
biology

Article

A Modelling Framework Linking Resource-Based Stochastic
Translation to the Optimal Design of Synthetic Constructs

Peter Sarvari 1,†, Duncan Ingram 2,3,† and Guy-Bart Stan 2,3,*

����������
�������

Citation: Sarvari, P.; Ingram, D.; Stan,

G.-B. A Modelling Framework

Linking Resource-Based Stochastic

Translation to the Optimal Design of

Synthetic Constructs. Biology 2021, 10,

37. https://doi.org/10.3390/biology

10010037

Received: 14 November 2020

Accepted: 31 December 2020

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences,
University of Southern California, Los Angeles, CA 90089, USA; sarvari@usc.edu

2 Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2BU, UK;
d.ingram@imperial.ac.uk

3 Department of Bioengineering, Imperial College London, London SW7 2BU, UK
* Correspondence: g.stan@imperial.ac.uk; Tel.: +44-020-7594-6375
† These authors contributed equally to this work.

Simple Summary: In synthetic biology, it is commonplace to design and insert gene expression
constructs into cells for the production of useful proteins. In order to maximise production yield, it is
useful to predict the performance of these “engineered cells” in advance of conducting experiments.
This is typically a complex task, which in recent years has motivated the use of “whole-cell models”
(WCMs) that act as computational tools for predicting different aspects of cell growth. Many
useful WCMs exist, however a common problem is their over-simplification of ribosome movement
on mRNA transcripts during translation. WCMs typically don’t consider that, for constructs with
inefficient (“slow”) codons, ribosomes can stall and form “traffic jams”, thereby becoming unavailable
for translation of other proteins. To more accurately address these scenarios, we have built a
computational framework that combines whole-cell modelling with a detailed account of ribosome
movement on mRNA. We show how our framework can be used to link the modular design of a
gene expression construct (via its promoter, ribosome binding site and codon composition) to protein
yield during continuous cell culture, with a particular focus on how the optimal design can change
over time in the presence or absence of “slow” codons.

Abstract: The effect of gene expression burden on engineered cells has motivated the use of “whole-
cell models” (WCMs) that use shared cellular resources to predict how unnatural gene expression
affects cell growth. A common problem with many WCMs is their inability to capture translation
in sufficient detail to consider the impact of ribosomal queue formation on mRNA transcripts.
To address this, we have built a “stochastic cell calculator” (StoCellAtor) that combines a modified
TASEP with a stochastic implementation of an existing WCM. We show how our framework can
be used to link a synthetic construct’s modular design (promoter, ribosome binding site (RBS) and
codon composition) to protein yield during continuous culture, with a particular focus on the effects
of low-efficiency codons and their impact on ribosomal queues. Through our analysis, we recover
design principles previously established in our work on burden-sensing strategies, namely that
changing promoter strength is often a more efficient way to increase protein yield than RBS strength.
Importantly, however, we show how these design implications can change depending on both the
duration of protein expression, and on the presence of ribosomal queues.

Keywords: synthetic biology; whole-cell model; translation; stochastic simulation; TASEP;
construct design; burden; ribosomal queues; slow codon

1. Introduction
1.1. Whole-Cell Models in Synthetic Biology

It is routine in synthetic biology that theoretical predictions misalign with experimen-
tal results, particularly when unnatural genes are highly expressed [1,2]. This phenomenon
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is often attributed to “gene expression burden”, the over-consumption of shared cellu-
lar resources due to “unnatural” gene expression (also referred to as “heterologous” or
“synthetic” expression), which can lead to reduced cell growth or even cell death. In turn,
this causes yields of heterologous proteins to drop, motivating the study of the relationship
between heterologous protein production yield and cellular growth.

An effective method that allows researchers to explore how burden affects cellular
growth is via the construction of resource-limited “whole-cell models” (WCMs), which typ-
ically aim to describe key cellular processes (e.g., transcription, translation, metabolism,
etc.) given finite cellular resources, such as energy, amino acids, polymerases and ribo-
somes [3–8]. Within such frameworks, the expression of synthetic gene constructs drains
resources that are required for normal cell growth, effectively coupling heterologous gene
expression to the growth rate. This notion is increasingly being considered in today’s
synthetic biology construct designs [9], allowing genetic engineers and synthetic biologists
to better understand how tweaking the components of gene constructs (e.g., promoters,
ribosome binding sites (RBSs), terminators, etc.) can reduce burden, and thereby improve
cell growth and protein yield. Precisely how cell production is affected, however, is difficult
to predict, and so, WCMs are often used to explore how various genetic construct designs
affect the performance of engineered cells, e.g., in terms of the burden their expression
imposes on their host cell and/or the dynamics of the protein production yields achievable
by different designs.

1.2. Slow Codons and Ribosomal Queues

While they provide a useful foundation, existing WCMs fall short in capturing impor-
tant biological phenomena, for example the movement of ribosomes during translation,
which can often form “traffic jams” as they process an mRNA transcript. This queuing
effect burdens the cell via wasteful sequestration of translational resources [10,11], and so
limits the cell’s growth. One of the main features affecting ribosome movement along
mRNAs is the codon composition of transcripts. Each codon type is associated with a
different abundance of charged tRNA molecules, such that each is translated at a different
rate [12]. This causes ribosomes to change speed and potentially form queues as they trans-
late, an effect that is amplified when inefficient (“slow”) codons are present in transcripts.
Therefore, the design efficiency of a construct in terms of its modular parts and codon
composition has a potentially large impact on gene expression burden, cell growth and
protein yield, and should ideally be considered in any whole-cell model that considers
gene construct expression.

