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Simple Summary: Biomedical ontology matching is a large-scale multi-modal multi-objective op-
timization problem with sparse Pareto optimal solutions. To effectively address this challenging
problem, this paper proposes an adaptive multi-modal multi-Objective Evolutionary Algorithm.
First, a novel multi-objective optimization model is constructed to simultaneously optimize both
the alignment’s f-measure and its conservativity. Then, a problem-specific algorithm is presented,
which uses the guiding matrix to adaptively guide the algorithm’s convergence and diversity in both
objective and decision spaces. The experimental results show that our approach is able to effectively
solve the biomedical ontology matching problem and to provide more options for decision makers.

Abstract: To integrate massive amounts of heterogeneous biomedical data in biomedical ontologies
and to provide more options for clinical diagnosis, this work proposes an adaptive Multi-modal Multi-
Objective Evolutionary Algorithm (aMMOEA) to match two heterogeneous biomedical ontologies by
finding the semantically identical concepts. In particular, we first propose two evaluation metrics
on the alignment’s quality, which calculate the alignment’s statistical and its logical features, i.e.,
its f-measure and its conservativity. On this basis, we build a novel multi-objective optimization
model for the biomedical ontology matching problem. By analyzing the essence of this problem,
we point out that it is a large-scale Multi-modal Multi-objective Optimization Problem (MMOP)
with sparse Pareto optimal solutions. Then, we propose a problem-specific aMMOEA to solve this
problem, which uses the Guiding Matrix (GM) to adaptively guide the algorithm’s convergence and
diversity in both objective and decision spaces. The experiment uses Ontology Alignment Evaluation
Initiative (OAEI)’s biomedical tracks to test aMMOEA’s performance, and comparisons with two
state-of-the-art MOEA-based matching techniques and OAEI’s participants show that aMMOEA is
able to effectively determine diverse solutions for decision makers.

Keywords: biomedical ontology matching; multi-modal multi-objective evolutionary algorithm;
guiding matrix

1. Introduction

Biomedical ontology is able to address the biomedical data heterogeneity issue and
to bridge the semantic gap among multi-source and multi-modal biomedical gaps. Cur-
rently, many biomedical ontologies, such as the Systematized Nomenclature of Medicine
(SNOMED) [1], the National Cancer Institute thesaurus (NCI) [2], and the Foundational
Model of Anatomy (FMA) [3], have been developed to support applications such as
biomedical data annotation and integration, knowledge discovery and exchange, and clini-
cal decision support [4,5]. Biomedical research is becoming increasingly integrative in order
to provide novel insights, but the need for integrating massive amounts of heterogeneous
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biomedical data in biomedical ontologies poses new challenge [6]. To face this challenge, it
is necessary to establish the semantic correspondences for two semantic ontology-related
concepts, which is the so-called biomedical ontology matching.

Due to the large-scale entities, the complex vocabularies, and the increasing semantic
richness between the biomedical concepts, matching biomedical ontologies poses specific
computational challenges. Recently, Evolutionary Algorithm (EA) [7] has emerged as an
effective approach for optimizing the alignment’s quality. Several EAs, such as Memetic
Algorithm (MA) [8] and Differential Evolution algorithm (DE) [9,10], have been used to
either aggregate different ontology marchers or to directly determine all of the concept
mappings. In their work, the objective was to maximize the alignment’s f-measure [11],
which is a trade-off metric for recall and precision setting the aggregating weight as 0.5.
However, recall and precision are two conflicting optimization objectives, and these single-
objective EA-based matching techniques might improve the solutions by enhancing one of
the metrics while sacrificing the other one, yielding an improvement in the solution bias.
Since the matching process could be better performed by trading off different objectives
instead of combining them into a single objective with the given parameters in advance,
the Multi-Objective EAs (MOEAs) [12] are emerging as a popular method of optimizing
the ontology alignment’s quality. MOEA is able to trade off among different objectives
and to find a set of non-dominated solutions, which spread along the Pareto Front (PF) to
provide more choices for DMs.

With respect to the biomedical ontology matching problem, there exist different
solutions in the PF with the same objective values, i.e., there are several feasible regions in
the decision space corresponding to the same region of an objective space, and thus, it is
essentially a Multi-modal Multi-objective Optimization Problem (MMOP) [13]. It is of great
significance to provide all of the Pareto sets for the Decision Makers (DMs) to provide them
with more options. Currently, most MOEAs mainly focus on finding solutions with good
convergence and diversity in the objective space, but for the MMOP, solutions with similar
objectives of MMOP values might be diversely distributed in the decision space, which
poses a challenge when solving this kind of optimization problem. In addition, solving the
biomedical ontology matching problem is the processing of determining a 0–1 matrix, in
which the row and column are respectively two biomedical ontologies’ concepts, and its
element’s value is 1 (which means two corresponding concepts are mapped) or 0 ((which
means two corresponding concepts are not regarded as a correspondence). Figure 1 shows
an example of the alignment between two biomedical ontologies and the corresponding
0–1 matrix.

