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Simple Summary: The spatial distribution and invasion risk of 10 intentionally introduced alien
plant species (IIAPS) in South Korea were predicted from a species distribution model via a max-
imum entropy modeling approach. According to the model predictions, future environmental
changes are likely to enlarge the range of the spatial distribution of all studied IIAPS in South Korea
except Medicago sativa. We classified the IIAPS into three categories based on their spatial distribu-
tion and potential to spread; this revealed that four species (Coreopsis lanceolate, Eragrostis curvula,
Ageratina altissima, and Lolium perenne) have the highest potential for invasion. Moreover, we clas-
sified invasion risk into three categories, low, moderate, and high, and estimated the area in each
category. We found that, under current conditions, much of the country is at low risk (47.96%) of
invasion, but by 2050 >54% of the country’s total area will be at high risk of invasion by IIAPS.
Serious invasion of IIAPS into cropland, pastures, and forests results in the loss of native biodiversity
and damage to the national economy. Therefore, immediate action is required to control and manage
IIAPS in South Korea.

Abstract: Predicting the regions at risk of invasion from IIAPS is an integral horizon-scanning
activity that plays a crucial role in preventing, controlling, and eradicating invasive species. Here, we
quantify the spatial distribution area and invasion risk of IIAPS using a species distribution model
under different levels of environmental change in South Korea. From the model predictions, the
current average spatial extent of the 10 IIAPS is 33,948 km2, and the individual spatial extents are
estimated to change by −7% to 150% by 2050 and by −9% to 156% by 2070. The spatial invasion
risk assessment shows that, currently, moderate-to-high invasion risk is limited to coastal areas and
densely populated metropolitan cities (e.g., Seoul, Busan, and Gwangju), but that the area with this
level of risk is expected to spread toward the central and northern regions of the country in the future,
covering 86.21% of the total area of the country by 2070. These results demonstrate that the risk
of invasion by IIAPS is estimated to enlarge across the whole country under future environmental
changes. The modeling system provided in this study may contribute to the initial control and
strategic management of IIAPS to maintain the dynamic ecosystems of South Korea.

Keywords: climate change; intentionally introduced alien plants; invasion risk; land cover change;
province; spatial distribution
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1. Introduction

Invasion risk is the likelihood that non-native species will be introduced to and
become established within a novel ecosystem, either intentionally or inadvertently, thereby
threatening native biodiversity, ecosystem services, and human well-being [1–3]. Some
alien plant species are intentionally introduced to non-native regions because of their
importance in agriculture, horticulture, pastoral productivity, or land rehabilitation [4,5].
After the successful establishment and proliferation of introduced species, many become
dominant in diverse areas with subsequent invasion of non-target ecosystems along various
pathways [6], ultimately resulting in unexpected conservation challenges [5].

Usually, the non-native plant species have some specific functional traits [7,8] that sup-
port the introduction, naturalization, and invasion of new areas [9]. They are often ruderal,
growing along transportation corridors, irrigation canals, the seashore, and riversides as
noxious weeds [10]. Increasing the number of non-native species in some regions amplifies
the magnitude of invasion risk [11]. Uncontrolled expansion of such species alters the pools
and fluxes of an ecosystem and can cause grievous reductions in crop yields, resulting in
substantial economic losses [2,12–15].

Global climate change may exacerbate the risk of invasion of alien plant species
through ecosystem destruction and increased competition within native ecological systems
because of elevated carbon dioxide (CO2) [16,17]. In addition, climate change encourages
rapid range shift and changes the life cycle, life-history traits, and population dynamics of
invasive plants [18–21]. In the last century, the global temperature increased by 0.78 ◦C
and is projected to increase by 2.6 ◦C to 4.8 ◦C by 2100 [22]. In addition to climate change,
changes in land cover are important to the introduction, establishment, and spread of alien
plant species, including invasive weeds [23]. Land cover changes may provide a suitable
habitat for particular plants to invade an area, inhibiting others and acting as a dispersal
corridor [24–26]. Land cover changes such as forest clearing for urbanization, agriculture,
or pastoral purposes facilitate biological invasion [26].

Alien plant species were first introduced into South Korea prior to 1949 for agricultural
or horticultural reasons, pastoral land management, or erosion control [27]. Eighty-one
taxa of alien plants introduced into South Korea have successfully naturalized and se-
riously threatened native plant communities growing in fields, orchards, forests, and
pastures [28,29]. Jeju province has the highest number of alien plant species in South Ko-
rea [27,28]. It has been reported that invasive and alien plant species cause approximately
19.6 million USD of economic damage per year in South Korea, and the government invests
about 4.3 million USD per year in the management of invasive weeds, including control
and eradication [15]. Moreover, South Korea’s land cover has altered rapidly due to the
development of the modern transportation system, industrialization, and coastal land
reclamation [30,31]. Under these circumstances, the issue of how to monitor and manage
intentionally introduced alien plant species (IIAPS) in South Korea should be an important
subject of discussion.

A maximum entropy (MaxEnt) modeling approach is normally required to assess
the spatial distribution of IIAPS and estimate their potential invasion risk under climate
and land cover changes [32–35]. Although MaxEnt is widely regarded as a suitable tool,
almost no MaxEnt studies on the spatial distribution of IIAPS have been reported in South
Korea: we designed this study to bridge this gap. The main objectives of this study were
(1) to analyze the impacts of bioclimatic, land cover change, road transportation, and water
proximity variables on the occurrence probability of IIAPS; (2) to evaluate the spatial
distribution of IIAPS with the MaxEnt algorithm and estimate the risk of spatial invasion
under current and future environmental changes in South Korea; and (3) to classify the
IIAPS into groups according to their spatial distribution and invasion potential, to prioritize
control and management strategies. We estimated three categories of spatial invasion risk—
low, moderate, and high—across the country and existing provinces. Our study shows
that future environmental changes increased both the extent and the intensity of spatial
invasion of IIAPS in South Korea and that the studied species could disrupt ecosystems
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on a large scale in the future. The modeling system used sheds light on the potential
spatial distribution of invasive weeds and IIAPS in the near future and the associated
risk assessments.

