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Abstract: The stable propagation of orbital angular momentum and cylindrical vector beams in a newly
designed annular core photonic crystal fiber (AC-PCF) tailored for the broadband single-radial order
beam transmission (within the so-called “endlessly mono-radial” guiding regime) is demonstrated
for the first time. It is shown that the vector-vortex beams can maintain high mode purities above
18 dB after propagation in the fiber under test over all of the wavelength range from 805 to 845 nm
(over 17 THz bandwidth) investigated with the help of a tunable laser and an S-plate for the generation
of singular beams in free space. Our results confirm that the AC-PCF is a promising design for the
broadband transmission of vector-vortex beams that have potential applications in space-division
multiplexing, quantum communications, optical sensing and trapping.
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1. Introduction

We are still in the early stages of grasping the fundamental implications and applications of the
vector-vortex beams. The so-called vortex beams carrying orbital angular momentum (OAM) harbor a
phase singularity, while the cylindrical vector beams (CVB) present polarization singularities in their
beam profiles [1–3]. Conspicuously, both types of optical singularities lead to a beam recognized by a
doughnut-shaped intensity profile. OAM beams can carry both spin and orbital angular momentum
due to discrete states in circular polarization and helical phase (written as exp(iLθ) where L is
the topological charge and θ the azimuthal angle), respectively. Vortex beams have demonstrated
promising advances in optical microscopy, optical trapping, space-division multiplexing, optical
communications and for probing new (non)linear chiral light-matter interactions [3–10]. Similarly,
some CVBs (especially the radial TM01 and azimuthal TE01 polarized beams) exhibit unique properties
that enable novel light-matter interactions that can be exploited in super-resolution imaging, laser
material processing and optical trapping, among others [1,11–14].

There is vigorous research being conducted to push the field further using both bulk optics and
fiber-optic based platforms. Prior studies have demonstrated that fiber designs with a high-index
annular core (i.e., “ring-core”) represent one of the most efficient approaches for the coupling and
propagation of vector-vortex beams owing to the strong overlap between the beam’s optical intensity
profile and the refractive index profile of the fibers [15–18]. Moreover, it was determined early on
that suitable fiber designs must lift the modal degeneracy between the fiber eigenmodes in order
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to promote modal stability of CVB and OAM guided beams through lower crosstalk. The common
rule to enable such stable transmission is to maintain intermodal refractive index separation of
∆neff ≥ 10−4 between adjacent vector modes [19,20]. Solid annular-core fibers have shown interesting
results [16,18,19] but have limitations in terms of achievable intermodal separations, chromatic
dispersion and mode selection.

Microstructured fibers and photonic crystal fibers (PCF) in particular have recently attracted
significant research interest towards alleviating the above limitations of solid-core fibers by exploiting
the significantly increased design freedom afforded by the holey structure and the unique modal
properties that emerge [21–26]. A particular design of annular-core photonic crystal fiber (AC-PCF)
recently proposed the theoretical ability to enforce mono-radial vector-vortex mode guiding while
preventing higher-radial order modes over a very large bandwidth [27]. This unique waveguiding
regime termed “endlessly mono-radial” (EMR) occurs when the periodic photonic crystal cladding has
holes with a diameter (d) to pitch (Λ) ratio below a certain threshold: d/Λ < 0.35. Recently, Tandjè et al.
demonstrated vortex beam propagation inside a ring core photonic crystal fiber, although the latter
fiber design was not EMR and the experimentally achieved OAM mode purities remained limited [28].

In this work, the first experimental demonstration of both CVB and OAM beam transmission
inside an endlessly mono-radial AC-PCF was performed. The stability of vector-vortex mode guiding
in the AC-PCF was confirmed through polarimetric and interferometric measurements, which indicated
good mode purity (>18 dB) over the whole 40 nm (17 THz) bandwidth investigated with a near-infrared
tunable laser.