While the presence of slow codons on a transcript likely promotes queue formation
and resource sequestration, their occurrence is not always bad for cell growth. For example,
some organisms have been reported to use “ramp up” zones of slower codons at the
5’ end of their transcripts in order to stagger the elongation reactions and hence reduce the
chances of costly upstream collisions and ribosomal queue formation [13–15]. A host of
other evidence suggests that slowing ribosomes mid-translation can help with the fidelity
of cotranslational folding [16,17], the process by which protein domains are organised into
their correct tertiary structures while ribosomes are still translating [18].

Given these often-complex links between codon usage and protein yield, a host of
computational tools is often used in order to optimise translation efficiency (many reviewed
in [19], as well as others proposed in [20–22]). They typically rely on measures like
the Codon Adaptation Index (a score that correlates codon usage bias with predicted
heterologous gene expression efficiency) [23–25] and the Codon Context (a score denoting
the optimisation of codon:anticodon pairing) [26–28], which while useful for obvious codon
refinements, are typically unable to predict ribosomal queue formation. Additionally,
genetic engineers are often limited in codon design by context-specific issues such as
construct stability [29], meaning they do not have free-reign over their codon design.
Given this, engineered transcripts in practice are rarely fully codon-optimised, and so, the
use of slow codons does not usually benefit cell growth. Whether or not the effects are



Biology 2021, 10, 37 3 of 17

beneficial to the cell, it would be invaluable to be able to explore the whole-cell implications
of slow synthetic codons in ribosomal stalling and queue formation.

1.3. Biophysical Models of Translation

While the aforementioned computational tools are able to correlate codon composition
with basic estimates of protein yield efficiency, more detailed models of translation are
required to understand the effects of ribosomal queues in the context of a growing cell.
Inspiration can be taken from existing biophysical models of mRNA-ribosome interactions
(many of which were reviewed in [30]), where known parameters and molecular interac-
tions are used to build a realistic account of translation, without the need for extensive
analysis of biological data [31–33]. This is in contrast to machine learning approaches,
which have seen extensive use in practically predicting translation outputs from large sets
of data [34–36], but nevertheless typically lack the ability to provide causal explanations
for how each factor contributes to the output.

A broad range of biophysical translation models have been built in recent years that
differ in their simulation method, complexity and use-case. The simplest of these rely on
the tRNA Adaptation Index (tAI) [24,37,38], which assigns an efficiency to each codon
principally based on (i) tRNA abundances and (ii) the thermodynamics of codon-anticodon
pairing, and averages these across all codons of a gene. While methods that use the tAI
have been shown to provide high performance in translation predictors [39–41], they lack
the ability to describe how codon speeds vary across a transcript and, as such, cannot
describe the effects of slow codons and their implications for ribosomal queues.

More detailed biophysical translation models not only consider individual codon
efficiencies, but model the movement of ribosomes along mRNA transcripts, such that
stalling and queue formation can be considered. Such models are typically described by the
totally asymmetric simple exclusion process (TASEP), which considers mRNA transcripts
as lattices upon which ribosomes move stochastically and unidirectionally using specific
transition probabilities [42,43]. While the ideas for this theoretical framework were first
envisioned decades ago, they have been progressively expanded and modified to provide
detailed and sophisticated accounts of translation. The simplest TASEPs may model
an individual “representative” mRNA transcript with an infinite supply of ribosomes
and fixed efficiencies for each codon [44–46], while more intricate versions may consider
different transcripts with unique codon profiles, dynamic pools of tRNAs and ribosomes
or a broad range of experimental parameters about a cell’s physiology, among other
aspects [15,47–50]. TASEPs have more recently been combined with organism-specific
codon efficiencies and translation initiation rates to create online tools that expand upon
those previously mentioned, such as in [21,22].

A limitation of all these models, however, is that their accounts of translation are
disconnected from the cell’s other processes. This is in part due to the inherent complexity
of running biophysical translation models alongside accurate descriptions of transcription,
nutrient metabolism and cellular growth. Being able to achieve this would crucially enable
us to study how ribosomal queues affect the balance between synthetic construct expression,
gene expression burden and cellular growth, and in turn suggest how construct designs
can be optimised in a range of useful experimental conditions.

1.4. A Combined WCM-TASEP Framework

In order to join codon-level translation with “whole-cell” dynamics, we hereafter
present StoCellAtor, the “stochastic whole-cell calculator”. Our framework expands on our
previous circuit-chassis models [1,51] by combining a simple TASEP framework with the
general WCM of [4]. Such a WCM acts as a convenient platform to modify aspects of cellular
growth by providing a resource-limited account of how transcription, translation and
energy production affect cell growth. While other potentially suitable WCM frameworks
exist [52], as far as we are aware, the modelling framework described in [4] is one of
the simplest ones that offers a resource-limited description of cellular growth, and so
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is a suitable starting foundation with which to integrate a TASEP model of translation.
When combining both parts of our framework, we made an additional modification to
how the TASEP operates. Most TASEPs assign transition probabilities to all ribosomes on
mRNA transcripts. To improve simulation efficiency, StoCellAtor only considers authorised
transitions, i.e., forward transitions for non-queuing ribosomes.