2. Materials and Methods
2.1. Study Areas

South Korea is located in East Asia and constitutes the southern portion of the Korean
Peninsula. South Korea has a total landmass of 98,477 km2, excluding the demilitarized
zone along the boundary with North Korea (Figure 1). It is surrounded by three seas
along the east (East Sea), west (Yellow Sea), and south (East China Sea) and has a coastline
approximately 2413 km in length [36]. The country is mostly mountainous (approximately
70% of the country) in the east and north, with lowlands and flat plains occupying the
remaining 30% in the west and south [36].

Figure 1. Administrative divisions (major cities and provinces) and geographical boundaries of
South Korea.

The climate of South Korea can be mainly divided into cold-temperate, temperate,
and warm-temperate regions, located in the northern region plus high mountains, the
central region, and the southern region, respectively, with four distinct seasons of spring,
summer, autumn, and winter [37]. The winter is long, dry, and cold, while the summer is
short, humid, and hot. The autumn and spring are sunny and usually dry and pleasant.
The average winter temperatures range between −6 ◦C and 3 ◦C, and the average summer
temperatures range between 23 ◦C and 26 ◦C. Similarly, annual precipitation records
1000 to 1800 mm [38]. The southern coast, adjacent mountains, and Jeju Island have the
largest amount of rainfall, recording over 1500 mm in a year [38].

The vegetation of South Korea is primarily divided into alpine, subalpine, coniferous,
deciduous broadleaf, and temperate broadleaf. The overall biodiversity has been reported
to comprise 41,483 species, of which 2177 are endemic [36,37]. Of the total species, 5308 are
vascular plants, 22,612 are invertebrates, and 1899 are vertebrates [36]. The current study
focused on 250 districts in 17 administration divisions (provinces and metropolitan cities)
in South Korea (Figure 1).

2.2. Occurrence of Intentionally Introduced Alien Plant Species

Ten alien plant species (Table 1 and Figure 2) introduced intentionally in South Ko-
rea were selected based on their rapid range expansion, their degree of invasion into
natural ecosystems [27,28], and the availability of minimum species occurrence records.
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Species presence points for such species were noted through field surveys performed from
March 2014 to November 2020, and additional presence points were collected from the
literature [28,39]. We used Garmin GPSmap 64SX (Garmin, Ltd., Seoul, Korea) to record
the occurrence and location of species to measure the dispersal of invasive weeds. The
species presence survey, plot design, and survey techniques were all conducted according
to the National Institute of Ecology [28]. Multiple species presence points in the same
grid at a spatial resolution of 1 km2 were erased and then retained as a single unique
point per grid by applying the spatially rarefy occurrence data tool using the SDM toolbox
2.4 in the Arc GIS [40]. This avoids incorrect inflation of model outputs and overfitting
because of the spatial autocorrelation [41]. The total species occurrence points for the
10 IIAPS were reduced from 7389 to 4671 after spatial filtering, and those points were
employed in the MaxEnt modeling. The species occurrence for each IIAPS is presented in
the Supplementary Figure S1a–j.

Table 1. List of intentionally introduced alien plant species (IIAPS) used in the species distribution model.

IAPAS
Group a ID No. Scientific Name Common Name Native Range Mode of

Introduction
Introduction

Period
Degree of

Naturalization

Group 1 I223 Medicago sativa Alfalfa Mediterranean Intentional
(Pasture) Before 1949 III

Group 2

I072 Amorpha fruticosa Bastard indigo bush North America Intentional
(Erosion control) Before 1949 V

I138 Dactylis glomerata Orchard grass North Africa Intentional
(Pasture) Before 1949 V

I165 Festuca arundinacea Tall fescue North Africa Intentional
(Pasture) Before 1970 V

I176 Helianthus tuberosus Jerusalem artichoke North America Intentional
(medicinal) Before 1911 V

I258 Poa pratensis Kentucky bluegrass Temperate zone Intentional
(Erosion control) Before 1949 IV

Group 3

I129 Coreopsis lanceolata Lance leaf coreopsis North America Intentional
(Erosion control) Before 1963 V

I150 Eragrostis curvula African love grass North Africa Intentional
(Erosion control) Before 1990 IV

I157 Ageratina altissima White snakeroot North America Intentional
(Gardening) Before 1990 IV

I210 Lolium perenne Ryegrass North Africa Intentional
(Pasture) Before 1970 IV

a Division into group 1, group 2, or group 3 was based on the principal component analysis of the spatial distribution of intentionally
introduced alien plant species (IIAPS) shown in Figure 3. The Roman numerals I to IV in the last column indicate the degree of naturalization
of the IIAPS. I, rarely; II, low density and distributed in a small area; III, low density but distributed widely; IV, high density and distributed
locally; V, high density and distributed widely.

2.3. Environmental Variables

We collected raw data for bioclimatic variables [42,43], including monthly minimum
and maximum temperatures and monthly precipitation, from the Korea Meteorological
Administration (KMA). We estimated climate change scenarios according to the representa-
tive concentration pathways (RCPs) of 4.5 and 8.5 in 2050 and 2070, respectively, which
suggest that the projected global mean surface temperature will increase by 1.4–1.8 ◦C and
2.0–3.7 ◦C, respectively, compared with current levels [22].

