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Simple Summary: The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first encountered in December of 2019 
in Wuhan, China. As of now, there have been over 200 million infections and 4 million deaths at-
tributed to the virus. Due to this, it has been a priority to find an effective preventative measure, 
and numerous vaccines have been developed. Although the developed vaccines share the target of 
blocking viral entry by the spike protein, their pharmacology and efficacy differs. As such, the mech-
anism of action and the elicited immune response of the most common COVID-19 vaccines have 
been compared to help determine which vaccine is most efficacious and is best suited to prevent 
reinfection and address viral mutations. 

Abstract: It has been over a year since SARS-CoV-2 was first reported in December of 2019 in Wu-
han, China. To curb the spread of the virus, many therapies and cures have been tested and devel-
oped, most notably mRNA and DNA vaccines. Federal health agencies (CDC, FDA) have approved 
emergency usage of these S gene-based vaccines with the intention of minimizing any further loss 
of lives and infections. It is crucial to assess which vaccines are the most efficacious by examining 
their effects on the immune system, and by providing considerations for new technological vaccine 
strategies in the future. This paper provides an overview of the current SARS-CoV-2 vaccines with 
their mechanisms of action, current technologies utilized in manufacturing of the vaccines, and lim-
itations in this new field with emerging data. Although the most popular COVID-19 vaccines have 
been proven effective, time will be the main factor in dictating which vaccine will be able to best 
address mutations and future infection. 

Keywords: COVID-19; lipid nanoparticles; mRNA vaccine; adenovirus; angiotensin-converting en-
zyme 2 (ACE2); spike protein 
 

1. Introduction 
The first outbreak of the COVID-19 infection occurred in Wuhan, China in 2019 

where many patients had symptoms that were similar to respiratory infections and this 
infection rapidly spread [1]. The COVID-19 pandemic has catastrophically swept across 
the world, resulting in over 200 million infections and 4.5 million deaths (as of 30 August 
2021) [2]. The unpredictable nature of the pandemic and lack of preparedness against in-
fectious diseases on a global scale has led to business shutdowns, widespread economic 
recession, and millions of jobs lost [3]. The rapid spread of the virus has largely been at-
tributed to a rise in globalization and international collaboration, coupled with the signif-
icant achievements in controlling infectious diseases in the past, which has encouraged 
society to ignore the dangers of emerging infectious diseases [4,5]. Furthermore, the pan-
demic has drastically changed everyday life, with masks, physical distancing, and remote 
learning and working becoming the norm for millions of people [6,7]. Nonetheless, nu-
merous countries have implemented resilient measures, such as emergency provisions, to 
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curb the spread of the pandemic [8]. Even more, there has been coordinated planning be-
tween nations to distribute access to vaccines, thereby allowing impoverished nations and 
their citizens to receive the vaccine [9]. 

Currently, there have been emergence of variants for SARS-CoV-2 worldwide. The 
current variants that are of concern which have characteristics of increased transmissibil-
ity and increased virulence include the Alpha, Beta, Gamma, and Delta variants [10]. The 
variants of interest which have an emerging risk against global health but are still being 
monitored include the Eta, Iota, Lambda, and Kappa variants [10]. 

Coronaviruses are known to infect many animals, have the largest RNA genome and 
contain four subfamilies which include alpha, beta, gamma, and delta coronaviruses [11]. 
All four subfamilies have the commonality of being from a zoonotic origin where the al-
pha and beta coronaviruses emerge from bats and the gamma and delta coronaviruses 
emerge from birds [11]. The most recent occurrences of coronavirus infections occurred in 
2001 and 2012 with both being from zoonotic origins. The 2001 epidemic occurred with 
severe acute respiratory syndrome coronavirus (SARS-CoV) and in 2012 was the Middle 
East respiratory syndrome coronavirus (MERS-CoV) and while both epidemics resulted 
in severe respiratory infections, the novel SARS-CoV-2 infections have surpassed both 
SARS-CoV and MERS-CoV [12]. All three of the coronavirus epidemics mentioned belong 
to the beta-coronaviruses which contain envelope proteins that are utilized for viral infec-
tion [11]. The important envelope proteins include the spike (S) protein, envelope (E) pro-
tein, and the membrane (M) protein, which mediates viral entry into the host cell [13]. 

1.1. The COVID-19 Virus: Infection and Symptoms 
SARS-CoV-2 is a single-strain, positive RNA virus with a relatively short replication 

time that is highly pathogenic and infectious. SARS-CoV-2 appears to preferably infect 
respiratory tract cells, but has also been detected in nearly all of the human organs, such 
as the liver, pharynx, lungs, heart, digestive system organs, and kidneys. To illustrate, 
patients with COVID-19 have reported signs of kidney injury, which could be explained 
by renal tropism [14]. Due to this, it could be suggested that organotropism could influ-
ence the course of COVID-19 progression [14]. 

Infection occurs when the virus binds to the host receptors via the receptor binding 
domain (RBD) of the spike protein (S), which thereby mediates membrane fusion and viral 
entry [12]. Then, transmembrane protease serine 2 (TMPRSS2) and FURIN serve to cleave 
the S protein into the N-terminal S1 subunit and the C-terminal S2 subunit [15]. Although 
angiotensin-converting enzyme 2 (ACE2) functions as the entry point for the virus, the 
potential of co-receptors and novel receptors has also been considered, due to the fact that 
ACE2 expression is seemingly low in a plethora of human tissues, such as the respiratory 
tract [16]. Recently, various studies have elucidated the potential of tyrosine-protein ki-
nase receptor UFO (AXL), CD147, CD209L, and CD209 as alternative receptors and co-
receptors (Figure 1) [15,17,18]. To elucidate, overexpression of AXL has been shown to 
facilitate viral entry of both authentic SARS-CoV-2 and pseudoviral SARS-CoV-2 in 
HEK293T cells, accentuating the complexity of SARS-CoV-2 viral entry [15]. Nonetheless, 
given these mechanisms of infection, targeting the S protein or the RBD appears to be an 
advantageous approach for treatment development. 