In this paper we present our framework, conceptually illustrated in Figure 1, and show
how it can be used to optimise protein yield by tweaking the design of a synthetic construct.
We apply our model to simulate the heterologous protein production yield of an E. coli
population when grown during continuous exponential growth and in a turbidostat that
maintains constant cell density. In situations of minimal ribosome queuing, we find that
increasing promoter strength or RBS strength has similar effects on boosting synthetic
protein yield, whereas in the presence of ribosomal queues, increasing promoter strength
rather than RBS strength appears to have a greater beneficial effect on heterologous protein
yields. We then discuss how StoCellAtor can be expanded to analyse more complex
transcript designs and, finally, how the impacts of construct genetic stability and mutation
spread could be included.

StoCellAtor

Describes relationship 
between synthetic construct 

and host with codon-level 
translation

Whole-cell models

e.g. Weisse et al. (2015)

Doesn't consider 
multi-step translation

Codon-level t'lation

e.g. Algar et al. (2014)

No interaction between 
construct and host

Figure 1. Our model combines codon-level translation with a resource-based whole-cell model, two
components that have previously not been joined. In doing so, we see how the effects of ribosomal
queues impact the relationship between synthetic construct expression and the dynamics of cell
growth and heterologous protein expression and yields. StoCellAtor, stochastic whole-cell calculator.

2. Materials and Methods
2.1. Whole-Cell Model

Our model is structured and parameterised based on a stochastic version of the whole-
cell framework by [4], with the core difference being the replacement of their one-step
translation process with a multi-step TASEP. As in [4], we maintain the essential compo-
nents of the model that capture how trade-offs between finite resources (energy supplies,
free ribosomes and finite proteome) impact the cell’s growth rate (Grate) during nutrient
metabolism, transcription and translation. This model focuses on the effects of gene ex-
pression burden [1], as opposed to other varieties such as metabolic burden or toxicity. As
such, it uses a simple account of nutrient metabolism, where the “quality” of the nutrients
is determined by a single parameter, n. n is used to denote how many molecules of a
general form of energy are produced from one molecule of intracellular nutrient (see the
Supplementary Information for a detailed description of all parameters and variables).

In our description of the proteome, which is coarse-grained into different functional
classes, we add specific parameters for the synthetic construct’s promoter strength (promH),
RBS strength (RBSH) and codon efficiencies. In order to combine the whole-cell components
with a TASEP stochastic framework, we implement all processes using reaction-based rate
equations, rather than deterministic differential equations. Each simulation is run until
the heterologous protein variable reaches steady state, which we define as when it does
not deviate by more than 1% from its mean during the last 10% of the simulation time.
For a visualisation of each simulation’s convergence, see the Supplementary Information,
Section S4.4.
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2.2. A Modified TASEP for Translation

Our TASEP implementation considers individual ribosome transitions along mRNA
transcripts that belong to four classes: three of these are “endogenous” and therefore native
to the cell (ribosomal (R), enzymatic (E), housekeeping (Q)), while one is unnaturally
engineered into the cell (“heterologous” (H)). The lengths of transcripts are defined in
terms of successive ribosomal footprints (Rf), where 1 Rf equates to 30 nucleotides [53],
making each Rf account for 10 amino acids. As in [4], each transcript contains 30 successive
footprints (900 nucleotides), except for R proteins, which contain 750 footprints (22,500 nu-
cleotides), to reflect that ribosomes are multi-protein complexes requiring more resources
to build [54,55]. While modelling mRNA degradation, “ribosome protection” is considered
whereby transcripts cannot be degraded unless they are free from ribosomes. We focus our
core results on a simple scenario that highlights the effects of ribosomal queues in order to
clearly observe their impact. This illustrative scenario considers one slow codon with a
relative efficiency of 0.5% at position 26 Rf on a transcript of length 30 Rf. Other positions
and efficiencies were also explored, and are reported in the Supplementary Information
(Figure S2).

In each state transition, all bound ribosomes have a probability to transition to the
next codon, with backwards transitions and detachments being neglected due to their
rarity. The transition probability of each ribosome is proportional to the efficiency of the
codon being translated, and so, by implementing codons with varying efficiencies, we can
simulate the presence of “slow codons” and hence the formation of ribosomal queues. If
a ribosome is directly behind another, its forward transition probability is recorded as
zero such that it cannot be selected for a transition. This is a key difference with classical
TASEPs, which would expend computational time first selecting a queuing ribosome and
later finding it cannot move [56] (Figure 2a). Once a ribosome reaches the last codon of a
transcript, one further elongation step releases it to create a protein molecule. Figure 2b
shows how this translation framework is embedded in the wider whole-cell model, while
Figure 2c displays a top-down perspective of all processes, highlighting the qualitative
relationship between the cell’s native machinery, its heterologous protein production and
its growth.

