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Abstract: One of the challenges of the century is to reach compatibility between the required resistance
and the usage of lightweight building materials that may negatively affect the mechanical properties.
Natural fibers nowadays are used as enhancers in the industrial field. Hence, the fibers contribute by
giving an ideal solution to improve mechanical proprieties of the structural elements such as tensile
and impact strength. In previous studies, the use of natural fibers as reinforcement in construction
materials has increased. Natural fibers have a lot of characteristics such as being strong, lightweight,
inexpensive, and eco-friendly. This paper aims to investigate the performance of banana fiber bars
(BFB) as reinforced material. Through this study, the development and characterization of natural
fibers-based composite beams were observed. After the beams were designed, several types of finite
element analysis were conducted using ‘ANSYS’ nonlinear finite element program under one-point
loading. Results show good correlations between experimental and predicted results.

Keywords: banana fiber bars; BFB; bond strength; flexure behavior; cracking; finite element analysis;
ANSYS

1. Introduction

Natural fibers are distinguished by many properties, as they are renewable with good mechanical
proprieties, and low cost compared to other materials, where their low cost can contribute to the
availability of papers, weaves, construction materials, and cars [1,2]. Some studies have been done
on merging the fibers with each other and obtaining composite materials, which are a mixture of
synthetic and natural fibers, in order to enhance the tensile strength, flexural strength, and many other
mechanical properties [3,4]. Banana fibers are considered one of the most common materials studied
recently, as they are extracted from banana cultivation waste, due to its low cost [5,6].

Pothan et al. [7] showed that the size of banana fibers has a clear effect on the mechanical properties
of the composite. Studies have shown that composites that contain 40% of the fibers are characterized
by a clear increase in the mechanical properties. Idicula et al. [8] conducted a study on both banana
and sisal fibers, and the results showed a significant improvement in properties when three banana
fibers were used with each sisal fiber. Numerous tests have shown that treated banana fibers has a big
effect on improving many of the mechanical properties compared with untreated fibers [9,10]. It has
been found that the main controller in improving properties of fibers is the cellulose content found in
fibers, as it plays an important role in improving the mechanical properties [10].

The finite element analysis is widely applied in engineering purposes through different software
programs, giving a huge probability for solving issues of structural analysis. ANSYS software can be
utilized to achieve numerical simulations close to the real behavior.
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In this paper, a finite element analysis was done using the ANSYS R14.0 software [11]. Nonlinear
finite element analysis was used to study the flexure strength of the concrete beams using BFB as a
main reinforcement with different diameter values. The main purpose of completing the finite element
analysis was to develop the response of the beams with bananas to validate the experimental work.

2. Process and Geometrical Property for Banana Fiber

2.1. Banana Fibers Types

Poovan type represents a type of banana fibers that has been utilized in this research for the
constructional purpose. In order to show its mechanical properties, Table 1 has been added. This product
was obtained from India. Figure 1 shows the shape of the fibers after extracting it from the stem of the
banana plant. The fibers were extracted with a length of 1.5 m, and these fibers were converted into
bars by manual process in the lab in an attempt to use it as an alternative to traditional steel bars [12].

Table 1. Mechanical properties of banana fibers.

Single Fiber Properties Banana Fiber

Mean breaking strength fmax (gf) 465
Mean breaking elongation (%) 1.8

Tensile strength, MPa 267
Young’s modulus, MPa 30,000

Passion ratio 0.3
Density, Kg/m3 710

Fiber diameter in mm, Max 0.1663
Fiber diameter in mm, Min 0.1243

Average fiber diameter in mm 0.1474
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2.2. Alkali Treatment of Banana Fibers

In order to obtain high quality fibers, treatment of these fibers is performed by adding sodium
hydroxide to these fibers. This alkaline treatment helps to remove all suspended impurities on the
surface, which improves the cohesion strength between them and other elements and makes them work
better, and increases their mechanical properties [1]. Alkali treatment also increases the percentage of
cellulose exposed on the fiber surface, increasing accessibility to possible reaction sites and allowing
for better fiber wetting [1]. The equation reaction of the banana fiber to sodium hydroxide (NaOH) [13]
is indicated as follows.

Fiber-OH + NaOH→ Fiber-O-Na+ + H2O (1)

The chemical components of natural banana fibers include lignin and cellulose. The treatment
by using NaOH was used for releasing fibers as it is utilized in the paper industries and pulp for the
removal of lignin (as shown in Figure 2).
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Figure 2. Sodium hydroxide alkali treatment.

According to the previous experiments and studies in chemically treating fibers [1,2], banana
fibers are carefully cleaned and submerged in sodium hydroxide with a concentration of 6% for two
hours at room temperature, as shown in Figure 3. Next, they are completely washed by immersion in a
water tank to remove the inactive reactions until the fibers become free from alkali. Finally they are left
to dry at 80 ◦C for 24 h.
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Figure 3. Submerging banana fibers in NaOH solution.