The physical properties of the earth’s surface, atmosphere, cryosphere, and ocean
are all considered in global circulation models (GCMs). These models keep track of
the basic systems that adapt to climate change (e.g., surface albedo changes, aerosols,
solar irradiance, and concentrations of greenhouse gases) [44]. The HadGEM3-RA is
a regional atmospheric model developed by the Meteorological Office Hadley Center
(www.metoffice.gov.uk, accessed on 29 July 2021) and utilized by the KMA for dynamical
downscaling to seasonal and continental scales. It was used together with the Coordinated

www.metoffice.gov.uk
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Regional Climate Downscaling Experiment [45] to prepare the national climate change
scenario for South Korea. The HadGEM3-RA reproduces small-scale features, such as the
coastline and intricate topography of the Korean Peninsula, more realistically than other
GCMs because of their high resolution [45,46]. Therefore, we used the HadGEM3-RA to
prepare the climate change scenarios (RCP 4.5 and RCP 8.5) using the “Dismo Package” in
R [47], similar to previous studies performed in South Korea [48–53].

Figure 2. Photographs of ten introduced alien plant species in South Korea. (A) Medicago sativa;
(B) Amorpha fruticose; (C) Dactylis glomerate; (D) Festuca arundinacea; (E) Helianthus tuberosus;
(F) Poa pratensis; (G) Coreopsis lanceolate; (H) Eragrostis curvula; (I) Ageratina altissima; and
(J) Lolium perenne.

The current climate was determined from average climatic data recorded from 1950
to 2010, and the future climate temperatures for 2050 and 2070 were estimated from
predictions for 2046 to 2055 and 2066 to 2075, respectively. Each climatic dataset had a
spatial resolution of 30 arc seconds (~1 km2 at the equator), with the same spatial extent
and geographical coordination system (WGS 1984 datum).

In addition to the bioclimatic variables, we used three other environmental variables,
including seven categories of land cover (e.g., agricultural land, grassland, forest, urban
area, water, wetland, and barren land), distance from roads (d-road), and distance from
water (d-water) in the modeling of invasive weeds. The land cover change scenarios were
downloaded from the Korea Adaptation Center for Climate Change (https://kaccc.kei.re.kr,
accessed on 11 August 2021).

Roads and highways serve as ideal habitats and corridors for IIAPS to spread and
proliferate. IIAPS that have become established along roads can serve as a source of
invasion into the adjacent forests, grassland, and agricultural land [54]. South Korea is
rich in water resources, with thousands of streams, rivers, and lakes across the country.
IIAPS grow in the disturbed areas close to these water sources. Streams and rivers thus
have an important role in IIAPS seed dispersal. Therefore, we prepared d-road and

https://kaccc.kei.re.kr
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d-water in ArcGIS 10.3 (Esri, Redlands, CA, USA) using the Euclidian distance function
with a resolution of 1 km2. To eliminate autocorrelation (r2 > 0.75, p = 0.05) among
the environmental variables, we used Spearman’s correlation on pairs with the Proc
Corr function of SAS 9.4 (SAS Institute, Inc., Cary, NC, USA). We picked nine important
variables with low correlation and high predictive performance, as in Shin et al. [50] and
Hong et al. [55] (Table S1).

Figure 3. Flow—chart of the development and building blocks of the MaxEnt model and its practical application in
estimating the invasion risk of intentionally introduced alien plant species in South Korea.

2.4. Species Distribution Modeling

Species distribution modeling (SDM) is an approach for estimating a species’ distri-
bution throughout global space and time by applying a correlation between the species’
geographic occurrence and its surrounding environment [56]. The SDM approach has been
used in various sectors of ecology over the last decade to predict species’ potential habitat
under future climate changes [57], including IIAPS [49,58,59]. Various SDM tools such
as machine learning, statistical regression, and spatial interpolation are currently used to
model species distribution [56]. Among these tools, MaxEnt is a machine-learning model-
ing technique for predicting suitable habitats. It is used worldwide because it exhibits a
high predictive performance from small sets of species presence data and environmental
variables [60]. Thus, we performed MaxEnt modeling using “Biomod2” Package v.3.5.1,
selecting a single model MAXENT.Phillips.2 [61] for the prediction of spatial distributions
of ten selected IIAPS in South Korea. In this study, 75% of the species occurrence data
were used for model calibration, and the remaining 25% were used for model valida-
tion. The MaxEnt model requires background points (e.g., pseudo-absences): we used
ArcGIS 10.3 to determine 15,052 background points from the study area, as suggested by
Barbet-Massin et al. [62]. The other options in the MaxEnt model were set to the default
values, and the model was run 100 times.

2.5. Model Evaluation and Validation

To investigate the goodness-of-fit of the model used in this study, we examined three
evaluating parameters: the area under the curve (AUC) values of the receiver operating
characteristic (ROC) curves [63], the true skill statistic (TSS) [64], and the kappa statistic.
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The AUC, TSS, and kappa values were calculated from the test data points. The AUC is a
threshold-independent technique for distinguishing presence from an absence that is used
to test model outcomes. The AUC value ranges from 0 to 1 and evaluates the performance
of a model [65].

The AUC value is independent of the data size (prevalence); however, its use can be
criticized because it weights commission and omission errors equally and may avoid true
predictions [66]. In particular, expanding the geographical range outside the occurrence
range produces a high AUC value (overfitting), resulting in a misleading evaluation of the
model [66]. The model was graded as follows, according to the AUC values: poor (0.6–0.7),
fair (0.7–0.8), good (0.8–0.9), or excellent (0.9–1.0) [67]. The TSS accounts for both omission
and commission errors, and it is used as an alternative criterion to authenticate model
efficiency [64,68]. Similarly, the kappa value accesses the accuracy of prediction in com-
parison with what could have been gained by chance alone [64]. Both the TSS and kappa
statistic range from −1 (poor agreement) to +1 (perfect prediction) [64]. We used all three
parameters to confirm and validate model performance. Additionally, we performed a
jackknife test to quantify the significance of the bioclimatic and environmental variables
in the model performance. The binary habitat suitability maps obtained from MaxEnt
modeling were used to assess the spatial distribution and spatial invasion of IIAPS. The
database and detailed methodology are summarized in a flowchart in Figure 3.