2.3. Model Use Cases

To apply our model to relevant experimental settings, we implement an analysis
pipeline that uses steady-state simulation values to explore the impact of a construct’s
design (promoter strength, RBS strength and codon composition) on the growth rate (Grate)
and heterologous protein production rate (Hrate) (Figure 3). We then use these values to
calculate the protein yield that could theoretically be obtained over time in a growing cell
population in two scenarios: uncapped exponential growth and growth within a turbidostat
at steady state. The former provides insight into how dynamics evolve when there are
no growth limitations, while the latter gives an insight into typical continuous culture
settings where cell density is kept constant by adjusting the dilution rate. Depending on
the experimental scenario, our analysis could be applied to other forms of continuous
culture, for example a chemostat where the population’s growth rate is maintained constant
by adjusting the nutrient concentration. However, we wanted to account for scenarios
where the growth rate of a population may change mid-experiment, such as mutations
occurring to the synthetic construct. In this case, a chemostat would change the nutrient
concentration and in turn affect the cell density in order to reset the growth rate, while the
turbidostat would simply adjust the dilution rate to keep the cell density constant.
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a

b

Cellular 
resources

Heterologous 
production

Cell growth

Classic TASEP StoCellAtor

TV with possible selections 
for movement shown

[r1,r2,r3,r4,r5] [r1,0,0,r4,r5] 

1 2 3 4 5

2

1 Use TV to randomly select available ribosome

Move ribosome foward and update TV

slow codon

r1 r2 r6 0 r5 

r1 r2 r6  0 r4 
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c

TV: transition vector

Transcription

Genome

Ribosomes

Gene  
construct

Translation

Metabolism

Protein

Nutrients

Figure 2. StoCellAtor’s translation model in context. (a) The difference between classic TASEP
and StoCellAtor in terms of choosing ribosome movement via the transition vector (TV). (b) The
simulation steps taken during translation in the context of a resource-limited whole-cell model,
which considers nutrient metabolism, transcription and translation. Step 1: a non-queuing ribosome
is selected for movement. Step 2: the chosen ribosome position is updated. This ribosome might
become “queuing”, while the ribosome behind it becomes free to move. This is reflected in the
updated TV (red values). (c) A top-level summary of the whole-cell model, showing the links among
the cell’s resources, its heterologous protein production and its growth. The activation and inhibition
arrows denote general effects and not specific reactions.
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Figure 3. How we apply StoCellAtor to relevant growth scenarios. (Left) An example stochas-
tic simulation of the different proteome fractions (left y-axis) and growth rate (right y-axis) with
promH = 3 and RBSH = 1. Values start out of equilibrium, go through transient dynamics and
finally reach steady-state values. (Middle) An illustration of the steady-state information gained
from each simulation. (Right) Steady-state information is used to assess protein production in a
hypothetical population that grows over time. Two growth scenarios are considered: uncapped
exponential growth and growth within a turbidostat.
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2.4. Software

Our model was written in MATLAB 2018b, and the code was run on a computer
equipped with 2 Intel® Xeon® E5-2670 2.60 GHz CPUs, 132 GB memory and the Ubuntu
14.04.5 LTS operating system. The scripts are available from GitHub at https://github.
com/sarvarip/BacterialCellModel/tree/master/new_setting.

3. Results
3.1. Reproducing Growth Laws

Bacterial growth laws describe empirical relationships between a cell’s growth rate and
another quantity of interest [57]. They are often used to check the validity of simulation
results from whole-cell models. We first compare StoCellAtor’s “endogenous” output
(without synthetic gene expression) with Monod’s and Schaechter’s laws to show that
our model displays the typical cell function. We then compare our “heterologous” output
with experimental trends reported by [3] to show its validity in capturing basic behaviours
observed experimentally in the presence of synthetic gene expression.

Monod’s law describes a hyperbolic relationship between the concentration of the
external nutrient and the growth rate [58], which we recover by varying the parame-
ter for nutrient quality, n, which acts as a proxy for the external nutrient concentration
(see Section 2.1). We run simulations with seven increasing values of n and record the
steady-state Grate, finding that it indeed saturates at higher values of n (Figure 4a), as in
normal bacterial growth. For the second set of endogenous simulations, we compare the
mRNA:protein mass ratio (see Supplementary Material, Section S3.2) with the cell’s Grate,
a relationship that has been experimentally shown to be linear via “Schaechter’s law” [59].
We recover this trend by calculating the mass ratio at steady state for the different simula-
tions considering various values of n and comparing these results with Grate.

Higher expression levels of heterologous (H-class) proteins are known to lower a
cell’s growth rate by reducing the amount of cellular resources available for the produc-
tion of other proteins required for growth (e.g., ribosomal, enzymatic). Experimental
results from [3] showed that this relationship is predominantly linear. For our heterolo-
gous simulations with uniform codon efficiency, we vary the cellular mass fraction of H
(H f rac) by using nine different combinations of promoter and RBS strengths with n = 100
(see Section 3.2). For each, we record steady-state protein quantities and Grate, finding a
strong linear relationship between them (Figure 4c).