In general, the virus spreads via the droplet transmission of symptomatic individu-
als, with airborne droplets arising from breathing and speaking, providing significant risk 
since they are in respirable size ranges [1,19]. An asymptotic individual may also spread 
infection as the incubation period of the virus is between 2 and 14 days [1]. The virus also 
primarily manifests as a lower respiratory tract disease, which leads to respiratory dis-
tress. Individuals with preexisting health conditions—obesity, cardiomyopathies, and di-
abetes—have reported a higher risk of experiencing severe COVID-19 symptoms due to 
potentially impaired immune systems [20–22]. The most common clinical manifestations 
for this disease include shortness of breath, fever, cough, and fatigue while the less com-
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mon symptoms include headache, vomiting, and dizziness [23]. These symptoms are sim-
ilar to many respiratory infections. As the infection progresses, deadly complications in-
clude respiratory failure and pneumonia, which can ultimately lead to death [1]. 

 
Figure 1. COVID-19 Infection and Transmission. (A): Illustration of SARS-CoV-2. (B): The poten-
tial mechanisms of infection for SARS-CoV-2, which preferentially infects respiratory tract cells. (C): 
COVID-19 transmission when an infected individual is in close contact with others, spreading via 
droplets from talking, breathing, coughing, or sneezing. 

1.2. Treatment and Vaccine Approaches for COVID-19 
Various treatments for COVID-19 have been explored, such as antivirals like 

remdesivir, corticosteroids such as dexamethasone, and other drugs such as tocilizumab, 
ivermectin, and chloroquine. However, these are novel treatments and their effectiveness 
against COVID-19 has not been validated through clinical trials [24,25]. Ivermectin only 
showed antiviral properties after large doses, which is unsafe to humans as it is over the 
conventional usage limit and may induce adverse side effects such as seizures, overdose, 
and psychosis [26]. Moreover, chloroquine showed severe adverse effects and drug inter-
actions, making it unsuitable as an effective COVID-19 treatment [26]. Unfortunately, 
since COVID-19 is a novel virus, scientists remain uncertain as to how long infected indi-
viduals should use such pharmaceuticals. Moreover, clinical results have indicated that 
potentially effective treatments for this infectious disease are anti-sera treatments, with 
vaccines being an ideal preventative measure [27]. Anti-sera from recovered patients have 
been used to treat those with severe respiratory conditions, but due to its limited supply 
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and scarce evidence on effectiveness, the most promising and effective solution is still de-
pendent on a preventative vaccine [28–32]. Furthermore, implementing mass vaccination 
is crucial, as high compliance rates are essential to developing herd immunity. This is ev-
ident in the prevalence of other diseases such as measles, smallpox, and poliomyelitis, 
which have been nearly or completely eradicated via the widespread usage of vaccines 
[33]. Currently, there are numerous types of vaccines that have been developed for 
COVID-19, including DNA vaccines, mRNA vaccines, and recombinant protein (spike) 
vaccines [34–38]. In DNA vaccines, the genetic material needs to pass through the nucleus 
to create messenger RNA, which then allows the formation of protein in the cytoplasm 
[39]. However, mRNA vaccines are advantageous in that they are able to bypass this step, 
making the process more potent, and allows for rapid development of the functional pro-
teins in the cytoplasm [40,41]. Since each type of vaccine has its advantages and disad-
vantages, it is pivotal to provide a clear explanation of each vaccine type so the public will 
be more informed on which vaccine to receive. 

1.3. The Role of Antibody and T Cell Responses in Fighting COVID-19 
There are two mechanisms of immune response in fighting viral infection: antibody 

against infectious agent and antigen specific T cell response [42]. Most vaccines focus on 
the antibody response, and T cell responses are largely neglected. Although it is currently 
difficult to determine the exact antibody levels and duration after infection, evidence sug-
gests that individuals who have recovered from COVID-19 have developed a favorable 
immune response regarding their memory CD4+ and CD8+ T cells [20]. In some patients, 
memory CD4+ and CD8+ T cells have generated responses for numerous COVID-19 pro-
teins, such as the nucleoprotein and spike proteins [20]. Although the antibodies to the 
nucleoprotein are improbable to neutralize COVID-19, there have been cases in which 
they have produced satisfactory protection, such as with the mouse hepatitis virus 
(MHV), which is also a coronavirus [43,44]. The most prominent of the antibodies was 
IgG2a, showing that protection could be conceived via Fc-mediated effector functions in-
stead of a virus neutralization that is solely direct [43–48]. 

During COVID-19 infection, IgG and IgM antibodies are often detected in the first 
two weeks after the onset of symptoms. Furthermore, antibodies that are able to bind to 
the S1 domain RBD can effectively block its binding to ACE2. On the other hand, antibod-
ies that bind to different regions of the S1 and S2 domains can inhibit the change of the S 
protein conformation and thereby prevent fusion to the membrane [44,45,49–51]. 