Since we try to find an alignment with cardinality one to one (i.e., one source concept
is mapped with only one target concept and vice versa), most elements in this matrix are 0,
i.e., it is a sparse matrix. Therefore, the biomedical ontology matching problem is actually
a MMOP with sparse Pareto optimal solutions. To address this problem, we present a
problem-specific adaptive Multi-modal MOEA algorithm (aMMOEA), which adaptively
maintains several populations to execute the search process and utilizes the Guiding Matrix
(GM) to adaptively guide the algorithm’s convergence and diversity in both the objective
space and decision space. The main contributions made in this work are listed as follows:

• Two evaluation metrics on the alignment’s quality are proposed to calculate the
alignment’s f-measure and its conservativity. On this basis, a novel multi-objective
optimization model is built for the biomedical ontology matching problem;

• A problem-specific aMMOEA is presented to match two biomedical ontologies, which
uses the GMs to adaptively ensure the algorithm’s convergence and diversity in both
the objective space and decision space;

• The proposed aMMOEA is employed on three biomedical tracks provided by the
Ontology Alignment Evaluation Initiative (OAEI) (http://oaei.ontologymatching.org,
accessed on 6 December 2021); the results reveal that aMMOEA is able to effectively
determine the diverse solutions for DMs.

http://oaei.ontologymatching.org
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The rest of this paper is organized as follows: Section 2 reviews EA-based ontology
matching techniques; Section 3 provides preliminary background knowledge and defines
the mutli-objective biomedical ontology matching problem; Section 4 presents the problem-
specific aMMOEA, and Section 5 shows the experimental results; finally, conclusions and
future work are given in Section 6.

Figure 1. An example of the biomedical ontology alignment and the corresponding 0–1 matrix.

2. Related Work

GOAL [14] is the first ontology matching system to optimize the weights of each
generated similarity matrix using EA. GOAL is dedicated to addressing the meta-matching
problem, i.e., how to tune the similarity measures’ aggregating weights in order to improve
the alignment’s f-measure. The obtained weights could be re-used to align ontologies with
the same heterogeneous characteristics. Later on, Ginsca et al. [15] optimized not only the
aggregating weights but also a threshold for filtering the correspondences. Xue et al. [16]
used an evaluation metric to approximately calculate the f-measure and then used a hybrid
EA to integrate two ontologies’ instance sets. Acampora et al. [8] introduced a local
perturbation algorithm into EA, which enhanced not only the converging speed but also
the quality of solutions. For the purpose of meeting the efficiency requirements of real-time
applications, Xue et al. [17] presented a Compact EA (CEA) to reduce the algorithm’s
time and space complexity. Addressing the meta-matching problem should maintain the
similarity matrices, which greatly increases the computational complexity. For this purpose,
Wang et al. [18] modeled the matching problem as the entity matching problem, i.e., a
bi-partite graph matching problem. After that, they used EA to directly determine the
entity correspondences. An instance information can effectively enhance the precision
of results, an instance-based similarity measure is first proposed by Alves et al. [19], and
then, the hybrid EA was used to optimize the alignment. In order to further address the
large-scale OM problem, Xue et al. [20,21] introduced an alignment-oriented partition
algorithm that works based on the idea of divide-and-conquer. After partitioning two
ontologies, they matched similar segment pairs in parallel and integrated with the greedy
strategy. Chu et al. [22] first modeled two ontologies in vector space and then utilized CEA
to directly determine the correspondences, which is able to improve the results’ precision
value. Recently, CEA-based ontology matching techniques have also been applied to match
the sensor ontologies in the Artificial Internet of Things (AIoT) [23].
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The above techniques regard the ontology matching problem as the single-objective
problem and then use EA to either tune the matching system’s parameters or to directly
determine the alignment. Since the process of optimizing the alignment could be better
performed by trading off different objectives in the matching process, recently, MOEAs
have been introduced to address the ontology matching problem. Acampora et al. [24]
and Xue et al. [25] both proposed to use the NSGA-II to simultaneously optimize the
alignment’s recall and precision. Later on, Xue et al. [26,27] proposed to use MOEA/D to
address the ontology meta-matching problem, of which the results outperforms NSGA-II
based matching techniques. More recently, the meta-models were further introduced to
improve the efficiency of MOEA [28,29]. Acampora et al. [30] made comparisons among
the different MOEA-based matching techniques and analyzed their performance.