Endogenous Heterologous

0 300 600

Nutrient quality, n

0

2.5

5.0

0.06 0.14 0.22

mRNA:protein mass ratio

0

2.5

5.0
R2 = 0.99

0 0.5 1.0
0

0.9

1.8
R2 = 1.00

H mass fraction, Hfrac

a b c

G
ra
te
/h

-1

G
ra
te
/h

-1

G
ra
te
/h

-1

Figure 4. Characterising StoCellAtor’s behaviour in both endogenous and heterologous simulations.
(a) Recovering Monod’s law: the hyperbolic dependency between external nutrient quality and
growth rate. (b) Recovering Schaechter’s law: the linear relationship between growth rate and
the mRNA:protein mass ratio. A different value of nutrient quality (corresponding to the values in
subfigure a) is used for each data point. (c) Recovering the linear relationship between Grate and H f rac
that was experimentally observed in [3]. For each data point, different combinations of promoter
and RBS strengths are considered (see Section 3.2), while the nutrient quality parameter is fixed to
n = 100. A linear regression with corresponding R2 values is also shown.

https://github.com/sarvarip/BacterialCellModel/tree/master/new_setting
https://github.com/sarvarip/BacterialCellModel/tree/master/new_setting
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3.2. Optimising Construct Design
3.2.1. Relationships between Construct Design, Cell Growth and Heterologous
Protein Yield

StoCellAtor can be used to explore the relationship between ribosomal queues,
synthetic construct expression and cell growth. A key application from this is predicting
the optimal design of synthetic constructs in terms of three elements: promoter strength
(promH), RBS strength (RBSH) and codon composition.

To gain insight into the impact of these parameters, we ran simulations for three values
of both promH and RBSH ( 1

3 , 1 and 3), giving nine combinations in total. These values
indicate relative strengths, such that promH = 3 represents a promoter nine times the
strength of promH = 1

3 . Furthermore, these values are chosen to align with the fold
changes in strength that are typically found in part libraries [60,61]. For each combination,
simulations are conducted with and without a slow codon, and the resulting steady-state
Grate and Hrate values are plotted in Figure 5.
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Figure 5. How gene construct design and inefficient codons affect performance. Blue represents the
case when all codons on the gene construct have the same efficiency, while orange represents the
case when a codon with lower relative efficiency (efficiency of 0.5% compared to the other codons) is
introduced at position 26 Rf. All simulation results used a fixed nutrient quality of n = 100. (a) The
effect of heterologous promoter and RBS strength on Hrate. (b) The effect of heterologous promoter
and RBS strength on Grate. (c) The relationship between Grate and Hrate. Three results with similar
Hrate values are highlighted with relative values of promH (p) and RBSH (R) indicated. (d) Proportion
of ribosomes on mRNAH that are on each footprint position for a gene construct with low promH
(promH = 1

3 ) and high RBSH (RBSH = 3).

It can immediately be seen that the general impact of a slow codon decreases both
Grate and Hrate. The cause of this is rooted in ribosomal queue formation on mRNAH
heterologous transcripts, which we show by plotting the proportion of ribosomes on these
transcripts that are on each footprint position (Figure 5d, promH = 1

3 , RBSH = 3).
When using codons of uniform efficiency, ribosomes remain evenly distributed, while a
slow codon at 26 Rf produces a sharp rise in density upstream of this position, indicating
queue formation. The slower translation that results from queue formation causes more
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ribosome sequestration on mRNA transcripts, reducing those available for translating other
protein fractions. This wasteful ribosome sequestration on mRNAH transcripts then leads
to a reduction in both Hrate and Grate.

For both cases with and without a slow codon, it can be seen that higher synthetic gene
expression from either increased promH or RBSH leads to an increase in Hrate and a decrease
in Grate. We plot this relationship in Figure 5c to further highlight the impact of ribosomal
queue formation, which causes a more stringent inverse relationship between Grate and
Hrate. Additionally, this relationship for the slow codon data is distinctly nonlinear, such
that we see promoter-RBS combinations with equivalent values of Hrate, but different Grate.
We annotate three of these data points, highlighting how some combinations of promH
and RBSH are more efficient than others, i.e., they produce a higher value of Grate for the
same value of Hrate.

3.2.2. Identifying Optimal Gene Construct Designs by Quantifying Protein Production
Yield Over Time

To provide a more thorough analysis of synthetic gene construct designs, we use
Hrate and Grate values from each promoter-RBS combination to calculate the heterologous
protein yield over time (H(t)). In order to explore a range of construct design implications,
we apply this to two cell growth scenarios: (i) uncapped exponential growth starting from
a single cell and (ii) growth within a turbidostat at steady state where cell density remains
constant. The protein yield H(t) is defined as the time integral of the product of Hrate(t)
(the production rate per cell at time t) and N(t) (the number of cells at time t):

H(t) =
∫ t

0
Hrate(T)N(T) dT. (1)

As such, H(t) represents the population-wide protein yield, rather than the protein
yield per cell. The expression of N(t) can be changed to reflect the different growth
scenarios that we propose. In both cases, we assume steady-state growth, so that the
growth rate Grate and heterologous protein production rate per cell Hrate remain constant
over time, i.e., Grate(t) = Grate = constant and Hrate(t) = Hrate = constant.

