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Abstract: Four triphenylamines with extended π-systems were synthesized. Cyclic voltammetry
(CV) measurements showed that they gave radical cations, which are stable in solution. Radical
cations obtained upon one electron chemical oxidation showed strong absorption in the near-infrared
region. The radical cations of the naphthalene-substituted derivatives show a maximum absorption
wavelength above 1000 nm and are classified as NIR-II dyes. Molecular design rules of novel
near-infrared absorbing dyes are described.
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1. Introduction

Near-infrared light is located between the visible and infrared regions in the wave-
length range (800 to 2500 nm). Near-infrared absorbing dyes have absorption that shows
strong optical absorption based on the charge transfer transition of organic dyes or metal
complexes [1,2]. Among the near-infrared absorbing compounds containing cyanine dyes
with extended polymethine skeletons are phthalocyanine dyes with aluminum or zinc
at the center, various naphthalocyanine compounds, nickel dithiolene complexes with
planar tetracoordinate structures, squarylium dyes, quinone compounds, azo compounds,
and so on [3–8]. The application of these dyes will allow us to develop a wide range of
products in various optical fields such as security marking, lithography, optical recording
media, and optical filters [1]. In the field of plate-making materials using laser light, high
sensitivity to laser light with wavelengths longer than 700 nm is a growing demand, and
excellent solubility in common organic solvents and heat resistance are also required for
near-infrared absorbing compounds. Furthermore, in order to increase the efficiency of
photovoltaic power generation, it is desirable to make effective use of the near-infrared
light contained in sunlight; therefore, the development of materials that efficiently absorb
near-infrared light is essential. On the other hand, the near-infrared luminescence phe-
nomenon is expected to be applied to biomaterials for chemotherapy and the imaging
of deep tissues in the body. Triphenylamines (TPAs) having various substituents at their
para positions are widely known to give the corresponding very stable cation radicals
upon chemical or electrochemical one-electron oxidation [9,10]. In the neutral state, tri-
p-tolylamine (1) has an absorption around 300 nm due to the HOMO–LUMO transition,
but no absorption in the visible region (Figure 1a). One-electron oxidation of 1 gives the
stable blue radical cation 1•+, which has an absorption at 675 nm due to the HOMO–SOMO
transition (Figure 1b) [11]. This absorption is characteristic of organic radicals. Although
1•+ has only three aromatic rings, it can absorb light at wavelengths near the boundary
between visible light and near-infrared light.
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has only three aromatic rings, it can absorb light at wavelengths near the boundary be-
tween visible light and near-infrared light. 

 
Figure 1. (a) Absorption spectra of 1 before (dotted line) and after oxidation with 10 equivalents of 
SbCl5 (solid line) in dichloromethane at room temperature, [1] = 1 × 10−5 M. Inset: dichloromethane 
solution of 1 in the absence (left) and presence of 10 equivalents of SbCl5 (right), [1] = 1 × 10−5 M. (b) 
Molecular orbital energy levels of 1 and 1•+. 

By taking advantage of this property, TPA electrochromic materials that can reversi-
bly turn on and off the color change in the visible light range have been reported [12–15]. 
If triphenylamines with an extended π-system can be synthesized and stable radical cati-
ons can be obtained upon one-electron oxidation, they will be promising precursors for 
near-infrared absorbing materials. Based on this hypothesis, we considered phenyl-(2) 
[16], 4-biphenyl (3) [17], 1-naphthyl (4) [18], and 2-naphthyl (5) [19] substituted triphenyl-
amines as promising precursors for near-infrared absorption materials. One-electron oxi-
dation of each of them is expected to produce absorption in the near-infrared region (Fig-
ures 2 and 3). Although these compounds have been investigated as luminescent or hole-
transfer materials, their use as near-infrared absorbing materials has not been explored at 
all. 

Figure 1. (a) Absorption spectra of 1 before (dotted line) and after oxidation with 10 equivalents of
SbCl5 (solid line) in dichloromethane at room temperature, [1] = 1 × 10−5 M. Inset: dichloromethane
solution of 1 in the absence (left) and presence of 10 equivalents of SbCl5 (right), [1] = 1 × 10−5 M.
(b) Molecular orbital energy levels of 1 and 1•+.