2. Mode structure and Attenuation in AC-PCF

The fabricated AC-PCF used in this work has a microstructure defined by air holes of average
diameter (d = 0.48 µm) and separated by a periodic spacing of Λ = 1.4 µm (scanning electron microscope
(SEM) image of the cross-section is shown in Figure 1a), thus fulfilling the condition for operation
in the “EMR” waveguiding regime (d/Λ < 0.35), where waveguiding is restricted to the following
mono-radial modes: HE11, TE01, HE21, TM01, HE31 and EH11. The effective core radius is given by
a = 2Λ

√
3

= 1.62 µm, as defined in [27]. The attenuation losses for the fundamental mode were measured
in the wavelength range from 800 to 845 nm via the cutback method. The results in Figure 1a indicate
average optical losses of around 0.5 dB/m inside the wavelength range of interest.
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To ensure the mono-radial operation of the few-mode fiber, it is critical to prevent excitation of the
first bi-annular eigenmode (HE12) of fiber, which occurs for V ≥ Vcutoff = 3.832. Here, the V-parameter
for the AC-PCF is defined as [27]:

V =
2πa
λ

(√
n2

core − n2
FSM

)
(1)

where a is the effective core radius, ncore is the refractive index of the solid glass material of the
fiber (in this instance fused silica) and nFSM denotes the effective refractive index of the so-called
fundamental space-filling mode (nFSM) in a triangular lattice of air-holes [29]. Based on the specific
geometry of our AC-PCF, full-vector finite-element method simulations of the V-parameter were
performed [see Figure 1b], which confirmed that the fiber remains mono-radial (V < Vcutoff) irrespective
of the input wavelength of excitation (i.e., operates in the EMR regime). We note that the simulations
were only limited in practice on the UV end at 300 nm by the transmission window of the material, and
not by a limitation of the EMR regime, which in theory applies for the whole electromagnetic spectrum.

3. Experimental Setup and Discussion

The experimental setup for the transmission and characterization of vector and vortex (CVB and
OAM) beams is schematically depicted in Figure 2a,b respectively. Figure 2a shows the setup of
OAM (|L| = 1) beam generation and launching, where the Gaussian beam from a tunable laser is
collimated using objective lens and followed by a linear polarizer (LP) and a half-wave plate (HWP) for
controlling the polarization orientation of the beam. Furthermore, the obtained linearly polarized beam
passes through a quarter-wave plate (QWP), which converts the linear state to circular polarization
state where the exact sign s = ±1 of circular polarization depends on the orientation of the incident
linearly polarized light with respect to the QWP. Next, the S-Plate (i.e., space-variant radial polarization
converter from Altechna [30]), designed for operating the wavelength of 815 (±15) nm with more than
85% transmittance, is used to convert circular polarized light into the desired OAM vortex beam.
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Figure 2. Experimental setup for launching and imaging (a) orbital angular momentum (OAM) beams
and (b) cylindrical vector beams (CVB) (TE01 and TM01) in the AC-PCF.

Later, the obtained OAM (|L| = +1) beam is passed through a 20x and 0.4 NA microscope objective
placed on a 6-axis stage in order to launch the vortex beam into the 3-meter long AC-PCF. Another
20x microscope objective lens is placed at the distal end of the fiber to collimate light before imaging
on a CCD camera. Figure 2b shows that the experimental setup for the preparation of CVBs is very
similar to that of Figure 2a, with the exception that linearly polarized light is launched on the S-Plate
(as opposed to circularly polarized) in order to generate TE01 and TM01 beams depending on the
orientation of linear polarization with respect to the optical axis of the S-Plate. Hence, polarization
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parallel to the axis of S-Plate gives TE01 while a perpendicular orientation result in a TM01 beam.
Finally, a linear polarizer (i.e., analyzer) is placed between the fiber output and the charge-coupled
device (CCD) camera for subsequent vector beam identification [see Figure 3].
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The CVB and OAM beam propagation in the AC-PCF is characterized by analyzing their respective
intensity profiles at the distal end of the fiber. This was followed by the evaluation of the achieved
mode purity after propagation through the fiber. Figure 3 displays the intensity pattern of CVBs
imaged after a rotating analyzer used for mode identification of the actual CVB (TE01 or TM01) at hand.
The first column in Figure 3 presents a schematic representation of the electric field distribution inside
the azimuthally polarized (TE01) and radially polarized (TM01) beams, while the top row indicates
the state of rotation angle of the analyzer. By monitoring the intensity profiles of the beams passing
through the analyzer (Rows 2–5) with respect to the rotation state of the analyzer, one can identify the
type of CVB beam under test [31]. The intensity profiles in the second and third rows of Figure 3 were
recorded immediately after the S-Plate and before fiber launching. The fourth and fifth rows of Figure 3
subsequently display the beam intensity profiles after propagation in the three-meter long AC-PCF.
The latter images indicate that the output (TM01 and TE01) CV beams retained their polarization after
propagation through the AC-PCF.
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Figure 4a–c displays the intensity profiles of a vortex and a reference Gaussian beam as they
are gradually superposed to create the single fork pattern expected for the interference of a L = +1
helically-phased OAM beam with a tilted reference beam of constant phase front [32,33]. Similarly,
Figure 4d,e shows a similar fork interference pattern created by the superposition of a reference
Gaussian beam and the vortex beam output from the AC-PCF. More details about the experimental
setup and procedure to achieve the interferograms in Figure 4 are provided in the Appendix A.
We further note that, prior to our experimental investigation, we measured the laser light coupling
efficiency into the AC-PCF for the Gaussian and the vector-vortex beams as 58% and 44%, respectively.
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propagation in the fiber (Bottom row).