For uncapped exponential growth starting from a single cell, the number of cells at
time t is given as N(t) = 2Grate t. If we assume that there is no protein production at t = 0,
the protein yield at time t during steady-state exponential growth is given by:

H(t)exp =
∫ t

0
Hrate2Grate T dT =

Hrate

Grate ln 2

(
2Grate t − 1

)
. (2)

For growth in a turbidostat, we assume that the cell population is already at steady-
state density and that the turbidostat functions perfectly to keep cell density constant.
Given this, the population size remains fixed over time such that N(t) = N = constant.
If we again assume no protein production at t = 0, the heterologous protein yield at time t
within the turbidostat is given by:

H(t)tur =
∫ t

0
HrateN dT = HrateN t. (3)

We furthermore note that dH(t)tur
dt = HrateN, showing that the dynamics of heterolo-

gous protein yield in a turbidostat is time-invariant.
For each promoter-RBS combination, we calculate H(t)exp and H(t)tur and display

their normalised values at successive time points in heat maps (Figure 6a,b), formally de-
fined as H(t)norm[i, j] = H(t)[i,j]

max H(t)

∣∣∣
RBSH=i,promH=j

. The promoter-RBS values considered in

the heat maps of Figure 6b correspond to the promoter-RBS combinations considered in
Figure 5a,b. Symmetry in heat map shading along the line promH = RBSH indicates that
increasing either variable has the same effect on increasing protein yield, whereas a bias
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to one side indicates that one of the two variables (promH or RBSH) has a greater effect.
For the absolute values in both exponential and turbidostat cases, see Figure S3 in the
Supplementary Information.
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Figure 6. Evaluating the performance of gene construct design in terms of heterologous protein
yield by calculating H(t)norm in different growth scenarios. (a) An illustration of the grid space
used to form heat maps of H(t)norm (subfigure b) and the Construct Score (Subfigure c). The line
promH = RBSH is used to compare the effects of promH and RBSH . (b) Heat maps of H(t)norm

at successive time points for cases without (blue) and with (orange) a slow codon. For the label
“t = 0 h”, calculations are made over a small non-zero time interval (10−12 h). Beyond t = 0 h,
we provide heat maps only for H(t)exp because the dynamics for H(t)tur remain unchanged. (c)
Comparing the effect of promoter and RBS strengths on H(t)exp and H(t)tur via the “Construct
Score”. A value of zero indicates that increasing promH and RBSH by the same amount would have
an equivalent effect on protein yield, while positive and negative values indicate that a greater effect
on yield would be obtained by increasing promH or RBSH , respectively. Dashed lines indicate the
Construct Score when using a turbidostat.

By comparing the heat maps over time, we can see how the gene construct’s design
affects the value of H(t)norm. For values under the label “t = 0 h”, we calculated protein
yield over a small non-zero time interval (10−12 h) in order to observe how yields compare
between construct designs at the start of production. For t = 0 h, therefore, the population
has just started to grow, and the burdensome impact of synthetic gene expression is
minimal for both the “uniform efficiency” and “slow codon” cases. This means that
maximising Hrate through high promH and RBSH would also maximise H(t) (Figure 6b,
first column). As time extends, the population grows, and the negative impact of unnatural
gene expression on the population’s growth becomes more extreme, such that achieving
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maximal H(t)exp increasingly demands lower promH and RBSH (Figure 6b, last column).
In between these time points, different promoter-RBS combinations become optimal, as
indicated by the changing location of the heat map quadrant with value “1”. For codons
with uniform efficiency (top row, blue), this evolution from high to low expression is fairly
symmetrical across promoter and RBS values, with only a slight bias towards the RBS,
suggesting that increasing either parameter has an approximately equivalent effect. When
ribosomal queues are present (bottom row, orange), however, there is a clear bias towards
lower RBSH and higher promH , suggesting that maximising H(t)exp over time requires the
use of stronger promoters and weaker RBSs.

In the case of growth in a turbidostat, since the heterologous protein yield dynam-
ics is time-invariant, the heat map values at t = 0 h hold for all successive time points.
This means that the negative impact on Grate from construct expression does not influence
protein yield, suggesting that maximising construct expression (top-right quadrant) pro-
duces the optimal protein yield. As was seen in uncapped exponential growth at t = 0 h,
there is a strong bias towards a stronger promoter to maximise Htur when slow codons
are present.

Beyond the qualitative trends observed over time in Figure 6b, we introduce a metric to
quantify the effect that increasing the promoter strength or RBS strength has on increasing
H(t). To this end, we implement a metric that considers all values of H(t)norm for a given
time point and outputs the extent to which they are weighted on either side of the line
promH = RBSH in the corresponding heat map. Mathematically, by using our definition
of H(t)norm[i, j] introduced previously, we define X = ∑j ∑i jH(t)norm[i, j], the sum of
all H(t)norm values weighted by promH , and Y = ∑i ∑j iH(t)norm[i, j], the sum of all
H(t)norm values weighted by RBSH . We then define the “Construct Score” as the difference
between these terms, Y − X (see Figure 6a,c). Positive values of the Construct Score indicate
a bias towards RBSH , meaning that increasing the RBS strength would result in a greater
H(t), and hence a more efficient construct, than increasing the promoter strength by the
same amount. The opposite holds true for negative values, where increasing the promoter
strength would give rise to a greater H(t) than equivalently increasing the RBS strength.
A value of zero, meanwhile, indicates perfect symmetry along the line promH = RBSH ,
suggesting that there would be no discernible difference to H(t) if either promH or RBSH
were increased by the same amount. In this light, the Construct Score provides a useful
metric to compare the effect of changing one part vs. another, but does not provide
information on the quantity of protein yield itself.