In older individuals, COVID-19 has manifested with greater severity, as is evident by 
the higher mortality rates in older populations [52,53]; this corresponds with the general 
consensus that older individuals have less robust immune systems than their younger 
counterparts. Older COVID-19 patients have also exhibited graver cases of lymphopenia, 
which affects CD4+ T cells, CD8+ T cells, natural killer cells (NKCs), and B cells [54,55]. 
Furthermore, cases of spleen and lymph node necrosis have been reported in older 
COVID-19 patients, which is particularly physiologically detrimental due to their already 
weakened immune systems [56]. 

When examining the immune response generated by CD8+ T cells, it is inconclusive 
whether T cell hypoactivation or hyperactivation occurs [20]. In general, CD8+ hyperacti-
vation manifests with elevated cytotoxicity and NKC-related markers, while hypoactiva-
tion displays as the opposite [20]. Data from recovered COVID-19 patients show that 
memory CD8+ T cells were found in approximately 70% of the recovered individuals, with 
100% of the recovered individuals having memory CD4+ T cells [20,44]. However, this is 
preliminary data is therefore inconclusive in determining whether these memory T cells 
would yield preventive immunity. Therefore, it is necessary to identify the T cell response 
patterns to evaluate beneficial individualized therapies. 
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1.4. T-Cells and Pre-Existing Cross-Reactive Immunity 
When examining the COVID-19-reactive T-cells in patients and unexposed persons, 

it has been seen that CD4+ T cells that can recognize the COVID-19 S protein are present 
in 35% of the unexposed individuals, and at least 40% of the unexposed individuals have 
CD4+ T cells that are cross-reactive to other COVID-19 proteins than just the S protein 
[57,58]. In general, this illustrates that there is cross-reactivity among CD4+ T cells for 
prevalent coronaviruses that affect humans and COVID-19, with CD4+ T cells from 
COVID-19 patients impartially recognizing both the S1 and S2 subunits of SARS-CoV-2, 
while the cross-reactive CD4+ T cells recognize the S2 subunit [58]. Thus, common coro-
naviruses such as HKU1, NL63, OC43, and 229E that infect humans could cause a certain 
extent of prior cross-reactive immunity to the COVID-19 antigens, granting different im-
mune responses and severity of disease in the general population, although their specific 
biological role remains undetermined [44,59]. In fact, serum IgG antibodies have been es-
timated to be found in greater than 90% of the population for these common coronaviruses 
[59]. This is crucial to acknowledge during vaccination as it allows the effects of vaccina-
tion-boosted cross-reactive responses to be considered when examining the defensive im-
munity that was induced by the actual vaccine [44]. 

Consequently, unexposed persons have been found to contain CD4+ T cells that rec-
ognize the COVID-19 S2 protein, while the infected individuals seem to have CD4+ T cells 
that do not discriminate between the S1 and S2 protein subunits [44,58]. Furthermore, the 
S2 protein of the 229E/OC43 coronaviruses has been found to be cross-reactive with CD4+ 
T cells of COVID-19 infected individuals [44,58]. Due to this, the prior cross-reactive im-
munity could hinder the potency of live attenuated vaccines. 

1.5. Current and Most Common COVID-19 Vaccines 
Vaccines work through three major steps: antigen phagocytosis and presentation; T 

cell activation and cytokine production; cytokine stimulation of B cells to differentiate into 
plasma cells [60]. Therefore, both B and T cells are involved in a vaccine related immune 
response. As such, antigen selection and therapeutic target are very critical for the success 
of a vaccine. The most popular and successful target consists of blocking the viral entry 
by the antibody, so S protein, particularly the RBD, will be the therapeutic target for 
COVID-19 since it prevents binding to the host receptors. The S protein, which has two 
domains (S1 and S2), also serves as the most significant target of the neutralizing antibod-
ies [61]. The S1 domain includes the RBD, which ultimately binds to the ACE2 receptor 
with a relatively high affinity [62]. 

The first vaccine that was authorized for emergency use against COVID-19 was 
Pfizer’s mRNA vaccine, which has a prospective efficacy of more than 90%, according to 
the interim analysis [63]. This vaccine is administered via intramuscular (IM) injection and 
consists of a lipid-enclosed, nucleoside-modified mRNA that encodes the configuration 
of a mutated COVID-19 spike protein [64]. The Pfizer vaccine consists of two 30 μg doses, 
with the second dose administered three weeks after the initial vaccination [65]. The lipid 
nanoparticles allow mRNA of the S gene of COVID-19 to deliver into the host cell, result-
ing in expression of the COVID-19 spike protein antigen. This then elicits an immune re-
sponse to the spike protein, which provides the body with protection against the virus 
[66]. Moderna has similarly developed an mRNA vaccine with a nucleoside-modified 
messenger RNA and a mutated spike protein that allows for further stability, since the 
two mutations involve the original amino acids interchanged with proline [35]. The 
Moderna vaccine also depends on the lipid nanoparticles for delivery and consists of two 
100 μg doses, with the second vaccine being administered four weeks after the initial IM 
vaccination [67]. The lipid nanoparticles allow for the nucleoside-modified mRNA deliv-
ery into the host cell, which in turn expresses the COVID-19 spike protein antigen. The 
antibodies that are consequently produced are specific to the virus, allowing for future 
protection [68]. Unfortunately, the distribution of both vaccines is difficult in developing 
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countries, particularly those with hotter climates, as multiple dose vials must be stored 
between −80 °C to −60 °C (Pfizer) or between −25 °C and −15 °C (Moderna) [68,69]. 