Different from the existing MOEA-based ontology matching techniques, this work is
dedicated to addressing the multi-objective ontology entity matching problem, which is
characterized as being both large-scale and multi-modal. To face this challenging problem,
we use GM to guide multiple populations’ searching directions to ensure the algorithm’s
convergence in objective space and diversity in both the objective space and decision
space. In addition, existing approaches were dedicated to optimizing the objectives based
on the alignment’s statistical features, which might lead to a logical contradiction in the
final alignment. To overcome this drawback, this work optimizes both the alignment’s
statistical features and its logical consistency, which is of help to further enhance the
alignment’s quality.

3. Optimization Model on Biomedical Ontology Matching Problem

An ontology is a three tuple (C, Pd, Po), where C is the class set, Pd is the datatype
property set, and Po is the object property set. Generally, class, datatype property, and object
property are called ontology entities. Due to human subjectivity, ontologies in the same
domain might have different ways of defining a class, yielding the ontology heterogeneity
problem. Ontology matching aims to bridge the semantic gap among two ontologies by
finding their entity correspondence set, i.e., the ontology alignment. In particular, an
entity correspondence is a 4-tuple (e1, e2, rel, con f ), where e1 and e2 are the entities of two
ontologies, rel is their relationship that could be equivalence (≡) or subsumption (v), and
con f is the confidence degree that their relation holds. To ensure the alignment’s usefulness,
the generated mapping set should reduce the logical defects according to the conservativity
principle, i.e., two ontologies’ alignment should never generate new knowledge that cannot
be reasoned by only one of them.

An alignment’s conservativity consists of two sub-metrics, i.e., the cardinality metric
and the consistency metric [31]. With respect to the cardinality metric, since we require
one-to-one alignment, i.e., one source concept is mapped with only one target concept, and
vice versa, we propose MatchFmeasure [32], which is a harmony mean of MatchCoverage
(a metric approximating the alignment’s recall) and the average similarity value (a met-
ric approximating the alignment’s precision). To be specific, given an alignment A, its
MatchFmeasure is defined as follows:

MatchCoverage(A) =
|MatchedEntityO1 |+ |MatchedEntityO2 |

|O1|+ |O2|
(1)

AverageSim(A) =
∑ simi
|A| (2)

MatchFmeasure(A) = 2× MatchCoverage(A)× AverageSim(A)

MatchCoverage(A) + AverageSim(A)
(3)

where |O1|, |O2|, and A are, respectively, the cardinalities of ontologies O1 and O2, and
their alignment A; |MatchedEntityO1 | and |MatchedEntityO2 | are the number of matched
entities in two ontologies; and simi is the i-th correspondence’s similarity value. For the
similarity measure, please see our previous work [9].
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Given two pairs of mappings (e1, e2) and (e′1, e′2), the consistency principle is described
as follows: (1) if e1 is the super-concept (or sub-concept) of e′1 but e2 is not the super-concept
(or sub-concept) of e′2, the correspondences (e′1, e′2) violates the consistency principle; (2) if
e1 is the super-concept (or sub-concept) of e′1 but e2 is the sub-concept (or super-concept) of
e′2, the correspondences (e′1, e′2) and (e1, e2) violate the consistency principle; and (3) if e1 is
the super-concept (or sub-concept) of e′1 and e2 is the super-concept (or sub-concept) of e′2,
two correspondences satisfy the consistency principle. Given an alignment A, its consistent
subset A′ in which the mappings inside satisfy the locality principle, the locality metric is
defined as follows:

consistency(A) =
|A− Aconsistency|

|A| (4)

where |A| and |Aconsistency| are, respectively, the cardinalities of A and Aconsistency. In this
work, we first sort A’s correspondences in descending order according to their similarity
value, then we add the mappings one by one into Aconsistency to ensure that the correspon-
dences added later should not violate the locality principle with the ones in Aconsistency.

To optimize an alignment’s quality, it is necessary to maximize an alignment Match-
Fmeasure and the consistency, but they are contradictory to some extent. When we desire
high consistency, we need to be selective, which will be at expense of the MatchFmeasure.
Vice versa, when we want a high MatchFmeasure we have to be less selective, which will
most likely decrease the consistency. To trade off these two objectives, this work models
the ontology matching problem as MOP, which is defined as follows:

max f (X) = (MatchFmeasure(X), consistency(X))

s.t. M|O1|×|O2|
mij ∈ {0, 1}, i = 1, 2, · · · , |O1|, j = 1, 2, · · · , |O2|

(5)

where |O1| and |O2| are the cardinalities of ontologies O1 and O2, and M|O1|×|O2| is an 0–1
matrix corresponding to an alignment (see also Section 1), maximizing its MatchFmeasure
and consistency are two objectives.

4. Adaptive Multi-Modal Multi-Objective Evolutionary Algorithm

To address a large-scale MMOP with sparse Pareto optimal solutions, it is necessary
to ensure the convergence of the solutions to the PF, while at the same time, maintaining
the population’s diversity in both the objective and decision spaces [33]. To this end, this
work presents a problem-specific aMMOEA for matching biomedical ontologies, in which
the framework is presented in Algorithm 1.