Plotting the Construct Score for both codon cases over time reaffirms the trends seen
from the heat maps. For uncapped exponential growth, in the case with no ribosomal
queues, the Construct Score shows only a minimal bias towards the RBS, indicating that
increasing promH or RBSH would have similar effects on protein yield. In the case when
a slower codon is introduced, there is strong bias towards the promoter. This suggests
that one should increase promH to increase H(t), as increasing promH will yield a more
efficient construct than increasing RBSH . Over time, the most efficient promoter-RBS com-
bination increasingly becomes that which conveys the least burden on population growth,
i.e., the bottom-left quadrant of the heat map (low promH , low RBSH). This quadrant
becomes more dominating over time relative to the other promoter-RBS combinations;
therefore, the symmetry of H(t)norm values around the line promH = RBSH becomes
greater, and the Construct Score tends towards zero (Figure 6c, t = 24 h). In the case of
growth in a turbidostat, the heat map seen at t = 0 h is maintained for all time points
(i.e., negligible RBS bias without ribosomal queues and promoter bias with), and hence
corresponds to horizontal lines in the time evolution of the Construct Score for both
codon cases.

4. Discussion

We increased the efficiency of an existing TASEP framework by removing the possibil-
ity of selecting a queuing ribosome [56] and merged this modified TASEP with a stochastic
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implementation of the whole-cell model introduced in [4]. Using this modelling framework,
we are able to simulate translation at the codon level while linking the effects of ribosomal
queues to protein yield and cell growth. This leads to a number of implications for gene
construct design, which are discussed below.

4.1. Implications for Gene Construct Design

We primarily explored how the sustained expression of a synthetic gene construct is
coupled to cell growth through the re-distribution of finite cellular resources. In particular,
we studied the relationship between promoter strength, RBS strength and codon efficiency
in order to predict the optimal gene construct design for maximising protein yield. Our core
results used slow codons that maximised the effects of ribosomal queues (slow codon
with 0.5% efficiency located towards the end of a transcript of length 30 Rf). However,
additionally, we also explored the effects of other codon features and report these in the
Supplementary Information (Section S4.2). In particular, we show how the relationship
between Grate and Hrate changes when considering slow codons with higher efficiency
(3%), slow codons positioned towards the beginning of a transcript and longer mRNA
transcripts (60 Rf).

While natural systems have been seen to sometimes use slow codons for positive
growth effects (Section 1.2), we note that the use of slow codons in synthetic gene constructs
would predominantly be burdensome to the host cell, either due to experimental constraints
such as genetic stability or through unintentional placement. We therefore began our
analysis by showing how slow codons negatively impact cell growth and heterologous gene
expression through ribosomal queue formation. This highlights the general importance of
optimising codon efficiencies. Achieving this is often difficult due to the varied effects of
gene expression burden and context-dependent expression [62]. In light of this, we explored
how other aspects of gene construct design can be optimised when faced with a codon
composition that triggers significant ribosomal queuing.

Different promoter-RBS combinations were seen to yield higher growth rates for
equivalent values of Hrate, suggesting that the optimum design choice can change when
ribosomal queues exist. To explore this further, we devised a metric to compare whether
increasing promoter strength (promH) or RBS strength (RBSH) by the same amount had
equivalent or different effect on increasing the protein yield. We then applied this to un-
capped exponential and turbidostat growth at steady state. Without ribosomal queues, we
found that increasing RBSH has a minimal added benefit on the heterologous protein yield
over increasing promH . This could be a result of increased “ribosome protection”, which
prevents the degradation of ribosome-bound mRNAs, as a lack of queuing ribosomes on
one transcript would increase the chance that all transcripts have at least one protective
ribosome. This would therefore boost the overall translation capacity for heterologous
proteins. When queue formation occurs, however, increasing promH was seen to be signifi-
cantly more beneficial for heterologous protein yield than increasing RBSH . Such scenarios
could occur due to an imbalance between free ribosomes and mRNA transcripts in the
cell. In these cases, increasing promH would increase the amount of mRNAs that free
ribosomes can translate, thus distributing the load and reducing potential queues. A higher
RBSH , meanwhile, would force more ribosomes onto existing transcripts and thus heighten
queue formation. Above all, this analysis suggests that the ability to control transcription
or translation independently of each other, and hence control the allocation of different
resource pools, would be an extremely valuable experimental tool. This is an approach that
is increasingly being considered in synthetic biology designs, as illustrated by [63].

The “promoter over RBS” design principle that we identify is one that has seen
experimental support [1]. Furthermore, the notion that the least burdensome designs
convey maximal protein yield in the long-term (due to an enhanced population growth
rate) has also been observed experimentally and has subsequently been used to motivate
the development of tools to regulate burden within a cell [64]. Our results echo this,
showing that a switch from more- to less-burdensome designs over the time course of an
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experiment would maximise protein yield. This analysis could furthermore be used as a
basis to predict the experimental time range over which a particular gene construct design
could deliver optimal protein expression, although accurately achieving this would require
finer modelling and additional experimental evidence.