2.6. Prediction of the Spatial Distribution of IIAPS

We estimated the areas of the current and future spatial distributions of each IIAPS and
calculated the percentage changes for 2050 and 2070 (for both RCP 4.5 and RCP 8.5) relative
to the current distribution area. To understand the differences in the spatial distribution
and ordering of the samples [69], principal component analysis (PCA) was performed
based on the predicted area covered by each IIAPS in the different administrative divisions
of South Korea under current and future environmental conditions. The average spatial
distributions of IIAPS in different groups were plotted with Map Algebra and the Spatial
Analyst tool in ArcGIS 10.3 and compared between the different groups. Percentage
changes in the average area for each group in 2050 and 2070 relative to the current area
were calculated and expressed in graphical form.

2.7. Prediction of the Spatial Invasion Risk of IIAPS

The binary spatial distribution maps of the 10 IIAPS were summed with the Raster
3.4 package in GNU R4.03 to determine an aggregated map of spatial distribution under
current and future (RCP 4.5 and RCP 8.5) environmental conditions. The aggregated
spatial distribution map was used to estimate the invasion risk map, in which cells with
higher species richness indicate high invasion risk and greater potential environmental
problems. The current and future spatial invasion risks of the IIAPS were classified into
three categories according to the level of species richness in each cell: low risk (<33%),
moderate risk (>33% to 66%), and high risk (>66% to 100%). We used a linear scale and
the method of Ahmad et al. [21], with minor modifications. The areas of low, moderate,
and high invasion risk were estimated with the raster calculator in the Spatial Analyst tool
in ArcGIS 10.3. We then calculated the area covered by each risk category relative to the
country’s total area (under both RCP 4.5 and RCP 8.5). Similarly, we calculated the area
covered by each risk category within an administrative division relative to the total area of
that division, under both RCP 4.5 and 8.5. Moreover, to understand the invasion risk at the
local level, we determined the average invasion risk map (under RCP 4.5 and RCP 8.5) for
250 districts using the zonal statistics in the Spatial Analyst tool in ArcGIS 10.3.

3. Results
3.1. Selection and Evaluation of Variables

To conduct the modeling proposed in this study and to select independent envi-
ronmental variables, we measured Spearman’s correlations among three environmental
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variables and 19 bioclimatic variables (Table S1). Six bioclimatic variables (annual mean
temperature, isothermality, temperature seasonality, annual precipitation, precipitation
in the wettest month, and precipitation in the driest month) and three environmental
variables (distance from roads, distance from water, and land cover change) were ulti-
mately selected for MaxEnt modeling based on their weak correlation with each other
(r < 0.60; Table S2). These nine variables were considered the most influential factors for
the occurrence probability of IIAPS (Table 2).

Table 2. Contribution of bioclimatic and environmental variables in the model.

Name of Species Bio1 Bio3 Bio4 Bio12 Bio13 Bio14 d-
Road

d-
Water

Land
Cover

Amorpha fruticosa 6.15 a 10.73 6.72 8.54 0.76 11.28 4.09 9.51 42.22
Coreopsis lanceolata 8.50 4.93 10.03 7.98 3.88 2.23 8.27 9.41 44.77
Dactylis glomerata 6.03 5.59 12.62 0.67 20.79 5.74 3.06 1.07 44.42
Eragrostis curvula 23.67 13.53 32.39 2.07 8.48 6.23 1.70 0.00 11.93
Ageratina altissima 4.18 18.88 12.72 3.37 42.98 11.10 4.94 0.42 1.42
Festuca arundinacea 16.33 11.51 0.88 6.44 8.33 3.77 2.33 2.01 48.40
Helianthus tuberosus 8.67 1.50 12.37 2.28 0.42 0.87 2.00 2.49 69.41

Lolium perenne 11.83 1.15 7.71 37.50 3.72 2.40 3.73 0.52 31.42
Medicago sativa 1.15 0.68 15.34 34.30 11.17 1.66 0.16 0.17 35.37

Poa pratensis 2.05 11.51 5.51 14.09 8.43 14.06 1.65 1.03 41.67
a Percentage contribution. The variables Bio1, Bio3, Bio4, Bio12, Bio13, and Bio14 indicate six bioclimatic variables:
annual mean temperature, isothermality, temperature seasonality, annual precipitation, precipitation in the
wettest month, and precipitation in the driest month, respectively. Similarly, the variables d-road, d-water, and
land cover indicate three environmental variables: distance from roads, distance from water, and land cover
change, respectively.

Next, we determined the contribution of the nine variables to the MaxEnt model and
assessed the degree of importance of each variable in the model. We measured the percent
contribution of each variable to model performance using a heuristic approach [70]. In this
approach, the contribution of a variable is estimated from the increase in model gain it pro-
vides [70]. Among the nine variables selected above, land cover change had the highest rel-
ative contribution for seven of the IIAPS [Helianthus tuberosus (69.41%), Festuca arundinacea
(48.40%), Coreopsis lanceolata (44.77%), Dactylis glomerata (44.42%), Amorpha fruticosa (42.22%),
Poa pratensis (41.67%), and Medicago sativa (35.37%)]. Similarly, Bio04, Bio12, and Bio13
were the most important variables for Eragrostis curvula (32.39%), Lolium perenne (37.50%),
and Ageratina altissima (42.98%), respectively (Table 2). These results reveal that land cover
change, temperature seasonality, annual precipitation, and precipitation in the wettest
month were the most prominent driving factors for the species distribution models of the
studied IIAPS; the other variables played minor roles in this study. We assessed variable
importance using the jackknife approach [70], which measures how relevant each variable
is in explaining species distribution and how much unique information each variable
provides [71]. The jackknife test showed that five variables—annual mean temperature,
temperature seasonality, annual precipitation, precipitation in the wettest month, and land
cover change—were highly correlated in the model (Figure S2a–j).