Unlike Pfizer and Moderna, Oxford/AstraZeneca, Gamaleya, and Johnson & Johnson 
have created adenovirus vector vaccines. The Oxford/AstraZeneca vaccine utilizes a viral 
chimpanzee non-replicating adenovirus vector and has a reported efficacy of 81.3% when 
both doses are administered [70,71]. This vaccine has the complete coding sequence of the 
COVID-19 spike protein, as well as a sequence of a tissue plasminogen activator [72,73]. 
After IM delivery, the chimpanzee adenovirus enters and infects the cell to produce the 
COVID-19 virus in the cytoplasm of the cell and upon infection, it triggers the immune 
system to begin producing antibodies and immune B and T cells for protection against 
future infections that may occur [74,75]. In the trials for the AstraZeneca vaccine, only 10% 
of vaccine recipients reported noticeable side effects, with headache, nausea, and muscle 
pain being the most common [76]. In terms of adverse side effects, there have been ap-
proximately 194 reports of anaphylaxis out of more than 9 million vaccinations [77]. 

The Gamaleya vaccine is a viral vector vaccine that utilizes two different adenovi-
ruses found in humans. The two viral vectors are recombinant adenoviruses and are ad-
ministered at different times. The recombinant type 26 adenovirus is administered first, 
followed by the recombinant type 5 adenovirus, which is given as a booster 21 days later 
[74,78,79]. This vaccine employs a heterologous approach, which has the potential of in-
ducing a broader immune response, and has a reported efficacy of 91.6% after both doses, 
according to the interim analysis [80,81]. Furthermore, in the Gamaleya trials, all of the 
participants generated antibodies against the COVID-19 spike protein. In the Gamaleya 
phase I–II safety trials, the vaccine did not cause any severe adverse effects, but caused 
headache, hyperthermia, asthenia, and muscle pain [81]. However, there have been some 
concerns regarding the Gamaleya vaccine as documentation revealed one of the two doses 
contained adenoviruses that were capable of replication, which could potentially be dan-
gerous to the recipients [82]. 

Unlike the aforementioned vaccines which all require two doses, the latest viral vec-
tor vaccine to be released is the single-shot Johnson & Johnson (J&J) vaccine. This vaccine 
utilizes a non-replicating recombinant adenovirus, the type 26 recombinant adenovirus, 
which expresses the COVID-19 spike protein [83]. The J&J vaccine also has mutations that 
stabilize the spike protein by having the normally found amino acids interchanged with 
prolines [84,85]. Clinical trials for the J&J vaccine began in June of 2020, and the phase III 
trials had more than 43,000 ethnically diverse participants; this vaccine was ultimately 
determined to be 66% effective [86]. All these viral vector vaccines are unable to replicate, 
which is explained by the fact that certain genes that are essential for replication were 
deleted and exchanged by genes that code for the COVID-19 spike protein [83]. 

1.6. Additional COVID-19 Vaccines 
The Sinopharm vaccines are a two-dose, inactivated virus vaccines that are adminis-

tered via IM injection [87,88]. These vaccines contain an aluminum hydroxide adjuvant to 
modulate the immune system, and are relatively advantageous because they can be stored 
and distributed at standard refrigerated temperatures [89]. However, Sinopharm’s analy-
sis of their vaccines shows an efficacy of around 79% for BBIBP-CorV and 72.8% for WIBP-
CorV, which is much lower than that of Pfizer and Moderna’s vaccines [90,91]. Nonethe-
less, available data shows that when both doses are administered, an efficient humoral 
immune response is generated in all recipients [88]. The present data also showed that 
their vaccines can produce significant levels of neutralizing antibody titers in rhesus ma-
caques, pigs, mice, guinea pigs, and rats [88]. While the data at present supports the vac-
cine efficacy, there have been scattered data regarding vaccines from China since this is a 
quickly moving field, hindering the transparency of these vaccines, which may lead to 
hesitation from individuals [92]. 

Recently, a protein subunit vaccine has been made by Novavax, with a reported vac-
cine efficacy of 89.3% [93]. This vaccine was created by engineering a baculovirus that 
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contains a COVID-19 altered spike protein gene which encodes vaccine antigens, and al-
lowing it to attack cultured Sf9 insect cell lines (Spodoptera frugiperda) [94]. Upon infection 
of the Sf9 insect cells, the antigens are expressed creating the recombinant nanoparticle 
containing S protein configurations [95]. The adjuvant for this vaccine is saponin-based 
[96]. Furthermore, the formulation can be easily distributed, as it is stable from 2 °C to 8 
°C [97]. Another adjuvanted protein subunit vaccine, Zifivax, has been developed in 
China, but requires three doses which might lead to some individuals not completing their 
vaccine regimen [98]. 

In regard to peptide-based vaccines, the VECTOR center of Virology has developed 
EpiVacCorona, which contains three conjugated chemically synthesized peptides that are 
aided by a carrier a protein [99]. EpiVacCorona contains an aluminum hydroxide adjuvant 
and utilizes the IM injection route for drug delivery [99]. Although there have been some 
concerns in regard to the immunogenicity data, EpiVacCorona has been licensed for use 
in Russia, Turkmenistan, and Belarus [100]. 