For growth in a turbidostat at steady state, we previously noted that the dynamics of
H(t) are time-invariant, suggesting that any implications for construct design on protein
yield can be seen from the results at t = 0 h. For both codon cases, our results suggest that
optimal protein yield can be obtained by maximising both promoter and RBS strengths,
as shown by the top-right quadrant of the first column of the heat maps in Figure 6b.
When ribosomal queues are present (bottom row, orange), our results suggest that increas-
ing promoter strength would generally have a stronger effect on boosting protein yield
compared with an equivalent increase of RBS strength. Despite this analysis, we note that
strong construct expression may also promote other negative consequences of cellular
burden, such as mutation accumulation due to genetic instability, which StoCellAtor does
not consider.

4.2. Future Applications of StoCellAtor

A natural way to expand the remit of StoCellAtor’s results would be to consider the
effects of more complex codon distributions along an mRNA transcript, and in doing so,
explore the notion that slow codons can be used for positive growth effects. In Section 1.2,
we noted how organisms have been seen to use 5’ “ramp up” zones that decrease the
likelihood of costly upstream ribosome collisions and wasteful ribosomal queues [13–15] or
slow regions that increase the fidelity of cotranslational folding [16,17]. Such features may
be equally desirable in synthetic gene constructs, and so, a natural extension of StoCellAtor
would be in predicting the most efficient “ramp up” designs or “slow regions” when using
different combinations of promoters and RBSs. We note that existing codon-optimisation
tools are able to simulate complex codon designs, most notably the biophysical model
of [21]; however, these are all disconnected from a WCM setting with a resource-dependent
account of the growth rate. We demonstrate a simple version of the ramping effect by
positioning a single slow codon towards the 5’ end of the synthetic transcript (Figure S1).
We note, however, that these preliminary simulations require further exploration.

A broader future application would involve addressing a previously referenced short-
coming of our model’s predictions and requires looking at the role of burden and construct
design on genetic instability. In typical experimental settings, when expressing synthetic
gene constructs over time, they inevitably accumulate mutations, causing decreased ex-
pression and/or complete construct failure. Predicting the dynamics of mutation spread
and its impact on protein expression is a complex problem, for which gene expression
burden [65] and DNA sequence composition [29] are known to play major roles. However,
such analyses fall short of accurately predicting mutation spread dynamics, because they
do not consider them within a “whole-cell” context. For a given protein expression system,
being able to quantify burden and link its effect to growth rate is therefore important in
informing how mutations propagate.

In order to address this problem, and thereby link StoCellAtor to a description of
mutation dynamics, one suggestion we are currently exploring is to first subdivide the
bacterial cell population used in our model into two sub-populations: an “engineered” va-
riety that grows more slowly and a “mutant” that has lost capacity for construct expression
due to a fatal mutation, for example within its promoter or RBS region. An engineered cell
would be able to mutate into a mutant with a particular transition probability, and each
cell type would have an associated growth rate calculated from our model. This could
then be used to inform how quickly one sub-population is selected for comparison with
the other. As the mutant cells cannot express their construct, they would carry less bur-
den than the engineered cells and thus grow faster. As seen from our results, the design
of the gene constructs in the engineered cell would strongly influence burden, and this
would hence dictate how fast one sub-population grows relative to another. In the case
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of turbidostat growth, where cell density is kept constant, this would lead to a complete
out-competition of engineered cells over time, something that has been well-documented
experimentally [66]. These considerations, which depend on having a strong grasp on the
cellular processes that contribute to burden, would therefore be vital to be able to predict
protein yields in continuous cultures.

Regardless of the specific use-cases presented here, we hope that the modelling
framework we have introduced here will encourage its users to consider the impact
of construct design on cellular resources and population dynamics and, through this,
allow them to computationally explore designs that minimally impact growth and optimise
synthetic expression yields.
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737/10/1/37/s1: Table S1: Biochemical reactions and their associated reaction rates. Table S2: The
variables used in the simulations and their initial values. Table S3: Parameter values used in our
model. Figure S1: Steady-state endogenous proteome fractions plotted against nutrient quality.
Figure S2: Comparing the impact of different parameters via their effect on the relationship between
Hrate and Grate. Figure S3: Absolute values of heterologous protein yield for a variety of construct
design and growth conditions. Figure S4: Convergence of the heterologous protein variable, H,
for simulations with a slow codon (codon efficiency = 0.5%) at position 5 Rf out of 30 Rf. Figure S5:
Convergence of the heterologous protein variable, H, for simulations with a slow codon (codon
efficiency = 0.5%) at position 26 Rf out of 30 Rf. Figure S6: Ribosome density plots for simulations
with a slow codon (codon efficiency = 0.5%) at position 5 Rf out of 30 Rf. Figure S7: Ribosome
density plots for simulations with a slow codon (codon efficiency = 0.5%) at position 26 Rf out of
30 Rf. Figure S8: Steady-state proteome mass fractions for each protein class for simulations with a
slow codon (codon efficiency = 0.5%) at position 5 Rf out of 30 Rf. Figure S9: Steady-state proteome
mass fractions for each protein class for simulations with a slow codon (codon efficiency = 0.5%) at
position 26 Rf out of 30 Rf.
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