By taking advantage of this property, TPA electrochromic materials that can reversibly
turn on and off the color change in the visible light range have been reported [12–15]. If
triphenylamines with an extended π-system can be synthesized and stable radical cations
can be obtained upon one-electron oxidation, they will be promising precursors for near-
infrared absorbing materials. Based on this hypothesis, we considered phenyl-(2) [16],
4-biphenyl (3) [17], 1-naphthyl (4) [18], and 2-naphthyl (5) [19] substituted triphenylamines
as promising precursors for near-infrared absorption materials. One-electron oxidation of
each of them is expected to produce absorption in the near-infrared region (Figures 2 and 3).
Although these compounds have been investigated as luminescent or hole-transfer materi-
als, their use as near-infrared absorbing materials has not been explored at all.



Colorants 2022, 1 228Colorants 2022, 1, FOR PEER REVIEW 3 
 

 

 
Figure 2. Representative stable TPA radical cations and this study. 

 
Figure 3. Structures of compounds 1–5. 

2. Results and Discussion 
2.1. Theoretical Calculations 

In order to estimate whether radical cations 2•+–5•+ with extended π-systems have 
absorption in the near-infrared region, DFT calculations were carried out on compounds 
1•+–5•+ at the UB3LYP/6-31G(d) level of theory with the polarizable continuum model, us-
ing dichloromethane as a solvent (Figure 4). The calculated HOMO–SOMO energy gap of 
1•+ is 1.60 eV, and 1•+ is expected to have a maximum absorption at 633 nm in dichloro-
methane. Indeed, 1•+ has a maximum absorption at 675 nm in dichloromethane [20], indi-
cating the validity of this calculation method. The HOMO–SOMO energy gap of 2•+ (1.28 
eV) was smaller than that of 1•+. The calculated maximum absorption wavelength of 2•+ is 
857 nm, which corresponds to the near-infrared region, indicating that the introduction of 
the phenyl group effectively would reduce the HOMO–SOMO energy gap. Furthermore, 
3•+ with biphenyl units is found to have a narrower SOMO–HOMO energy gap (1.12 eV) 
than 2•+, suggesting a further long-wavelength shift. Compounds 4•+ and 5•+, extended 
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Figure 3. Structures of compounds 1–5.

2. Results and Discussion
2.1. Theoretical Calculations

In order to estimate whether radical cations 2•+–5•+ with extended π-systems have ab-
sorption in the near-infrared region, DFT calculations were carried out on compounds 1•+–
5•+ at the UB3LYP/6-31G(d) level of theory with the polarizable continuum model, using
dichloromethane as a solvent (Figure 4). The calculated HOMO–SOMO energy gap of 1•+ is
1.60 eV, and 1•+ is expected to have a maximum absorption at 633 nm in dichloromethane.
Indeed, 1•+ has a maximum absorption at 675 nm in dichloromethane [20], indicating
the validity of this calculation method. The HOMO–SOMO energy gap of 2•+ (1.28 eV)
was smaller than that of 1•+. The calculated maximum absorption wavelength of 2•+ is
857 nm, which corresponds to the near-infrared region, indicating that the introduction of
the phenyl group effectively would reduce the HOMO–SOMO energy gap. Furthermore,
3•+ with biphenyl units is found to have a narrower SOMO–HOMO energy gap (1.12 eV)
than 2•+, suggesting a further long-wavelength shift. Compounds 4•+ and 5•+, extended
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with 1- or 2-naphthyl groups, were found to have a HOMO–SOMO gap narrower than 2•+.
These results (see Supplementary Materials for more information on the results of DFT
calculations) suggest that triphenylamine radical cations with an extended π-system by
extra aromatic rings have absorption in the near-infrared region. These results prompted us
to prepare 2–5 and investigate the properties of the corresponding radical cations 2•+–5•+.
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Figure 4. Molecular orbital energy levels of 1•+−5•+.

2.2. Synthesis

The synthetic route for 2–5 is depicted in Scheme 1. These compounds were synthe-
sized in one step by modifying the previously reported method [18,19]. The corresponding
aryl boronic acid was reacted with 4, 4′, 4′ ′-tribromotriphenylamine under Pd-catalyzed
Suzuki coupling reaction conditions to give the target compound in a moderate yield (see
Supplementary Materials for details).
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Scheme 1. Synthesis of 2–5.

