation between SWCNT topology and the nano-
toxicity induced was present and can be predicted using a Nano-QSTR approach. 

Finally, these results open new opportunities toward to the better understanding of 
the molecular nanotoxicity mechanisms, relevance of mitotarget drug discovery, and ra-
tional drug design-based nanotechnology with potential biomedical application in preci-
sion nanomedicine.  

Supplementary Materials: Figure S1. Characterization of the SWCNT-samples based on Fourier-
transformed infrared (FT-IR spectrum. The following are available online at www.mdpi.com/2079-
7737/10/3/171/s1, Figure S1. 
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