3.2. AUC, TSS, and Kappa Values Show Excellent Model Prediction for All IIAPS

The AUC, TSS, and kappa statistics assessed model performance, presented in Table 3.
The average value of AUC was 0.767 ± 0.054, n = 10, ranging from 0.72 (D. glomerata) to
0.92 (E. rugosum), indicating that the proposed model was sufficiently accurate and that the
outputs would be close to the real distribution. The ROC curves for each studied weed
are presented in Figure S3a–j. Similarly, the average value of TSS was 0.77 ± 0.03, n = 10,
ranging between 0.72 (F. arundinacea) and 0.85 (C. lanceolata), and the mean kappa value
was 0.678 ± 0.054, n = 10, ranging between 0.57 (D. glomerata) and 0.79 (E. rugosum). These
AUC, TSS, and kappa values indicate that the observations may support the predictions
provided by the model.
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Table 3. AUC, TSS, and kappa values for each IIAPS in the model calibration.

Name of Species No. of Species
Presence Points AUC Value TSS Value Kappa Value

Amorpha fruticosa 516 0.76 0.79 0.67
Coreopsis lanceolata 806 0.73 0.85 0.66
Dactylis glomerata 634 0.72 0.81 0.57
Eragrostis curvula 110 0.75 0.77 0.67
Ageratina altissima 104 0.92 0.77 0.79
Festuca arundinacea 1076 0.73 0.72 0.64
Helianthus tuberosus 734 0.74 0.75 0.71

Lolium perenne 228 0.78 0.76 0.66
Medicago sativa 242 0.76 0.74 0.68

3.3. Environmental Changes Positively Regulate the Spatial Distribution of IIAPS in South Korea

We performed MaxEnt modeling of 10 IIAPS in South Korea, mapped the predicted
spatial distributions of each plant species (Figure S1a–j), and estimated the area (km2)
covered by each plant species both currently and in the future (2050 and 2070), under
climate change scenarios RCP 4.5 and RCP 8.5. Under the current environmental conditions,
the average IIAPS spatial extent was 33,948 km2, covering 35.74% of the country’s total
land surface; M. sativa had the highest coverage at 44,427 km2 (Table 4).

Table 4. Relative change in the spatial distribution of IIAPS in South Korea.

Species Names Current (km2)
RCP 4.5 RCP 8.5

2050 (%) 2070 (%) 2050 (%) 2070 (%)

Medicago sativa 44,427 −7 −9 −10 −16
Amorpha fruticosa 38,060 43 8 63 23
Dactylis glomerata 37,565 61 91 42 37

Festuca arundinacea 32,317 83 34 39 45
Helianthus tuberosus 38,656 65 14 33 2

Poa pratensis 34,272 41 94 42 66
Coreopsis lanceolata 30,027 98 64 101 98
Eragrostis curvula 38,113 101 92 59 98
Ageratina altissima 15,725 150 156 45 71

Lolium perenne 30,317 74 104 107 145

The model predicted that the spatial distribution of all IIAPS except M. sativa would
increase in the future under RCP 4.5. The percentage changes in spatial distribution relative
to the current distribution were estimated to range from −7% to 150% in 2050, and from
−9% to 156% in 2070 (Table 4). Similarly, under RCP 8.5, the data show percentage changes
in the spatial distributions of −10% to 107% in 2050 and from −16% to 145% in 2070
(Table 4). These results suggest that the spatial distribution of almost all of the tested IIAPS
will have increased by both 2050 and 2070. Interestingly, the percentage change in spatial
distribution was estimated to be lower under RCP 8.5 than RCP 4.5 for a number of the
IIAPS (Table 4). This indicates that the spatial extent of IIAPS may be negatively affected
by an extreme increase in global warming.

We performed PCA to determine the ordering of the IIAPS and identified three dis-
tinct groups (groups 1, 2, and 3) having similar spatial distributions and spread potential
(Figure 4). The IIAPS present in group 1 (M. sativa), group 2 (A. fruticose, D. glomerate,
F. arundinacea, H. tuberosus, and P. pratensis), and group 3 (C. lanceolate, E. curvula, E. rugosum,
and L. perenne) had small, intermediate, and large distribution areas, respectively. The
average spatial distributions of the IIAPS in each group are presented in Figure S4. We calcu-
lated the percentage change in spatial coverage for each group under RCP 4.5 (Figure 5A)
and RCP 8.5 (Figure 5B) relative to the current coverage. We found that group 3 had
the highest increase in 2050 (increases up to 92.8%) and in 2070 (increases up to 102%).
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Group 1 had the lowest percentage change with estimated reductions in the average spatial
distribution in 2050 (up to −10%) and 2070 (up to −16%).

Figure 4. Principal component analysis reveals the grouping of introduced alien plant species based
on the extent of their spatial distribution. The scientific and common names of the introduced alien
plants (I01−I10) are presented in Table 1.

3.4. Environmental Changes Increase the Spatial Invasion Risk of IIAPS in South Korea

Invasion risk estimates reveal that a non-native species can become established in a
novel ecosystem, either deliberately or haphazardly, thereby threatening the surrounding
native biodiversity. Here, we estimated the invasion risk of IIAPS based on the number of
introduced alien plant species present in a cell: cells with a higher number of IIAPS were
considered to be at a higher risk of invasion. We classified the results into three categories
of risk (low, moderate, and high). The overall invasion risk maps calculated from the
10 IIAPS under current and future (RCP 4.5 and RCP 8.5) environmental conditions are
presented in Figure 6.

Under current conditions, the risk of invasion was predicted to be high in three
provinces [Gyeonggi (e.g., Gimpo-si and Ilsanseo-gu of Goyang-si), Jeollabuk (e.g., Gimje-
si and Iksan-si), and Jeollanam (e.g., Mokpo-si)] and four metropolitan cities [Seoul (e.g.,
Seongdong-gu and Dongdaemun-gu), Busan (e.g., Gangseo-gu), Ulsan (e.g., Nam-gu), and
Gwangju (e.g., Seo-gu)] (Figures 6A and 7A), covering an estimated 31.51–70.31% of the
corresponding provinces and cities (Table 5). However, the risk of invasion was estimated
to be low to moderate in the northern part of Gyeonggi province and across most of the
Gangwon and Jeju provinces (Figure 6A).