2.3. Solubility

In general, compounds with highly extended π-systems have low solubility in or-
ganic solvents [21]. However, to be employed in organic electronics, a solubility of more
than 0.1 wt% is required in general organic solvents [22]. We examined the solubility
of compounds 2–5 in several organic solvents. Compound 2 showed good solubility in
dichloromethane, anisole, and toluene. On the other hand, 2 was almost insoluble in ethyl
acetate. Compound 3, which has an extended π-system with p-phenylene units, has a
very low solubility compared to 2. Among the four compounds examined in this study,
4 showed the highest solubility. A comparison of the solubility of 4 and 5 in a structural
isomer relationship showed that 4 was about 10 times more soluble than 5 in various or-
ganic solvents (see Supplementary Materials for details for the solubilities of 2–5 in various
organic solvents).

2.4. Crystal Structures of 4 and 5

In order to clarify the difference in solubility between 4 and 5, the crystal structures of
these two compounds were compared. The crystal structure of 4 was previously reported
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by us [23]. In this study, we prepared single crystals of 5 and clarified their crystal struc-
tures [24]. The crystal structures of 4 and 5 are shown in Figure 5. In compound 4, the
dihedral angles of the naphthyl and p-phenylene groups are 48.8–56.2◦. On the other hand,
those for 5 are 16.6–40.3◦. The 1-naphthyl and p-phenylene groups in compound 4 are
twisted more significantly by steric hindrance. This prevents tight intermolecular packing
and is thought to result in high solubility.
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Figure 5. Crystal structures of (a) 4 and (b) 5.

2.5. Cyclic Voltammetry Measurements

Cyclic voltammetry measurements were performed to clarify the electrochemical prop-
erties of 2–5 at room temperature in dichloromethane, using 0.1 M tetra-n-butylammonium
hexafluorophosphate (Bu4NPF6) as the supporting electrolyte. On an anodic sweep,
2 showed a reversible redox wave (E0 = 0.42 V vs. Fc/Fc+). This was attributed to the
one-electron oxidation of the triarylamine site (Figure 6).
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Figure 6. Cyclic voltammogram of 2 in dichloromethane (1 × 10−3 M) with 0.1 M Bu4NPF6 as a
supporting electrolyte. The scan rate was 100 mV/s.

The shape of the voltammogram did not change even after 10 cycles at a sweep rate
of 25 mV/s (Figure S8). This result indicates that the radical cation 2•+ is very stable
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in solution. Similarly, compound 3 showed reversible one-electron oxidation transfer
(E0 = 0.42 V vs. Fc/Fc+). Similarly, the voltammograms of 3–5 were reversible, respectively
(see Supplementary Materials for details). The redox potentials and HOMO energy levels by
DFT calculations for compounds 1–5 are shown in Table 1. The value of the redox potentials
E0 showed good agreement with the values of the HOMO energy level obtained from the
DFT calculations. Compounds 1–5 in solution were found to give stable radical cations at
room temperature. With these results, we set out to study their absorption spectra.

Table 1. Electrochemical data for 1–5 with calculated EHOMO.

Compound E0 (V vs. Fc/Fc+) EHOMO (eV)

1 0.33 −4.87
2 0.42 −4.97
3 0.42 −4.95
4 0.47 −5.00
5 0.42 −4.96

2.6. Absorption and Fluorescence Spectra of the Neutral Species, 1–5

The absorption and fluorescence spectra of compounds 1–5 in a neutral state were
studied in dichloromethane. The absorption and fluorescence spectra of 2 are shown
in Figure 7. A large absorption appears at 344 nm. DFT calculations revealed that this
absorption was due to the HOMO–LUMO and HOMO–LUMO+1 transitions. Similar
studies were conducted for compounds 3–5 (see Supplementary Materials for details). The
experimental and DFT calculated absorption spectra of compounds 1–5 are summarized in
Table 2. The peak shifted to the long wavelength side as an extension of the π-system. The
experimental and calculated values were in good agreement. Upon excitation at 344 nm,
2 showed blue emission at 416 nm. As the π system was extended, the emission wavelength
shifted to the longer wavelength side. The experimental fluorescence spectra of compounds
1–5 are also summarized in Table 2 (see also Supplementary Materials).
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Figure 7. UV-Vis (solid line) and fluorescence emission (dotted line) spectra of 2 in dichloromethane.
The concentration was 1 × 10−5 M for UV-Vis and 1 × 10−6 M for fluorescence emission spectra.
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Table 2. The experimental and calculation results for the absorption spectra of 1–5.

Compound

Absorption Spectra Fluorescence Spectra

Obsd. Calcd. Obsd.