In the next section, we describe the GM-based initialization, the GM-based evolution-
ary operators, and GM-based adaptive population maintenance.

4.1. Matching Matrix and Guiding Matrix

In this work, we use the MM, which is a 0–1 matrix, to encode an individual. MM’s
row (or column) represents a distinct source (or target) entity, and each element represents
whether the corresponding entities are mapped (with value 1) or not (with value 0). In
addition, we introduce the GM, which has the same size as the MM, to describe the
population’s diversity in the decision space. GM’s element is a real number in [0, 1]; when
GMij is close to 1, many individuals have exploited the correspondence with the i-th source
entity and the j-th target entity, and when it is close to 0, the correspondences with the
i-th source entity and the j-th target entity have not been explored. In each generation, we
adaptively update each population’s GM and then use it to guide the algorithm’s search
direction to ensure the solutions’ diversity in the decision space.
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Algorithm 1: The framework of adaptive multi-modal multi-objective evolu-
tionary algorithm.

SPnum=2; //The number of sub-population
for i = 0; i < SPnum; i++ do

for j = 0; j < populationi.size; j++ do
initialize(); //Initialize each sub-population

end for
end for
Gen=0; //Current generation
while Gen < MaximumGen do

for i = 0; i < SPnum; i++ do
UpdateGM();
//GM-based evolutionary operators
crossover();
mutation();
selection();

end for
SPnum=MaintainPopulation(); //GM-based population maintenance
Gen = Gen + 1;

end while

4.2. Initialization

Given two ontologies O1 and O2, and a Helper Matrix (HM) HM|O1|×|O2|, an individ-
ual x is initialized according to Algorithm 2.

Here, we first use the similarity measure to determine the highly similar entity pairs,
i.e., the anchor set. After that, teh elements in MM and HM are set as 0. According to
the alignment’s consistency principle, the potential correspondence’s source entity and
target entity should be the super-classes (or sub-class) of the anchor’s source entity and
target entity, respectively. Therefore, we initialize the MM through reasoning with the
anchor’s information. HM is used to ensure that a sub-population’s diversity in the decision
space, i.e., the larger its element is, the less effort a new individual should put into the
corresponding mapping in its MM.

4.3. Update Guiding Matrix

GM is used to guide each sub-population’s search direction, which also ensures the
diversity of the whole population in the objective space. GM is updated according to
the distribution of a sub-population’s solutions. Given a i-th sub-population, its guiding
matrix GMi is adaptively updated as follows: first, find the non-dominated solution set
NDSet in the sub-population [34]; then, build a temp matrix M in which the elements
are set as zero; after that, for each solution x ∈ NDSet, find its nearest neighbor y in the
decision space with the Hamming distance; and update each element in Mi according to
the following formula:

Mi,j =


Mi,j + 1 if xi,j = 1 and yi,j = 1
Mi,j if xi,j = 0 and yi,j = 0
Mi,j + 0.5 otherwise

(6)

Finally, GMi is updated by M, which is defined as follows:

GMi
j,k =

GMj,k +
Mj,k
|NDSet|

2
(7)

where GMi
j,k is initialized as

Mj,k
|NDSet| . GM ensures that the offspring solutions in one

sub-population have the similar sparse distribution, and each GM is able to drive its
corresponding sub-population to search for different solutions toward different directions.
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Algorithm 2: Initialization.
initialize the Anchor Set AS;
initialize all the elements in M as zero;
if HM is not given then

initialize all the elements in HM as zero;
end if
for i = 0; i < AS.length; i++ do

m = ASi.sourceEntityIndex;
n = ASi.targetEntityIndex;
subSet = entitym’s sub concepts;
superSet = entitym’s super concepts;
for j = 0; j < rand× |subSet|; j++ do
[k, k′] = randomly select two entitym’s sub-concept’s indices;
[l, l′] = randomly select two entityn’s sub-concept’s indices;
if HMk,l < HMk′ ,l′ then

xk,l = 1;
HMk,l = HMk,l + 1;

else
xk′ ,l′ = 1;
HMk′ ,l′ = HMk′ ,l′ + 1;

end if
end for
for j = 0; j < rand× |superSet|; j++ do
[k, k′] = randomly select two entitym’s super-concept’s indices;
[l, l′] = randomly select two entityn’s super-concept’s indices;
if HMK,l < HMK′ ,l′ then

xk,l = 1;
HMk,l = HMk,l + 1;

else
xk′ ,l′ = 1;
HMk′ ,l′ = HMk′ ,l′ + 1;

end if
end for

end for

4.4. Guiding Matrix-Based Evolutionary Operators

The GM-based crossover operator, the mutation operator, and the selection operator
are respectively shown in Algorithms 3–5.