Future environmental change increased the extent and intensity of the IIAPS invasion
in South Korea for both 2050 and 2070 (Figure 6B,C). The model predicted that most IIAPS
would retain the current spatial distribution and add significant additional suitable habitat;
therefore, the risk of invasion would be moderate to high across most of Gyeongsang-
nam province, Gyeongsangbuk province, Chungcheongbuk province, central parts of
Chungcheongnam province, three metropolitan cities (Daegu, Daejeon, and Sejong), and
southern parts of Gangwon province (Figure 6B,C and Figure 7B,C). These provinces and
metropolitan cities would have a high risk of invasion (up to 79.15%) by 2050 and 2070
(Table 5). These results indicate that future environmental changes may lead to expanded
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spatial invasion of IIAPS from the south coast and west coast areas toward the central and
northern regions.

Figure 5. Percentage change in the extent of the average spatial distribution of alien plant species in
group 1, group 2, and group 3, under the climate change scenarios RCP 4.5 (A) and RCP 8.5 (B). The
details of each group are presented in Table 1.

Figure 6. Predicted invasion risk of introduced alien plants in South Korea. The invasion risk assessment is divided into
three categories: low, moderate, and high. These three categories are indicated by yellow, red, and blue in the figure. Spatial
invasion predictions under the current (A) and future (B,C) environmental conditions in South Korea.
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Figure 7. Average invasion risk at the district level under the current (A) and future (B,C) environ-
mental conditions in South Korea. The red colors in the figure indicate the highest average invasion
risk, and the green colors indicate the lowest average invasion risk.

Table 5. Area in each invasion risk category relative to the total area of the province or major city, under current and
predicted environmental changes in South Korea.

Provinces
Total Area

(Km2) a

Current (%) b 2050 (%) c 2070 (%) d

Low Moderate High Low Moderate High Low Moderate High

Gangwon 16,503.73 72.21 20.62 6.94 36.78 45.29 17.93 36.15 41.67 22.18
Gyeonggi 9810.10 30.64 33.41 35.68 16.34 60.51 23.14 21.34 53.88 24.78
Incheon 614.89 17.27 34.32 45.63 16.53 71.34 12.13 23.68 63.59 12.74

Seoul 605.70 6.18 23.51 70.31 21.95 75.84 2.21 32.75 67.09 0.16
Gyeongsangbuk 18,922.94 48.49 23.36 28.13 6.73 14.12 79.15 5.73 22.07 72.20

Chungcheongbuk 7415.68 50.23 20.74 29.02 8.09 18.47 73.44 4.73 23.22 72.05
Chungcheongnam 7637.76 39.75 20.54 39.60 8.20 23.58 68.22 11.81 35.51 52.69

Sejong 465.24 21.33 21.74 56.93 2.77 18.53 78.70 5.27 30.39 64.35
Daejeon 539.55 38.72 19.04 42.24 19.17 52.54 28.28 9.71 44.62 45.67

Jeollabuk 7716.82 47.17 16.15 36.67 9.28 22.07 68.65 6.25 26.89 66.87
Daegu 880.84 46.35 16.02 37.63 24.38 31.27 44.34 26.64 45.33 28.03

Gyeongsangnam 9809.70 39.45 25.01 35.46 18.30 17.55 64.15 7.53 32.56 59.92
Ulsan 1029.49 40.58 27.72 31.51 27.03 42.72 30.25 19.73 58.85 21.42

Jeollanam 10,180.34 46.09 17.38 36.24 20.79 32.52 46.69 18.59 47.81 33.60
Busan 673.03 29.86 16.86 53.28 80.23 18.14 1.63 16.04 76.83 7.13

Gwangju 498.36 24.85 10.77 64.37 19.74 29.56 50.70 19.17 34.78 46.05
Jeju 1674.96 45.33 54.26 0.18 57.71 42.29 0.00 59.84 40.15 0.00

a, Estimated area of the different provinces and major cities in South Korea. b,c,d, The average percentage across the results for RCP 4.5 and
RCP 8.5.

Under current conditions, the proportions of areas estimated to be at low, moderate,
and high risk comprise 47.96%, 22.88%, and 29.14% of the country’s total land mass,
respectively (Figure 8A). Our study predicts that 82.36% and 86.21% of the country’s total
area may be at moderate or high risk of invasion by 2050 and 2070, respectively, under
RCP 4.5 (Figure 8A). Similarly, under RCP 8.5, 81.31% and 80.99% of the country’s total
area may be at moderate or high risk of IIAPS invasion by 2050 and 2070, respectively
(Figure 8B). These results show that the rate of spatial invasion by IIAPS may increase
significantly in South Korea with future environmental changes.
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Figure 8. Estimates of the area assigned to different categories of invasion risk relative to the total
area of South Korea. The numbers on the y-axis indicate the percentage area categorized as at low,
moderate, or high risk of invasion under current and future environmental conditions. (A) RCP 4.5
and (B) RCP 8.5.

4. Discussion

Our study provides several prominent findings, as follows: (1) Of the nine environ-
mental variables used in the model, land cover change was the most important for the
future spatial distribution of IIAPS (Table 2). (2) Under future scenarios of environmental
change in South Korea, alien plant species introduced for a particular purpose will not
remain limited to the introduced area but will spread and invade non-targeted ecosystems,
including croplands, pasture, and forest. (3) Current invasion risk is estimated to be high
in the coastal areas and some densely populated metropolitan cities (e.g., Seoul, Busan, and
Gwangju; Figure 6A) but, in the future, invasion risk is predicted to increase in the central
and northern regions, leading to approximately 86.21% of the total area of the country
being at high or moderate risk of invasion (Figure 6B,C). (4) Extreme climate change may
not be favorable overall to alien and invasive species: the relative change in IIAPS coverage
was generally lower under climate change scenario RCP 8.5 than under RCP 4.5 (Table 4).