The cohesion between banana fiber bars and the surrounding concrete was conducted.
The geometrical proprieties of banana fibers were analyzed to observe the homogeneity between
banana fibers and concrete. As the concrete is alkaline with a pH more than seven and banana fiber
is acidic with a pH less than seven, (in order to ensure homogeneity), banana fibers are treated with
sodium hydroxide (NAOH) for two hours at room temperature.

2.3. Banana Fiber Bars as Main Reinforcement

The utilized single fibers were imported from India and manually manufactured at the lab by
adding about 8% of elastic polyester with physical and chemical properties as shown in Table 2 to
produce (BFB), as shown in Figure 4.



Fibers 2020, 8, 52 4 of 14

Table 2. Phytochemical properties of polyester.

Tenacity: 5–7 gm/den
Elongation at break: 15–30%

Elastic modulus: 90
Elasticity: Good

Moisture regain (MR%): 0.40%
Specific gravity: 1.38

Melting point: 2500 ◦C
Volumetric swelling: None
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Figure 4. Shapes and manufacturing process of banana fiber bars.

FRP is generally characterized by a linear behavior up to failure and all fibers fail in a brittle
manner without any yielding Plato. BFRP banana fiber reinforced polymer (BFRP) were fabricated
using banana fibers and thermosetting polyester resin. The BFRP reinforcements used in this study
include several diameters that ranges from 12 to 18 mm as shown in Figure 5 and Table 4.
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2.4. Preparation of the Models

Several models of beams were tested under one-point loading at the mid span to study the bond
strength and cohesion between concrete and banana fiber bars. The overall dimensions of the beams
were (1050 × 250 × 200) mm. The first beam B1 which has no reinforcement considered as reference
model, model A that include four beams contain banana fiber bars with different diameters (Φ12,
Φ14, Φ16, Φ18) and model B has two beams that contain banana fiber bars with diameter (Φ16) and
with different concrete strengths (35 and 45 MPa). The experimental program for the seven beams is
shown in Table 3. All beams have the same length of 1050 mm, loading span of 1000 mm, and concrete
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effective depth of 225 mm (total depth of 250 mm and concrete cover of 25 mm). Table 4 shows the
properties of the tested.

Table 3. Studied parameters.

Group Reference Model Model (A) Model (B)

Beam symbol Beam B1 Beam B2 Beam B3 Beam B4 Beam B5 Beam B6 Beam B7

Studied parameter Ratio of banana fiber bars Concrete strength

Table 4. Details of the tested beams.

Beam
Volumetric

Ratio of
BFB

Longitudinal
Main RFT Type of RFT Top RFT Type of

RFT
Steel

Stirrups

Concrete
Strength

(MPa)

B1 (Plain concrete) - - - - 25
B2 0.67 3Φ12 Banana fiber bars 2φ6 Steel φ6 @125 mm 25
B3 0.92 3Φ14 Banana fiber bars 2φ6 Steel φ6 @125 mm 25
B4 1.2 3Φ16 Banana fiber bars 2φ6 Steel φ6 @125 mm 25
B5 1.52 3Φ18 Banana fiber bars 2φ6 Steel φ6 @125 mm 25
B6 1.2 3Φ16 Banana fiber bars 2φ6 Steel φ6 @125 mm 35
B-7 1.2 3Φ16 Banana fibers 2φ6 Steel φ6 @125 mm 45

3. Finite Element Model of Beams

Seven simply supported reinforced concrete beams were analyzed with different flexural
parameters. All analyzed beams have the dimensions (1050× 250× 200) mm as shown in Figures 6 and 7.
Different banana fiber bars ratios and various grades of concrete were considered to study the effect of
banana fiber bars on the flexure strength [12].
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The area of the top and bottom longitudinal reinforcement was assigned for Link 180 element.
Concrete compressive strength was assigned as 25 MPa, and banana fiber bars strength was taken
as 265 MPa while the yield strength is taken 240 MPa for shear and top reinforcement as shown in
Figure 8. The load is exposed in the top face of the beam as concentrated load with consistent position
from the support at the mid span as shown in Figure 8.
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Beam B1 is the reference beam with a cross section (200 × 250) without reinforcement (plain
concrete). Concrete compressive strength is assigned as 25 MPa as shown in Figures 10 and 11.
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Group 1: This group consists of four beams (B2, B3, B4 and B5). These beams have the same
dimensions with variable reinforcement to study the influence of banana fibers ratio on the ultimate
flexure strength compared to the reference beam (B1) as shown in Table 1 and Figure 12. Details of
beams (B2, B3, B4, and B5) are shown in Figure 13.
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Group 2: This group consists of two beams (B6 and B7). These beams have the same longitudinal
reinforcement details (3Φ16) with a different concrete grade 35 and 45 MPa to study the effect of
concrete strength on in the flexure strength compared to beam B4 as shown in Figure 14.
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4. Analysis and Discussion of Numerical Results

Table 6 shows the experimental and the numerical results of the seven tested beams. The results
illustrated good agreement between the experimental and the numerical analysis.

Table 6. Comparison between experimental and numerical results.