1.7. Lipid Nanoparticles and the Lipid mRNA Vaccine of COVID-19 
Solid lipid nanoparticles (SLNs or sLNPs) are a rapidly developing technology, with 

many applications in the pharmaceutical industry, including novel drug delivery [101]. 
Currently, its application in cancer treatments has become popular with monoclonal anti-
bodies, therapeutic vaccines, and immunotherapies taking advantage of utilizing the li-
pid-based drug delivery system, including lipid-based nanoparticles, solid lipid nanopar-
ticles, and nanostructured lipid carriers [102]. The lipid based nanoparticles provide 
transport of the materials without causing toxicity, increasing the control of drug release, 
and the systems of delivery are compatible with different pH sensitivities [103]. Moreover, 
these lipid nanoparticles can be utilized in adjuvants for protein-based vaccines [104] 
These nanoparticles have been perceived as potentially promising drug carriers due to 
their structural and compositional benefits when compared to conventional formulas 
[105]. The widespread applications of SLNs have rapidly developed as a result of their 
numerous advantages, including targeted drug release, affordability, and enhanced sta-
bility of pharmaceutical products. Research relating to SLNs has been on the rise since the 
start of the COVID-19 pandemic, and several mRNA vaccines for COVID-19 have been 
produced by utilizing lipid nanoparticles as their drug delivery system. However, an is-
sue that has arisen with using SLNs to deliver nucleic acids is that both lipids and nucleic 
acids have negative charges, and are therefore not ionizable [106]. 

Extensive research has consequently been conducted to find a solution, which has 
led to the creation of ionizable cationic lipids that bind to mRNA [107]. The ionizable lipid 
maintains a neutral pH, eliminating any positive charges, and cholesterol limits the pro-
tein interactions that SLNs face [41]. Furthermore, SLNs shield the delicate mRNA from 
the enzymes, allowing the mRNA to reach the cells without being degraded by the body’s 
enzymes [108]. Due to the importance of these functions, choosing the appropriate lipid 
is crucial for the creation of an effective lipid nanoparticle for the delivery of the COVID-
19 mRNA vaccine. This includes ionizable or cationic lipids, which would allow the SLNs 
to remain undetected throughout the body due to the lipids’ neutral surface charge [108]. 

This technology has been utilized by both Moderna and Pfizer-BioNTech (Pfizer) 
mRNA vaccines, which use ionizable cationic lipids that encapsulate the nucleoside-mod-
ified mRNA encoding a spike protein of SARS-CoV-2 [109]. The Moderna vaccine utilizes 
the SM-102 ionizable lipid, while Pfizer uses ALC-0315 [110]. During the early stages of 
vaccine development, Moderna was conducting testing on the ionizable lipid MC3 but 
replaced it with the SM-102 lipid due to the slow degradability and low potency of MC3 
[111]. Moreover, the MC3 lipid was used in siRNA products, and it was reported that slow 
lipid degradability led to the potential of accumulation toxicity with repeated doses [112]. 
The new SM-102 lipid has an ethanolamine ionizable head, which allows for an increase 
in branching, resulting in a greater membrane-disrupting capacity when paired with the 
endosome [113]. The Pfizer vaccine utilizes the ALC-0315 lipid as the delivery system, 
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which contains two nucleoside-modified mRNA, one unmodified mRNA, and one self-
amplifying mRNA [114]. In utilizing lipid nanoparticles, hypersensitivity has been re-
ported in some cases including contact dermatitis from the interactions between the LNPs 
and the immune systems and anaphylaxis due to the polyethylene glycol lipid (PEGylated 
lipid) in the mRNA vaccines [115–117]. 

1.8. The Unique Pharmacokinetic/Pharmacodynamic (PK/PD) Property of Lipid mRNA Particles 
From a chemical perspective, both ionizable and cationic lipids can serve as a me-

dium for SLN delivery. However, cationic lipids have been reported to be toxic in clinical 
therapeutics, with concerning accumulations in the liver and spleen that have led to in-
flammatory responses and immune cell activation [118,119]. To limit the toxicity of this 
drug delivery method, ionizable cationic lipids are preferred. Ionizable cationic lipid na-
noparticles penetrate cells through receptor-mediated endocytosis [120]. During this pro-
cess, lipid nanoparticles end up in the acidic endosomes and gain a positive charge, which 
triggers the lipid nanoparticle to release its RNA into the cell [121]. The mRNA vaccines 
rely on lipid nanoparticles to safely transport mRNA to its specific cellular compartment 
[122]. Since mRNA is rapidly degraded if left unprotected, SLNs enable the mRNA to 
reach the cytoplasm of the host, where the mRNA undergoes cellular translation to pro-
duce proteins [123]. This is advantageous for mRNA vaccines because mRNA is delivered 
to the correct, precise location, allowing for controlled release and thereby reducing the 
risk of toxicity [124]. 

The mRNA vaccines for COVID-19 contain mRNA that encodes the spike protein of 
SARS-CoV-2. These vaccines are administered via intramuscular (IM) injections, which 
provides access to immune cells, as there is a vast network of blood vessels available in 
muscles [125]. The IM injection also allows for the vaccine to induce a strong, prolonged 
expression of the protein in immune cells from the mRNA vaccine, particularly since there 
are antigens in muscle tissues and lymph vessels near the muscle where the antigens can 
be processed [126]. In eliciting an immune response to the virus, the mRNA vaccine tar-
gets T and B cells which generate antibodies for protection and eliminates infected cells 
[127,128]. The mechanism for the immune response after the uptake of the lipid nanopar-
ticles begins with mRNA being translated into proteins, then the individual’s immune 
system will generate and optimize an immune response to the targeted proteins in SARS-
CoV-2 through potent neutralizing antibodies [127]. 