Of the total number of alien and invasive plant species recorded in South Korea, 25.31%
were intentionally introduced into the country [27]. The alien plants have been intentionally
introduced into South Korea for a variety of purposes, including erosion control in the
mountains (e.g., A. fruticose, C. lanceolate, and E. curvula), grassland management for
commercial livestock farming (e.g., M. sativa, F. arundinacea, and L. perenne), ornamental
use (e.g., E. rugosum), and medical use (e.g., H. tuberosus; Table 1) [27]. These species can
become well adapted, cultivated, and naturalized in local and systemic areas [13,20,55,72].
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Some now exist as ruderal species colonizing disturbed land, such as roads, shorelines,
mining sites, and recreational parks [27,29]. Ironically, the ecological niches of these species
trigger their negative effects on agriculture, horticulture, native ecosystems, the economy,
crop production, livestock, and wild ungulates [73]. E. rugosum is now listed as the most
ecologically disruptive weed in South Korea [27], and other species may become serious
threats to the natural ecosystem. With these phenomena on the rise in South Korea, the
issues of how to monitor IIAPS, predict their spatial distribution and manage invasion
risk are being raised. Therefore, modern modeling systems are now an essential tool for
protecting the natural ecosystem.

MaxEnt is a presence-only modeling approach that is suitable for cases in which true
absence data is lacking. It is commonly used for modeling invasive species because such
species’ ranges are increasing and have not yet reached equilibrium; the absence of data for
invasive species is therefore untrustworthy and may lead to incorrect interpretation [32,33].
MaxEnt is a generative strategy that uses environmental data from across the study area
rather than a discriminative approach and has the advantage of being more efficient when
presence data are not sufficient [74]. The MaxEnt model produces robust estimates of
climatically suitable habitats for invasive species at small spatial scales and with a limited
dataset [75,76]. Although recent developments are attempting to solve some of the limita-
tions of MaxEnt modeling, major drawbacks remain, including the risk of overfitting, which
limits the model’s ability to generalize well to new data. The ’regularization multiplier’
parameter in MaxEnt attempts to solve this by reducing the model’s complexity, resulting
in a less localized prediction [32]. Another important drawback to MaxEnt modeling is the
accuracy of presence-only modeling related to biases in the species occurrence localities.
This study spatially rarefied the presence points using the Arc GIS SDM toolbox 2.4 to
reduce species occurrence biases.

In addition to MaxEnt, the most popular machine-learning models for studying
species distribution are artificial neural networks (ANNs), random forests (RFs), and
genetic algorithms for rule-set production (GARPs). These models are powerful tools
for solving complex dependencies, and both numerical and categorical environmental
variables can be used as input variables in such models [77]. An ANN consists of a
network of artificial neurons or nodes, and all information transfer between neurons is
weighted. ANNs can operate like multiple regressions, and their accuracy is controlled by
the weight decay of the links and the number of hidden neurons [77]. They show good
performance with complicated species–environment relationships. RFs are multi-decision
tree ensemble classifiers that use Breiman’s random forest algorithm for classification and
regression [78]. They are unaffected by multicollinearity, excel at dealing with correlated
variables, and run efficiently with large databases [76,78]. Similarly, GARPs are SDMs that
use a genetic algorithm to create random mathematical rules that can be interpreted as
limiting environmental circumstances and specific species–environment correlations [77,79].
Each rule is treated as a gene and sets of genes are combined at random to build a large
number of models reflecting the possibility of species occurrence [77]. Although all the
models described above have their own unique properties for predicting ecological niches,
MaxEnt is considered an effective SDM tool for robust predictions across many species
and regions. It is also relatively user-friendly as the software can import GIS layers of
environmental variables directly using presence-only species occurrence data with default
settings; less effort needs to be paid to parameter tuning [32,33,74].

Because of the current situation, we attempted to develop a modeling system that
could monitor and estimate the spatial distribution and invasion risk of 10 IIAPS using
MaxEnt. The results revealed that all IIAPS in our study except M. sativa would retain
their current ecological niches and add additional areas to their spatial distribution in
South Korea. However, the rate and extent of increasing coverage are not estimated to be
consistent among all IIAPS. D. glomerata, E. curvula, and E. rugosum are estimated to have
relatively high spatial coverage, up to 80.85% and 77.10% of the total land area of South
Korea in 2050 and 2070, respectively (under RCP 4.5). These predictions are comparable
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to the results from earlier studies performed in South Korea [49,55,80]. Similarly, we
estimated the risk of invasion by the IIAPS and found that 12% of the country is currently
at high risk of invasion and that this area is likely to increase dramatically by 2050 (to
39%) and 2070 (to 50%), under RCP 4.5. For all IIAPS, the increased invasion risk with
environmental change expanded in eastward and northward directions, invading major
agricultural pocket zones (e.g., Jeollabuk, Jeollanam, and Chungcheongnam provinces),
most of the national parks, and protected areas, including the Baekdudaegan mountain
range (701 km) [48], which are biodiversity hotspots and the natural habitat of 297 species of
endemic plants (e.g., Abies koreana, Berberis koreana, and Arabis columnaris) [81,82]. Moreover,
global climate change is likely to increase the capacity of alien plant species to invade
into new areas while lowering native community resistance to invasion by disrupting the
dynamic equilibria that maintain native communities [16]. Among the various climatic
variables, temperature seasonality and annual precipitation are the dominant factors
affecting the spatial distribution of many IIAPS (Table 2).