The smaller coupling efficiency of vector-vortex beams is due to the slightly larger input beam
diameter (full width at half maximum diameter = 3.81 µm) of the vector-vortex beams at focus
compared to the effective core diameter (2a = 3.24 µm) of the AC-PCF. The full width at half maximum
(FWHM) diameter of our vector-vortex beams was measured at focus of 20x microscope objected
via the knife-edge method [34] using a sharp atomic force microscope (AFM) tip scanned across the
doughnut shaped beam in steps of 0.65 micrometer (via a three-axis micro-positioning stage) along the
transverse direction. The vortex beam purity was assessed over the whole investigated wavelength
range by scanning the single-frequency tunable diode laser (TOPTICA Photonics DL Pro) from 805 nm
to 845 nm in steps of 1 nm. The corresponding intensity images of the transmitted OAM beams were
then used for evaluating the modal purity based on the azimuthal intensity distribution along the
annular beam [more details on the method used for calculating the vortex mode purity is provided
in the appendix]. Figure 5 presents the calculated vortex mode purities in dB units as a function of
wavelength. The results show that the mode purity varies between 18 and 26 dB, which confirm that
good modal purity of vortex modes can be achieved in the fabricated AC-PCF and as can be seen in
the sampled intensity profiles shown in Figure 5.
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Appendix A

Experimental Setup for Generating the Fork Interferogram Pattern of Vortex Beams
Figure A1 shows the schematic of the experimental scheme used for identifying the topological

sign and number (L = ±1) of the transmitted vortex beam through the creation of an interference
pattern with a Gaussian reference beam on the recording camera. The reference Gaussian beam is
obtained by placing a Wollaston prism that separates incident light into two linearly polarized light
beams that become circularly polarized upon passing through the quarter-wave plate (QWP). One
the ensuing beams is then directed towards the S-Plate to generate the desired L = +1 OAM vortex
beam. Further, both OAM and Gaussian beams are then combined using a beams splitter before the
corresponding interference pattern can be observed and recorded on the CCD camera. We note that
the two interfering beams was progressively brought closer to each other by controlling the orientation
of the last three mirrors in the optical path.
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This setup was modified to allow the insertion of the fiber between the S-plate and beam splitter
(BS) in the OAM beam optical path, so as to enable the characterization of the ensuing fork interferogram
after propagation through the AC-PCF under test (in the bottom row of Figure 4).

Mode purity method
To estimate the purity or quality of OAM beam after propagation through fiber in our experimental

setup, we used mode purity measurement method based on the variation in azimuthal intensity pattern
of optical vortices as performed in [35] where the normalized intensity variation (i.e., the “visibility”)
along the azimuthal direction is defined as:

V =
Imax − Imin
Imax + Imin

(A1)

Here Imax and Imin are the maximum and minimum intensities of the beam along the scanned
azimuthal direction. The visibility (V) is then used for evaluating the mode purity as:

Mode purity (dB) = 10log10

(
1 +
√

1−V
V

)2

(A2)

Figure A2 depicts the azimuthal intensity distribution (along the dotted black lines) of a typical
L = +1 vortex beam generated at 821 nm wavelength with our experimental setup. We note that similar
mode purity measurements were performed for the entire investigated wavelength range from 805 to
845 nm.
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Figure A2. Azimuthal Intensity distribution of a typical vortex OAM beam at 821 nm (inset image of 
OAM with azimuthal ring). 
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