Unprotected mRNA can be encapsulated in a lipid nanoparticle to create a safe drug 
delivery system. Once the mRNA vaccine is injected, the positively charged lipid nano-
particle is attracted to the endosomes and this interaction starts the process of receptor-
mediated endocytosis, which triggers the SLN to degrade and release the mRNA (Figure 
2). 
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Figure 2. Mechanism for lipid nanoparticles in mRNA Vaccine and activation of immune cells and immune response. 
(A): This figure illustrates the mechanisms for the interaction between the lipid nanoparticles containing the spike mRNA, 
as well as mRNA release once in the body. (B): This figure illustrates the immune responses elicited once the mRNA spike 
proteins have entered the body, through the expressions of CD4+ and CD8+ T cells and B cells. (C): This figure details the 
infection of SARS-CoV-2 with the binding of the spike protein to the ACE2 receptor, ACE2 and co-receptor, and novel 
receptors to account for the potential methods of viral entry, and the neutralizing effects of B and T cell interactions after 
vaccination. 

1.9. The Function and Potential Antagonist Risks of ACE2 
Angiotensin-converting enzyme 2 (ACE2) is a metallopeptidase that counterpoises 

the angiotensin-converting enzyme (ACE) [129]. ACE2 is explicitly expressed in the di-
gestive system and kidneys, but seldom in organs such as the lungs [15]. Subsequently, 
ACE2 has also been detected in bronchial and nasal epithelium [16]. 

ACE2 has been found to play a significant role in the pathology of COVID-19, since 
it serves as the functional receptor for COVID-19 entry [18]. Infection occurs when the 
COVID-19 S1 spike protein binds to ACE2 through the receptor binding domain (RBD) to 
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tag the cell, which then allows for endocytosis [130]. This informs the immune system to 
recognize it as an infected cell, causing immune cells such as CD8+ and CD4+ T cells and 
B cells to kill it [131,132]. However, the expression of ACE2 is remarkably low in the res-
piratory tract and other human tissues, thereby suggesting there might be alternative or 
co-receptors [15]. 

1.10. Technological and Dosage Regimen of Current COVID-19 Vaccines 
As of now, numerous COVID-19 vaccines have been developed and tested in many 

different populations, but it is still difficult to conduct a side-by-side comparison or pre-
dict the best vaccine because there is no long-term data available at present (Table 1). Gen-
erally speaking, the best vaccine should produce durable B and T cell responses without 
having any potential injury to normal tissue. The following table illustrates the major dif-
ferences among some of the current major vaccines. 

Table 1. Comparison of different vaccines against COVID-19. This chart details the exposure method, required doses, 
technological overview, and manufacturers of current COVID-19 vaccines. 

Company  Required Doses Technological and Dosage Overview  
Exposure method: RNA (mRNA) 

      
Pfizer & BioNTech 

 

The Pfizer BioNTech vaccine dosage is 0.3 mL and 
requires 2 doses, 21 days apart and the Moderna vaccine 
dosage is 0.5 mL and requires 2 doses, 20 days apart 
[133,134]. 
Lipid nanoparticles encapsulate mRNA, allowing for the 
precise delivery of the genetic components of the 
vaccine, optimizing the translation of the proteins [135].  

Moderna 

 
Exposure method: Viral Vector 

 
Sputnik V (recombinant 

adenovirus type 26 and 5) 
 The SputnikV vaccine dosage is 0.5 mL with 2 vaccine 

doses, 21 days apart [136]. The Johnson & Johnson 
vaccine dosage is 0.5 mL and requires 1 vaccine dose 
[137]. The Oxford AstraZeneca vaccine dosage is 0.5 mL 
with 2 vaccine doses, 8–12 weeks apart [138].  
Utilizes an adenovirus vector to elicit spike proteins on 
cell surfaces resulting in immune responses through the 
activation of antibodies [75].  

 
Johnson & Johnson 

(recombinant adenovirus type 
26 vector)  

 
Oxford AstraZeneca 

(adenovirus) 
 

Exposure method: Protein based 
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Novavax 

 

Utilizes the S protein from SARS-CoV-2 with 
recombinant protein nanoparticles and adjuvant 
MatrixM to elicit desired immune responses, and 
requires 2 vaccine doses, 21 days apart [139].  

 
Zifivax 

 

The vaccine is composed of antigens and viral particles 
of SARS-CoV-2 that will generate an immune response 
and requires 3 vaccine doses, 0.5 mL each, over the 
course of 2 months [140,141].  

Exposure method: Peptide-antigen based  

 
EpiVacCorona 

 

Three peptide antigens for SARS-CoV-2 are synthesized 
consisting of the spike protein and a chimeric protein, an 
aluminum hydroxide adjuvant is utilized to synthesize 
the vaccine, and requires 2 vaccine doses, 0.5 mL each, 
over the course of 21–28 days [142].  

Exposure Method: Inactivated Virus 

 
WIBP-CorV Sinopharm 

 

Inactive whole virus technology has been widely 
studied and is effective for individuals with impaired 
immune systems and requires 2 vaccine doses, 0.5 mL 
each, with an interval of 3–4 weeks [132,143].  

 
BBIBP-CorV Sinopharm 

 

Inactive whole virus technology has been widely 
studied and is effective for individuals with impaired 
immune systems and requires 2 vaccine doses, 0.5 mL 
each, with an interval of 3–4 weeks [132,143].  