The results supported by many other studies have similarly attempted to model the
invasion risk of non-native species in South Korea and across the globe. For example,
Dullinger et al. [83] estimated that future climate and land cover changes in Europe would
increase the risk of naturalization of non-native garden plants by up to 102% under RCP 8.5.
Bai et al. conducted a spatial invasion risk assessment of alien invasive plants in China and
found that the southern part of China will be at high risk of invasion in the future, with
drought-resistant species becoming dominant in the natural ecosystems. In the eastern
United States, Bradley et al. [13] estimated the invasion risk of three invasive plants,
Pueraria lobata, Ligustrum sinense, and Imperata cylindrical. They showed that climate change
is likely to allow significant expansion of their ranges. Similarly, risk assessment of the
invasive weed Leucanthemum vulgare under future climate change showed it would be
distributed in all continents, with the Oceania region being at particularly high risk [21].
Adhikari et al. [49] and Hong et al. [55] estimated rapid range expansion of invasive species
in South Korea under future climate change. These studies demonstrate that future climate
change will be a major factor in the proliferation of non-native plants across the world,
consistent with our findings.

Plant invasion is thought to be boosted by soil disturbance induced by anthropogenic
land cover changes, which accelerate ecosystem disruption and favor introducing invasive
species over native species [84]. In South Korea, land use patterns have been changing
for a long time. Specific examples of major land cover changes in South Korea include
the expansion of road and rail networks, implementation of upland farming practices,
forest fragmentation for urbanization, and increased industrialization [30]. Although the
transportation network is part of the fundamental infrastructure of the country, without
careful design and management of the roads, they may be a source for the introduction
and dispersal of alien plant species into new areas [25,85]. In South Korea, the total length
of roads and railways that are expected to increase plant invasion has been measured at
116,850.6 km [86]. Understanding the impact of land cover changes on ecological niche
availability is crucial to prognosticating invasion and managing landscapes to minimize
the spread of invasive species [24,25]. Currently, the spatial distribution of these species
is concentrated close to the coastal areas in the western and southern regions: we predict
that the distributions will expand toward the central and northern regions by 2050 and
2070, related to the transportation corridors to these regions. Thus, land cover changes and
climatic variables may play pivotal roles in the spatial distribution of IIAPS, as suggested
by the modeling system used in this study and by previous research [49,55].

Our findings provide spatially explicit evidence that supports the earlier hypothesis
that warming temperatures will increase the northward spread of alien and invasive plant
habitats [87]. These results demonstrate that future environmental changes, including
climate change and land cover change, are likely to favor IIAPS in South Korea. Therefore,
the future spatial distribution and invasion risk of IIAPS will be exacerbated on a large
scale, threatening the native biodiversity and imperiling the native ecosystem of South
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Korea [13,55]. In addition to the environmental factors described in this study, the introduc-
tion history, biogeographic origin, and biological traits of IIAPS are strongly correlated with
invasion success [88]. The biological traits that are correlated with invasiveness include
relative growth rate [89], seed mass, the maximum height of the plant, and plasticity [90].
Plants with shorter life cycles usually have higher reproduction rates and may evolve more
quickly to adapt to new environments, improving invasion success [91]. Similarly, the
physiological characteristics of alien plants, such as their photosynthetic rate, resource
utilization efficiency, and tolerance to environments from humid to xeric, play important
roles in their invasion success [88]. Therefore, biological and physiological traits should be
incorporated during the modeling of IIAPS to obtain the most accurate model predictions.
Other important parameters for prediction include the soil characteristics, land topography,
biotic interactions (e.g., competition and facilitation), and vectors driving species invasion,
as suggested by Buri et al. [92] and Pysek and Richardson [93]. Although diverse variables
were included in our model to improve accuracy, these other variables should be analyzed
further in future studies to obtain more precise predictions.

5. Conclusions

IIAPS can negatively affect a variety of fields in South Korea, including agriculture, the
economy, industry, horticulture, and the natural ecosystem. As part of efforts to overcome
this, we developed a MaxEnt prediction model to estimate the spatial distribution and
invasion risk of IIAPS under current and future environmental changes. Our findings
suggest that the spatial distributions of IIAPS are estimated to enlarge extensively in the
future while retaining their existing ecological niches, and that, currently, the southern and
western coastal regions and some metropolitan cities, such as Seoul, Busan, and Daegu,
are at relatively high risk of invasion by IIAPS. In addition, climate change due to global
warming and other environmental changes is likely to increase invasion risk in the country.
Taken together, our results strongly suggest that this modeling system can help to prioritize
the invasive weeds and geographical regions to be targeted in a timely fashion, as well as
support government authorities in adopting the best preventive measures. For example,
our system can be used to support efforts to eradicate small populations of IIAPS detected
in non-target areas that are likely to become sources for future expansion.
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.3390/biology10111169/s1, Table S1. Spearman correlation for bioclimatic variables. Table S2. List of
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S1c, Dactylis glomerata; S2d, Eragrostis curvula; S1e, Ageratina altissima; S1f, Festuca arundinacea; S1g,
Helianthus tuberosus; S1h, Lolium perenne; S1i, Medicago sativa; S1j, Poa pratensis. Figure S2a–j. Jackknife
test results indicate the relative contribution of each environmental variable in the modeling for
different intentionally introduced alien plant species. S2a, Amorpha fruticosa; S2b, Coreopsis lanceo-
lata; S2c, Dactylis glomerata; S2d, Eragrostis curvula; S2e, Ageratina altissima; S2f, Festuca arundinacea;
S2g, Helianthus tuberosus; S2h, Lolium perenne; S2i Medicago sativa; S2j, Poa pratensis. Figure S3a–j.
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goodness-of-fit under the current climatic conditions. S1a, Amorpha fruticosa; S3b, Coreopsis lanceolata;
S3c, Dactylis glomerata; S3d, Eragrostis curvula; S3e, Ageratina altissima; S3f, Festuca arundinacea; S3g,
Helianthus tuberosus; S3h, Lolium perenne; S3i, Medicago sativa; S3j, Poa pratensis. Figure S4. Compara-
tive analyses of the average spatial distribution of intentionally introduced alien plant species (IIAPS)
categorized into three groups under the predicted environmental changes in South Korea.
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