Model Main
RFT Φ (mm)

First
CRACK
LOAD

Exp.

Ultimate
Load
(kN)
Exp.

Ultimate
Load
(kN)

ANSYS

PANSYS/PExp. Type of
Failure Rapture

B1 Plain
concrete —- 20 23 1.15 Brittle

failure —-

B2 Banana
fiber bars 12 11 26 30 1.15 Flexure

failure
Rapture
of bars

B3 Banana
fiber bars 14 12.5 26.8 30.5 1.14 Flexure

failure
Rapture
of bars

B4 Banana
fiber bars 16 12 27.3 30.9 1.13 Flexure

failure
Rapture
of bars

B5 Banana
fiber bars 16 10 28 32 1.14 Flexure

failure
Rapture
of bars

B6 Banana
fiber bars 16 14 27 29 1.07 Flexure

failure
Rapture
of bars

B7 Banana
fiber bars 16 13.8 27 29.2 1.08 Flexure

failure
Rapture
of bars

Average - - - - - 1.12 - -

5. Crack Patterns

Figure 15 shows a typical crack pattern at ultimate load.
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Figure 15. Cracks pattern at ultimate load.

During testing and at the start of loading, a few vertical flexure cracks bending. Cracks begin to
start at the bottom of the beams near mid span and propagated to reach the top at a load approximately
from 15% to 30% of the ultimate load. As the load increased approximately from 60% to 80% of the
ultimate load, the cracks began to propagate as shown in Figures 16–22. The numerical analysis cannot
consider the descending branch after reaching the ultimate load due to the numerical failure.
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Beam B1 represents the reference model of simply supported beams without any type of
reinforcement. Cracking which was observed when the load increased to brittle failure at a load of
20 kN is shown in Figure 16. This type of failure is called flexure failure that happened due to principle
tension. As shown in this Figure, the beam failed at a load of 20 kN at the middle of the beam.

Figures 17–22 show the crack pattern of beams B2 to B7. The first crack appears at mid-span at
load 11, 12.5, 12, 10, 14, and 13.8 kN for beams B2 to B7 respectively. Then fine flexural cracks formed
at the mid-span. Upon increasing the load, flexure cracks increased. At higher levels of loading,
the flexure cracks propagated and the width of cracks increased. Finally, the beams failed in flexure at
a load of 26, 26.8, 27.3, 28, 27, and 27 kN for beams B2 to B7 respectively.

A good agreement was obtained between the experimental and the predicted results. Depending
on the evaluation of the computed results of the reachable numerical and experimental data, it was
confirmed that the finite element method and materials models used in the ANSYS application were
responsible and truthful in predicting the behavior of nonlinear geometric and nonlinear material
behavior of reinforced concrete beams reinforced with banana fiber bars.

6. Deflection and Flexure Strength

Figures 22–29 show the experimental and the predicted load-deflection curves for the tested
beams. These figures and Table 6 show good agreement between the experimental and the predicted
load–deflection curves. Also the results show that banana fiber bars increase the ultimate strength
of beams by 25% compared to beam B1 (plain concrete). The results indicated that there is no effect
of concrete grade on the first cracking load and the ultimate load, and the rupture was the same for
all models.Fibers 2020, 8, x FOR PEER REVIEW 12 of 15 
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7. Conclusions

Based on the experimental program and the numerical study of reinforced concrete beams
reinforced with banana fiber bars, the following conclusions can be made:

1. Waste materials from banana fibers can be converted into construction elements after
chemical treatments.

2. Banana fiber recycling participates in reducing the global warming that comes from pruning of
this waste and also reduces the percentage of CO2.

3. The use of banana fiber bars has good economic impact due to the low cost of banana fibers.
4. The use of banana fiber bars increases the flexural strength by 25% compared to plain concrete.
5. Banana fibers are considered a renewable resource, so they can be obtained for industrial purposes.
6. The predicted numerical results from the nonlinear analysis program ANSYS for loading and

deflection at ultimate and first cracking levels show a good agreement with the experimental
results. The average ratio between experimental measured load and predicted numerical load is
0.989 at ultimate level.

7. The simulated cracking patterns and failure modes are similar to those of the testing results for
all beams.

8. The average ratio between the predicted and the experimental deflection at ultimate load is 0.866.
This is due to the assumption of full bond between banana fiber bars and concrete.

8. Recommendations

1. The use of banana fiber bars in reinforced concrete beams is recommended due to their corrosion
resistance, low cost, and ecofriendliness compared to the use of other types of synthetic fibers.

2. This kind of fiber is needed for low-cost buildings due to the fact that the urgent need to enhance
suitable and cheap housing is born as an outcome of the fact that over 1 billion human beings in
the world, who mostly stay in developing nations, are both homeless or stay in very poor housing.

3. Concrete has high permeability coefficient, and that allows water to enter the concrete and reach
the reinforcing steel, causing corrosion, which reduces the diameter of the steel that leads to
damage in the structural elements (beams), so more sustainable elements such as banana fibers
bars should be sought as a substitute for traditional steel for severe atmospheric conditions.
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