1.11. The Immune System and Immune Response to the COVID-19 mRNA Vaccines 
Each individual’s immune system is unique because it is composed of innate immun-

ity, which is adopted from parents, and acquired immunity, which is developed through 
interactions with the environment and exposure to different antigens [144]. Our immune 
systems also continuously change with age, and can be impacted by our lifestyles [145]. 
During the earlier stages of life, our immune systems are more robust and responsive to 
environmental changes and antigen stimulation; however, this responsiveness declines 
with age [146]. When an individual is exposed to an infectious agent or vaccine, a number 
of processes occur. First, antigen phagocytosis occurs by antigen presenting cells, which 
trigger the T cell response through the presented antigen, followed by cytokine release 
[147]. These steps are sequential, and proficient understanding of each step is crucial to-
wards developing an effective vaccine. 

With the Pfizer and Moderna mRNA vaccines, the lipid nanoparticles are injected 
into the deltoid. This muscle tissue consists of neurons, blood vessels, and muscle cells 
that contain T cells, antigen presenting cells through the role of cathepsins which present 
CD4 and CD8 cells, and natural killer cells [148,149]. The cells intake the lipid nanoparti-
cles, which allows the COVID-19 spike protein to be synthesized in the cells. The COVID-
19 spike protein can then be presented to CD4+ T cells once they are processed, and the 
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cells then convert into memory T cells, and CD4 T cells aid B cells with the conversion into 
plasmocytes, which allows the production of antibodies [150,151]. 

Nevertheless, there are some adverse effects associated with the vaccines. For in-
stance, the Moderna vaccine is more prone to induce side effects (e.g., fatigue and nausea, 
lymphadenopathy, erythema, swelling, fever, and joint pain) compared to Pfizer’s vaccine 
[68]. However, current data elucidates that both mRNA vaccines can produce a compara-
ble humoral response, with minimal distinction in cellular immunity [68]. Nonetheless, 
phase 1 and 2 data shared by Pfizer reveals that their vaccine can generate a more power-
ful CD8 T-cell response compared to Moderna’s, which could prove helpful in fighting 
infection [37,152,153]. 

1.12. Concerns and Controversies Regarding Current COVID-19 Vaccines 
Administration of the Oxford/AstraZeneca vaccine was previously suspended in 

eight European countries due to reports of rare blood clots. In Austria, one individual 
reportedly had multiple thrombosis and was reported dead 10 days after being vaccinated 
[154]. Moreover, a patient in Denmark died due to heparin-induced thrombocytopenia 
with an ischemic stroke which results from reactive antibodies that bind to platelet factor 
4 and heparin, which may have been caused by an immune response to the vaccine [155]. 
Due to this, the European Medicine Agency reported that they were working with blood 
disorder professionals to investigate the thromboembolic reports [156]. Nonetheless, their 
further updates stated that the benefits derived from the vaccines outweighed the poten-
tial risks, and thereby recommend the general public to continue vaccinations since the 
reports of blood clots were not determined to be higher than expected in the general pop-
ulation. 

In the US, the distribution of the Johnson & Johnson vaccine was temporarily paused 
due to reports of severe and rare blood clots in six individuals [157]. The blood clots ap-
peared in unusual places such as the brain and abdomen and had characteristics such as 
low platelet count and fragmented cells that aid in blood coagulation, which are hallmarks 
of heparin-induced thrombocytopenia (HIT) [157]. Furthermore, the CDC conducted a 
study examining the reactions that occurred in a small subset of adults who received the 
Pfizer vaccine [152]. When examining serious adverse events, the vaccinated group had 
higher rates of serious side effects than the placebo group, which could be attributed to 
the vaccine. For example, seven vaccinated individuals had appendicitis, three had acute 
myocardial infarctions, and three had cerebrovascular incidents, compared to two, zero, 
and one participant(s) in the placebo groups, respectively [152]. The study included 2291 
vaccinated and 2298 placebo individuals for the first dose, all aged between 18 and 55 
years old [152]. There were also 1802 vaccinated and 1792 placebo individuals who were 
older than 55 years old [158]. While severe side effects are ultimately extremely rare and 
could be due to a specific batch of the vaccine or due to highly specific unknown circum-
stances regarding the individual who experienced these side effects, it is still crucial to 
investigate these reports and case studies to prevent future occurrences. 

There have also been concerns regarding the data and trials for the COVID-19 vac-
cines. Although Oxford/AstraZeneca showed that their vaccine had a reported efficacy of 
81.3%, there was some controversy regarding this claim, as there were two results from 
differing vaccination dosages (62% and 90%) which were combined, and led AstraZeneca 
to continue trials [71,159,160]. Furthermore, Gamaleya and Sinopharm have also faced 
controversies, with the Gamaleya clinical data having been disputed, and Sinopharm crit-
icized for their scarcity of public data, which hinders the analysis of the efficacy or safety 
of the vaccine by professionals [89]. 
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1.13. Currently Unknown Data for COVID-19 Vaccines 
Although millions of people have been vaccinated worldwide, there is an absence of 

data comparing the B and T cell responses of all the vaccines [159,161,162]. It is very critical 
to conduct epitope mappings of antibodies generated from vaccines versus convalescence 
sera, since the processing and presentation of B or T cell epitopes could be different from 
that of naturally infected patients. As of now, there is also a lack of immune correlates for 
the protection against COVID-19, making the titre of neutralizing antibodies ambiguous 
[44]. Thus, large data sets are required to predict the protection of the vaccine, meaning 
that a significant amount of time is still required before a clear assessment of the efficacy 
of COVID-19 vaccines can be made. 

1.14. Future Considerations for the COVID-19 Vaccines 
Globally, there have been many variants of SARS-CoV-2 that have been emerging. 