With respect to the crossover operator, the offspring individual z is first set as the
same as with the parent solution x. Then, for each correspondence in the anchor set AS,
in its entities’ sub-concept mappings (or super-concept mappings), when two parents are
different, the corresponding element in z is set to 1 if a random number is smaller than
GM’s corresponding elements and 0 otherwise. The crossover operator ensures that the
offspring has the same genes as its two parents, and when the two parents’ gene values are
different, GM is used to determine the offspring individual’s gene value. With the help of
this operator, we are able to move the offspring individuals towards the PF, which ensures
the sub-population’s convergence.
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Algorithm 3: Crossover operator.
[x, y]=randomly select two parents from the sub-population;
z = x; //initialize the offspring individual z;
for i = 0; i < AS.length; i++ do

m = ASi.sourceEntityIndex;
n = ASi.targetEntityIndex;
subSet = entitym’s sub concepts;
superSet = entitym’s super concepts;
for i = 0; i < subSet.length; i++ do

for j = 0; j < GM.length; j++ do
if xi,j 6= yi,j then

if rand < GMi,j then
zi,j = 1;

else
zi,j = 0;

end if
end if

end for
end for
for i = 0; i < superSet.length; i++ do

for j = 0; j < GM.length; j++ do
if xi,j 6= yi,j then

if rand < GMi,j then
zi,j = 1;

else
zi,j = 0;

end if
end if

end for
end for

end for

The mutation operator’s two operations are executed with the same probability: for
each correspondence in the anchor set AS, randomly select its entities’ sub-concepts (or
super-concepts) for which the values are 1 (or 0); then, make them compete according to
the GM’s corresponding elements, with the bigger (or smaller) the better; and finally, the
loser’s value is flipped. In general, each offspring solution’s element is more likely to be
zero if the corresponding element in the GM is smaller, and vice versa. In this way, the
sub-population can generally converge towards the direction determined by the GM.

HMi,j =


1 if HMi,j = 1
1 if GMi,j > 0.5
0 otherwise

(8)

Regarding the selection operator, we used the sub-population’s unique GM to update
its HM, in which the element represents whether the sub-population searched the corre-
sponding mappings. We calculate the hamming distance between each sub-population’s
individual and HM as the extra objective, which should be maximized to ensure the
sub-population’s diversity in the decision space.

4.5. Adaptive Population Maintenance

At the end of each generation, adaptive population maintenance is executed to adjust
the sub-populations. The pseudo-code of adaptive population maintenance is shown in
Algorithm 6.
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Algorithm 4: Mutation operator.
for i = 0; i < AS.length; i++ do

m = ASi.sourceEntityIndex;
n = ASi.targetEntityIndex;
subSet = entitym’s sub concepts;
superSet = entitym’s super concepts;
if rand<0.5 then

[m, n],[m′, n′]=randomly select two indices from subSet, whose corresponding
element’s value is 1;
if GMm,n < GMm′ ,n′ then

zm,n = 0;
else

zm′ ,n′ = 0;
end if
[m, n],[m′, n′]=randomly select two indices from superSet, whose corresponding
element’s value is 1;
if GMm,n < GMm′ ,n′ then

zm,n = 0;
else

zm′ ,n′ = 0;
end if

else
[m, n],[m′, n′]=randomly select two indices from subSet, whose corresponding
element’s value is 0;
if GMm,n > GMm′ ,n′ then

zm,n = 1;
else

zm′ ,n′ = 1;
end if
[m, n],[m′, n′]=randomly select two indices from superSet, whose
corresponding element’s value is 0;
if GMm,n > GMm′ ,n′ then

zm,n = 1;
else

zm′ ,n′ = 1;
end if

end if
end for

The smaller hamming distance between two sub-populations indicates a larger overlap
between their search directions, and one of the sub-populations should be deleted. In
contrast, if their similarity are small and all of the sub-populations have non-dominated
individuals, a new sub-population will be added. Otherwise, no sub-population will be
added or deleted. In particular, adaptive population maintenance aims at diversifying
the search directions of sub-populations to find more equivalent non-dominated optimal
solutions.
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Algorithm 5: Selection operator.
update the Helper Matrix HM according to Equation (8);
for each individual ind in the sub-population do

addNewObjective(HammingDistance(ind, HM));
end for
[F1, F2, · · · ]=NonDominatedSort();
k = mini|F1F2| >PopulationSize;
Fk = delete();
subPopulation = F1F2Fk;

Algorithm 6: Adaptive population maintenance.
[SPa,SPb] = Select two most similar sub-populations according to the hamming
distance between their GMs;
if HammingDistance(GMa, GMb)<0.5 then

//delete a sub-population
SPa = selection(SPaSPb, PopulationSize/(SPnum − 1));
delete SPb;
SPnum = SPnum − 1;

else
if all sub-populations have non-dominated individuals then

//add a new sub-population
for each sub-population SPi do

SPi = selection(SPi, PopulationSize/(SPnum + 1));
end for
initialize SPSPnum+1 with HMK = ∑SPnum

i=1 ;
SPnum = SPnum + 1;

end if
end if

5. Experiment
5.1. Experimental Setup

The experiment tests aMMOA’s performance with OAEI’s biomedical tracks, which
are regarded as the authorized testing cases for evaluating the biomedical ontology match-
ing technique’s performance. In Table 1, the test cases are briefly described.
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Table 1. Brief description on OAEI’s biomedical tracks.