λmax (nm) log ε λmax (nm) λmax (nm)

1 294 4.43 326 -
2 344 4.78 363 416
3 361 4.71 390 442
4 341 4.65 379 437
5 363 4.84 393 440

2.7. UV-Vis-NIR Absorption and Fluorescence Spectra of the Oxidized Species, 1•+–5•+

The UV-Vis-NIR spectrum of the oxidized species 2•+ was examined in dichloromethane
(Figure 8). When 10 equivalents of SbCl5 were added to the solution of 2, the color of the so-
lution changed to a light yellowish green, indicating the formation of oxidized species 2•+.
In agreement with the results of TD–DFT calculations, new absorptions appeared at 420
and 862 nm (Figure S18). TD–DFT calculations suggest that this near-infrared absorption at
862 nm was due to the HOMO to SOMO transition.
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Figure 8. Absorption spectra of 2 before (dotted line) and after oxidation with 10 equivalents of
SbCl5 (solid line) in dichloromethane at room temperature, [2] = 1 × 10−5 M. Inset: dichloromethane
solution of 2 in the absence (left) and presence of 10 equivalents of SbCl5 (right), [2] = 1 × 10−5 M.

This absorption did not change at all over 15 min at room temperature under nitrogen
atmosphere (Figure 9). Compounds 3–5 were studied in the same way (see Supplementary
Materials for details). When 10 equivalents of SbCl5 were added to the solution of 3, the
color of the solution changed to yellow (Figure S12) and new absorptions appeared at
991 nm (Figure S15). The maximum absorption peak in the near-infrared region of 3•+ was
shifted to the longer wavelength side by 129 nm compared to that of 2•+. Compounds
4•+ and 5•+ with naphthalene rings showed maximum absorption at 1071 and 1028 nm,
respectively (Figures S16 and S17). The results of the absorption spectra of 1•+–5•+ are
summarized in Table 3.
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Figure 9. Time course of UV-Vis absorption spectra of 2 with 10 equivalents of SbCl5 in
dichloromethane at room temperature recorded every 5 min. The initial concentration of 2 was
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Table 3. Spectroscopic properties and DFT calculation results for 1•+–5•+.

Absorption Spectra DFT Calculation

Obsd. Calcd. HOMO
(eV)

SOMO
(eV)

∆E (eV)
λmax (nm) log ε λmax (nm)

1•+ 675 4.34 633 −6.39 −4.79 1.60
2•+ 862 4.66 857 −6.12 −4.84 1.28
3•+ 991 4.46 1113 −5.92 −4.80 1.12
4•+ 1071 4.46 1349 −5.92 −4.84 1.08
5•+ 1028 4.56 1244 −5.92 −4.80 1.12

Among the four compounds, 2–5, examined in this study, 4, with its twisted structure,
exhibited the highest solubility. Furthermore, among the four corresponding radical cations,
2•+–5•+, the absorption peak of 4•+ was shifted to the longest wavelength region. This
indicates that the 1-naphthyl group is a promising substituent for both high solubility and
effective π-system extension in the design of TPA derivatives. This oxidized species 4•+ was
reduced by ascorbic acid to regenerate 4 almost quantitatively (see Figures S29 and S30 for
details). Fluorescence emission spectra of 2–5 and their oxidized species in dichloromethane
are shown in Figures S31–S34. Upon the addition of 10 equivalents of SbCl5, the emission
was quenched almost completely.

3. Conclusions

Four triarylamines with extended π-systems were investigated as precursors for near-
infrared absorbing materials. CV measurements and chemical oxidation studies revealed
that they gave radical cations that were stable in solution. These radical cations were found
to have a significant absorption in the near-infrared region (around 1000 nm). Especially,
the two radical cations with naphthalene, 4•+ and 5•+, showed maximum absorption
wavelengths above 1000 nm and were classified as NIR-II dyes, which are expected to be
applied in various fields [4–6]. DFT calculations showed that this absorption was due to
the HOMO–SOMO transition of the radical cation. The NIR-II dyes reported so far have
complicated structures, and their syntheses have been complex. On the other hand, the
derivatives reported in this study can be easily synthesized in one step from commercially
available reagents. Various substituents can be easily introduced into the triarylamine core.
It is expected that the absorption of radical cations can be shifted to longer wavelengths by
further expansion of the π-system. Following this molecular design rule, studies of various
π-extended triarylamines are underway in our laboratory.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/colorants1020014/s1. Synthesis, DFT calculations, solubility
test, cyclic voltammetry, absorption and emission spectra of the neutral or oxidized species, and
reduction in the radical cation 4•+ with ascorbic acid. Fluorescence spectra, 1H and 13C spectra, and
ESR spectra [18,19,25–31].
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