Even just a year after initial infection, variants and cases of second COVID-19 infections 
have been reported; some originating in the UK, South Africa, and Brazil [163–166]. Given 
how common and problematic mutations are, two considerations must be made prior to 
implementing a treatment: avoid abuse of the therapeutic agent to prevent pressure mu-
tation, and ensure the vaccine can prevent immune escape by the virus. The viral muta-
tions and variants have specific attributes resulting in increases of infections to a specific 
variant, changes in transmission, diagnosis and therapeutic treatment, and changes in the 
elicited immune cell populations [167]. It is crucial to consider mutations when determin-
ing which vaccine to administer or receive, as certain vaccines have shown reduced effi-
cacy against certain COVID-19 variants. These new variants have been classified into three 
groups, which include variant of interest (VOI), variant of concern (VOC), and variant of 
high consequence (VOHC) [168]. Possible attributes within the VOI include increased 
transmission, decreased susceptibility to monoclonal antibodies (mAbs), and resistance to 
neutralization by convalescent and post-vaccination sera [168]. The variants of interest 
that have been monitored by the CDC include Epsilon (B.1.427 and B.1429), Eta (B.1.525) 
Iota (B.1.526), and Kappa (B.1.617.1). The characteristics of the VOC include a 50% increase 
in transmission, increased severity in the infections, reduced effectiveness of treatments, 
and reduction in therapies [168]. The VOC that are prevalent worldwide include Alpha 
(B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Gamma (P.1). During the second and third 
waves of infection from SARS-CoV-2 resulting from the Alpha and Beta variants, data on 
the effectiveness of the vaccinations and characteristics of the variants were collected. 
Against the documented infections of the Alpha variant, the effectiveness of the Pfizer-
BioNTech vaccine was 85.5% and for the Beta variant, the effectiveness was 75.0% [169]. 
These findings support the claim that the vaccine is effective against the variants, how-
ever, the Beta variant resulted in an effectiveness that was about 20% below the reported 
90% effectiveness [169]. Moreover, preliminary efficacy data from phase 3 clinical trials 
released by Johnson & Johnson and Novavax have shown that these vaccines are less ef-
fective against the Beta variant, while still being effective against other strains [170]. Fur-
thermore, the Oxford/AstraZeneca vaccine was even suspended in South Africa for its 
ineffectiveness against the Beta variant [170]. The most prominent variant that has re-
sulted in many new infections worldwide is the Delta variant, which first appeared in 
India late 2020 [171]. The Delta variant has shown to spread faster compared to other var-
iants and is resistant to mAbs, including Bamlanivimab, Casirivimab, Etesevimab, and 
Imdevimab [172]. The potency of the mAbs were measured to determine its efficacy 
against the Delta variant and it was found to be less efficient when compared to other 
variants. Additionally, the Delta variant reduces neutralization, as there is a loss of anti-
bodies binding [172]. The Delta variant has also produced many breakthrough infections 
similar to unvaccinated people but the infection time for individuals who are fully vac-
cinated decreases, compared to those who are unvaccinated [173]. In individuals who 
have received two doses of the Pfizer-BioNTech vaccine, the effectiveness of the vaccine 
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is 88% and decreases to 78% effectiveness after 90 days of receiving the vaccine [174,175]. 
Moreover, the Oxford/AstraZeneca vaccine has been found to be 67% effective against the 
Delta variant [174,175]. As of now, there are no SARS-CoV-2 variants that have been clas-
sified as a VOHC, which arises from strong evidence in the reduction of vaccine effective-
ness, severe infections, and reduced susceptibility to many of the Emergency Use Author-
ization therapeutics [168]. 

Furthermore, the virus seems to affect men and women differently, with men often 
displaying higher hospitalization rates [20,176,177]. The COVID-19 bias also extends to a 
greater male fatality being reported in 37 out of the 38 countries that have released their 
sex-disaggregated data [178]. However, it is not currently known if this is due to immune 
system genes encoded in the X chromosome, or if sex hormones play a considerable role 
in the COVID-19 immune response [179]. The disproportionate cases of COVID-related 
hospitalizations may also be attributed to the higher prevalence of chronic illnesses (i.e., 
cardiovascular diseases) or the increased ACE2 level in circulation among men compared 
to women [177]. Nevertheless, this trend of higher male mortality was also noted with the 
previous SARS-CoV, as well as MERS-CoV [178]. 

2. Conclusions 
Ultimately, time will be the main factor in determining which prophylactic vaccine 

will be most effective in slowing the spread of COVID-19. As more data becomes availa-
ble, the efficacy of the vaccines will continue to be analyzed and more knowledge will 
become available as the pandemic progresses. Currently, the adjuvant, the method of vac-
cination, the age of vaccine recipients, and the degree of pre-existing immunity should all 
be considered when designing a safe vaccine strategy. Furthermore, vaccines that exclude 
ineffectively neutralizing epitopes and include epitopes that are recognized for their pro-
tective immune responses could theoretically decrease the chance of ADE [44]. For exam-
ple, traditional adjuvant-based vaccines could be effectively implemented, since they are 
well-documented and have been utilized for over a century. Additionally, the significant 
progress in recombinant technology has allowed for the facile, mass production of anti-
gens, as well as the modification of different expression systems, such as mammalian cell 
lines [180]. Peptide-based vaccines may also allow for the selection of the adjuvant that 
could be employed to best modulate the immune system as desired, to avoid potential 
unwanted responses [181]. This could be utilized as a preferred alternative to the current 
mRNA, viral vector, and inactive whole virus vaccines, depending on future data. 
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