Track ID Ontologies Tasks

Anatomy Track (http://oaei.ontologymatching.org/2021/anatomy/index.html, accessed on 6 December 2021) Adult Mouse Anatomy (MA)-2744 classes MA-HAHuman Anatomy (HA)-3304 classes

Large Biomed Track (http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/, accessed on 6 December 2021)
Foundation Model of Anatomy (FMA)-78,989 classes FMA-NCI
Systemized Nomenclature of Medicine (SNOMED)-122,464 classes FMA-SNOMED
National Cancer Institute thesaurus (NCI)-66,724 classes SNOMED-NCI

Disease and Phenotype Track (https://sws.ifi.uio.no/oaei/phenotype/, accessed on 6 December 2021)

Human Phenotype Ontology (HP)-33,205 classes
HP-MPMammalian Phenotype Ontology (MP)-32,298 classes

Human Disease Ontology (DOID)-24,034 classes
DOID-ORDOOrphanet Rare Disease Ontology (ORDO)-68,009 classes

http://oaei.ontologymatching.org/2021/anatomy/index.html
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
https://sws.ifi.uio.no/oaei/phenotype/
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In Table 1, all of the test cases are from real biomedical projects, and the ontolo-
gies used are famous ones in the biomedical domain. The anatomy track consists of
two biomedical ontologies that describe the adult Mouse Anatomy (MA) (http://www.
informatics.jax.org/searches/AMA_form.shtml, accessed on 6 December 2021) and Hu-
man Anatomy (HA) (www.cancer.gov/cancertopics/cancerlibrary/terminologyresources,
accessed on 6 December 2021). MA is provided by Mouse Genome Informatics (MGI)
(http://www.informatics.jax.org/mgihome/projects/aboutmgi.shtml, accessed on 6 De-
cember 2021), which is an international database resource for the laboratory mouse, pro-
viding integrated genetic, genomic, and biological data to facilitate the study of human
health and disease, and HA is maintained by National Cancer Institute Center for Biomedi-
cal Informatics and Information Technology (https://datascience.cancer.gov/, accessed
on 6 December 2021), which provides the vocabularies for cancer research. The large
biomed track aims to find alignments between three large and semantically rich biomedical
ontologies, i.e., Systematized Nomenclature of Medicine (SNOMED) [1], the National
Cancer Institute thesaurus (NCI) [2], and the Foundational Model of Anatomy (FMA) [3].
SNOMED is designed as a comprehensive nomenclature of clinical medicine for the pur-
pose of accurately storing and/or retrieving records of clinical care in human and veterinary
medicine. NCI is the oldest and largest research program of the 27 institutes and centers of
the NIH, which maintains the thesaurus to support the scientific research, health informa-
tion dissemination, and other activities related to the causes, prevention, diagnosis, and
treatment of cancer. FMA is developed and maintained by the Structural Informatics Group
at the University of Washington, which is a reference ontology for the domain of Human
anatomy, which is a symbolic representation of the canonical, phenotypic structure of an
organism. The disease and phenotype track has two test cases that involve four biomedical
ontologies covering the disease and phenotype domains. The Human Phenotype Ontology
(HP) (https://hpo.jax.org, accessed on 6 December 2021) is a standardized vocabulary of
phenotypic abnormalities that have been seen in human disease, of which the data can
be used for clinical diagnostics, for mapping between phenotypes of model organisms,
and as a standard vocabulary for clinical database. The Human Disease Ontology (DOID)
(https://disease-ontology.org/, accessed on 6 December 2021) was developed in 2003 at
Northwestern University to address the need for a purpose-built ontology that covers
the full spectrum of disease concepts annotated within biomedical repositories within an
ontological framework that is extensible to meet community needs. Mammalian Phenotype
Ontology (MP) (http://www.informatics.jax.org/vocab/mp_ontology, accessed on 6 De-
cember 2021) was developed by MGI, which describes the terminologies on the observable
morphological, physiological, behavioral, and other characteristics of mammalian organ-
isms that are manifested through development and lifespan. Orphanet and Rare Diseases
Ontology (ORDO) (https://www.ebi.ac.uk/ols/ontologies/ordo, accessed on 6 December
2021) was jointly developed by Orphanet and the EBI to provide a structured vocabulary for
rare diseases capturing relationships between diseases, genes, and other relevant features
and forms a useful resource for the computational analysis of rare diseases.

In the experiment, we compare the NSGA-II [35] and MOEA/D [26]-based ontology
matching techniques and OAEI participants. The configurations of NSGA-II and MOEA/D
are given in Table 2. The specific evolutionary operators are referenced from their literature.
The knee solution is such a particular solution on the PF that the improvement of any one
of its objectives yields significant deterioration on the others. Since there is a link between
the knee solutions in bi-criteria problems and the preferred methodologies when viewed
from a conflicting bi-criterion [36], in this paper, we take three knee solutions in the PF as
the output of MOEA, i.e., the solutions with the best f-measure, the best precision, and the
best recall.

Table 2. The parameters used by NSGA-II and MOEA/D.

Population Size Selection Rate Crossover Rate Mutation Rate Maximum Generations

NSGA-II 201 0.8 0.98 0.05 300
MOEA/D 201 0.8 0.98 0.05 300

http://www.informatics.jax.org/searches/AMA_form.shtml
http://www.informatics.jax.org/searches/AMA_form.shtml
www.cancer.gov/cancertopics/cancerlibrary/terminologyresources
http://www.informatics.jax.org/mgihome/projects/aboutmgi.shtml
https://datascience.cancer.gov/
https://hpo.jax.org
https://disease-ontology.org/
http://www.informatics.jax.org/vocab/mp_ontology
https://www.ebi.ac.uk/ols/ontologies/ordo
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5.2. Experimental Results

Table 3 compares three MOEA-based matching technique in terms of the alignment’s
quality. In particular, we present their solutions with the best f-measure, recall, and
precision and the corresponding standard deviation values. Tables 4 and 5 present the
T-test statistical analysis [37] on the values in Table 3. Table 6 compares aMMOEA with
state-of-the-art ontology matching systems.

Table 3. Comparison among three MOEA-based matching techniques in terms of best f-measure (best recall and best
precision) and standard deviation. The symbols f , r, p, and stDev stand for f-measure, recall, precision, and standard
deviation, respectively.

ine Testing Case NSGA-II MOEA/D aMMOEA

ine f (r, p) stDev f (p, r) stDev f (p, r) stDev

ine Anatomy 0.85 (0.89, 0.76) 0.02 (0.02, 0.02) 0.85 (0.89, 0.84) 0.02 (0.02, 0.01) 0.92 (0.94, 0.96) 0.01 (0.02, 0.01)
FMA-NCI 0.87 (0.86, 0.86) 0.02 (0.02, 0.02) 0.84 (0.88, 0.78) 0.02 (0.02, 0.02) 0.93 (0.95, 0.98) 0.02 (0.02, 0.02)

FMA-SNOMED 0.71 (0.77, 0.63) 0.02 (0.02, 0.01) 0.65 (0.62, 0.75) 0.01 (0.01, 0.01) 0.84 (0.86, 0.88) 0.01 (0.02, 0.01)
NCI-SNOMED 0.68 (0.69, 0.64) 0.01 (0.01, 0.02) 0.68 (0.65, 0.70) 0.02 (0.02, 0.03) 0.77 (0.77, 0.80) 0.01 (0.01, 0.01)

HP-MP 0.55 (0.47, 0.57) 0.02 (0.02, 0.01) 0.71 (0.68, 0.72) 0.02 (0.02, 0.02) 0.85 (0.78, 0.89) 0.01 (0.01, 0.02)
DOID-ORDO 0.81 (0.83, 0.80) 0.01 (0.01, 0.01) 0.84 (0.83, 0.85) 0.02 (0.03, 0.01) 0.93 (0.93, 0.97) 0.02 (0.02, 0.02)

ine

Table 4. t-Test’s t-value on the alignment’s quality.

ine Testing Case t-Value t-Value

ine (NSGA-II, aMMOEA) (MOEA/D, aMMOEA)
f-measure (recall, precision) f-measure (recall, precision)

ine Anatomy −17.14 (−9.68, −48.98) −17.14 (−9.68, −46.47)
FMA-NCI −11.61 (−17.42, −23.23) −17.42 (−13.55, −38.72)

FMA-SNOMED −31.84 (−17.42, −6.82) −73.58 (−58.78, −50.34)
NCI-SNOMED −34.85 (−30.98, −39.19) −22.04 (−29.39, −17.32)

HP-MP −73.48 (−75.93, −78.38) −34.29 (−24.49, −32.92)
DOID-ORDO −29.39 (−24.49, −41.64) −17.42 (−15.19, −29.39)

ine

Table 5. t-Test’s p-value on the alignment’s quality.

ine Testing Case p-Value p-Value

ine (NSGA-II, aMMOEA) (MOEA/D, aMMOEA)
f-measure (recall, precision) f-measure (recall, precision)

ine Anatomy 0.0185 (0.0327, 0.0064) 0.0185 (0.0327, 0.0068)
FMA-NCI 0.0273 (0.0182, 0.0136) 0.0182 (0.0234, 0.0082)

FMA-SNOMED 0.0099 (0.0182, 0.0463) 0.0043 (0.0054, 0.0063)
NCI-SNOMED 0.0091 (0.0102, 0.0051) 0.0144 (0.0108, 0.0183)

HP-MP 0.0043 (0.0041, 0.0040) 0.0092 (0.0129, 0.0096)
DOID-ORDO 0.0108 (0.0129, 0.0076) 0.0182 (0.0209, 0.0108)

ine

Since aMMOEA maintains the diversity of solutions in both the objective space and
decision space and takes recall into consideration, it is more likely to provide better solu-
tions than NSGA-II and MOEA/D, which consider diversity in the objective space only.
In addition, the NSGA-II and MOEA/D-based matching techniques aim to address the
ontology meta-matching problem, which optimizes the aggregating weights for different
similarity measures. When dealing with a large-scale issue, such as the biomedical on-
tology matching problem, it is difficult to ensure their convergence to the PF. AMMOEA
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introduces the GM to adaptively ensure the algorithm’s convergence, which is able to
effectively determine high-quality solutions. It can be seen from Tables 3–5 that aMMOEA’s
statistically outperforms the other two MOEA-based matching techniques on all test cases
at the 5% significance level. Finally, the two existing MOEA-based matching techniques do
not take into consideration the conservativity of the alignment, while this work maximizes
the alignment’s conservativity as one of the objectives and is able to ensure the solutions’
convergence to the true PF. In Table 6, aMMOEA’s solutions with the best f-measure are also
generally better than the other state-of-the-art ontology matching systems. To conclude, the
aMMOEA-based biomedical ontology matching technique is able to effectively determine
diverse solutions and to provide more options for the decision maker.

Table 6. Comparison with OAEI participants in terms of f-measure.

ine Testing Case AML LogMap XMap DOME POMAP++ aMMOEA

ine Anatomy 0.94 0.89 0.89 0.76 0.89 0.92
FMA-NCI 0.93 0.92 0.86 0.86 0.88 0.93

FMA-SNOMED 0.83 0.79 0.77 0.33 0.40 0.84
NCI-SNOMED 0.80 0.77 0.69 0.64 0.68 0.77

HP-MP 0.84 0.85 0.47 0.47 0.68 0.85
DOID-ORDO 0.64 0.84 0.70 0.60 0.83 0.93
ine Average 0.83 0.84 0.73 0.61 0.72 0.87

ine

5.3. Computational Complexity on Adaptive Multi-Modal Multi-Objective
Evolutionary Algorithm

The time complexity of non-dominated sorting is O(N2), where N is the population
size. The time complexity of updating GM and of generating the new individual are
both K × O(N/K)D = O(ND), where K and D are, respectively, the number of sub-
populations and decision variables. With respect to the time complexity of the selection
operator and the adaptive population maintenance, Hamming distance calculation has a
time complexity of O(N/K)D = O(ND), the non-dominated sorting’s complexity here
is K × O(N/K)2) = O(N2/K), and the crowd distance calculation’s time complexity
is K × O((N/K) log N/K) = O(N log N/K). To sum up, the total time complexity of
aMMOEA is O(MaximumGen× N(N + D)).

6. Conclusions and Future Work

Due to the large-scale entities, the complex vocabularies, and the increasing semantic
richness between the biomedical concepts, effectively determining high-quality biomedical
alignment is a challenge. To face this challenge, this work proposes an aMMOEA-based
biomedical ontology matching technique. In particular, we first construct a novel opti-
mization model to define the biomedical ontology matching problem. After analyzing this
problem’s essence, we present a problem-specific aMMOEA to address it. The proposed
aMMOEA uses the GM to adaptively guide the algorithm’s sub-populations’ search direc-
tions, which is able to ensure the solutions’ convergence in the objective space and diversity
in both the objective and decision spaces. The experiment uses OAEI’s biomedical tracks
to test aMMOEA’s performance, and the experimental results show that aMMOEA is able
to effectively match the biomedical ontologies and to provide diverse options for DMs.

In the future, we are interested in further improving aMMOEA by finding the complex
ontology alignment, i.e., the cardinality of the alignment could be many to many and
the relationships between the entities could be subsumption. Additionally, the efficient
ontology partition algorithm could be used to convert the large-scale problem into small-
scale ones and is able to reduce the matching process’s memory consumption and run time.
To facilitate the application of biomedical ontology alignments in the clinical diagnosis, we
need to develop a simple but clear way of explaining the alignment for decision makers.
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