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Abstract: Basalt fiber is a novel type of inorganic fiber which is produced from the extrusion of natural
vocalnic basalt rocks through their melting process at high temperature. So the quality and strength
characteristics of basalt fiber depend mainly on both the quality of raw material and manufacturing
processing. Basalt fabric-reinforced cementitious composites (FRCM) are a novel composite and an
extensive scientific investigation is still ongoing for geopolymer composite. Based on three types
of basalt textile with respect to various net sizes, the aim of this paper is to evaluate the flexural
performance of basalt textile-reinforced geopolymer composite through the four-point bending test.
The specimens of rectangular form with the dimension of 400 × 100 × 15 mm3, reinforced with one
to four layers of each type of basalt textile, were produced. They were then tested at the age of
about 40 days after casting. On the other hand, the number of the specimens reinforced with four
layers were considered to assess the mechanical strength of the specimens at longer periods of ageing
time (60, 90, 150, 180 days). The experimental results showed that with the increasing number of
reinforcing layers, the specimens significantly improved the mechanical strength, except for those
reinforced with basalt textile of big net size. The specimens reinforced with basalt textile of big net size
had no impact on post-crack mechanical strength, however, it helps to arrest the catastrophic brittle
failure of the specimens; the failure of these specimens is due to localization of first crack. When the
specimens were exposed to the further ageing times, the mechanical strength of the specimens were
decreased over time. All the reinforced specimens have the same failure mode by flexural failure due
to the rupture of fiber yarn in matrix, and no debonding of fiber yarn or a gradual peeling process of
mortar matrix happened during testing.

Keywords: geopolymer; basalt textile; chopped basalt fiber; four-point bending test; compressive
strength; flexural strength; flexural toughness

1. Introduction

Textile-reinforced concrete (TRC) is a composite material resulting from a combination of
multi-axial textile reinforcement and fine-grained aggregate-based cementitious matrix. The textile
reinforcements used as reinforced in concrete are alkali resistance glass, carbon, basalt or aramid fabrics.
The textile reinforcement plays a key role in carrying the bearing capacity and stiffness of composite
materials. It is well-known for some significant advantages: (i) due to the possibility of the intentional
alignment of textile fabric in concrete, it can be placed at the position where the stress is required,
as a result of improved tensile strength and ductility, (ii) composite materials reinforced with these
reinforcements are no need a strong concrete covering layer to protest against the corrosion of the
structure, due to good alkali resistance of reinforcement, (iii) compared to fiber reinforced polymer
composite, TRC exhibits lower cost, better temperature resistance, greater compatibility with most
substrates. This type of composite can be used in a variety of the applications, such as repairing and/or
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strengthening the structural elements of old structures, load-bearing elements in new structures, new
thin-wall elements and the lightweight concrete system [1–4].

Geopolymers are inorganic aluminosilicate polymers with non-crystalline networks, which are
ceramic-like in their structures and properties [5]. Geopolymers are synthesized from a combination
of an alkaline solution and the amorphous or semi-crystalline aluminosilicate materials at room, or
slightly higher, temperature [6]. The final product is characterized by a stable amorphous 3D structure
with a basic framework of tetrahedral SiO4 and AlO4 units linked alternatively by sharing oxygen
atoms, where the metal cations Na+, K+ are responsible for balancing the negative charges of Al3+ in
IV-fold coordination [7–9]. In recent years, the geopolymer concept has become an attractive topic
in research for the reason that geopolymer concrete offers great potential for alternative to Portland
cement-based concrete. It is well-known that Portland cement is a construction building material
with admirable mechanical properties which are proven. However, the Portland cement production
process requires high energy consumption and it involves a large amount of CO2 emission. This
binder is attributed to one of the major causes behind the global warming [10,11]. The appearance of
geopolymer binder not only satisfies the mechanical properties but also pays attention to a novel green
building material over Portland cement in the case that there is a reasonable choice of raw materials
for geopolymers [12,13]. The eco-compatibility of geopolymers, and other peculiarities, such as acid
resistance, seawater resistance, low shrinkage, thermal conductivity and fire resistance up to 1200
◦C are not their general properties, but strongly depends on both the raw materials and amount and
concentration and type of alkaline activator solution used. It is well known that when exclusively
aluminosilicate sources, such as metakaolin, are used as reactive powder can be activated with a
high amount of sodium silicate activators, thus, increasing geopolymer cost, carbon footprint and
shrinkage. Furthermore, handling highly corrosive liquid is not a desirable condition. To overcome
this problem, several attempts have been made by proposing new mix designs in which part or most
of the metakaolin has been replaced by industrial by-product (such as activated slag and fly ash) or
natural raw materials (volcanic tuff) that are more eco-friendly and need less alkaline activators [14,15].

Basalt fibers are an environmentally friendly material made from natural volcanic basalt rocks
through their melting process at high temperature of about 1500 ◦C. The quality and strength
characteristic of basalt fiber depends mainly on type of raw material and the manufacturing
conditions [16]. Chemical compositions of basal fiber are rich in oxides of alumina and silica
along a small amount of magnesium, calcium, sodium, potassium, silicon and iron [17]. It is observed
that basalt is an inorganic fiber that is like glass fiber, has better tensile strength than the glass
fiber, broader failure strain than the carbon fiber. Basalt fiber is a novel type of inorganic fiber that
is considered as effective alternative material for glass fiber. Both of these products have similar
manufacturing process, but basalt fiber obtains more economical and improved mechanical properties.
Short basalt fiber added into concrete to fill some of the missing properties; such as, plastic shrinkage at
early-age [18,19], splitting tensile and flexural strength, fracture energy, abrasion resistance, and impact
resistance [20–24], whereas basalt fabric is used as flexural reinforcement for reinforcing concrete
beams or reinforcing masonry panels [25–29].

In the field of geopolymer basalt fiber composites, many researches have been performed on
short basalt fibers [18,30–34], continuous basalt fibers, or basalt fabrics as an reinforcement for
geopolymer composite to improve their mechanical properties [35–39], however, according to the
author’s knowledge, little or no reports have been determined to date on the evaluation of performance
of basalt fabric mesh reinforced geopolymer composites. Alkaline resistance of basalt fiber under
accelerated aging or short-term aging conditions was investigated by some authors in previous
studies [27,40–42]. It was concluded that when basalt fiber is treated in the alkaline environment,
although it is proved to have partial loss of strength, it is less likely to be damaged than glass fiber.
However, reports that evaluate the alkaline resistance of basalt fiber under realistic alkali environments
(fiber embedded directly in the cement composite for long-term aging) are scarce. In another context, a
lot of researches have been carried out on using fiber reinforced geopolymer composites for external
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strengthening layer of reinforced concrete members [43–48]. The results obtained from these researches
stated that geopolymer composites can successfully be used as a matrix in fiber reinforced composite
for strengthening systems.

This paper deals with the effect of three various types of basalt textile on the flexural performance
of reinforced specimens, and also evaluation the development of flexural strength of the specimens at
the further ages (60 days, 90 days, 150 days and 180 days). Geopolymer binder used in this study was
activated with sodium based alkaline activator, which clearly states that basalt fiber will be partially
damaged, as mentioned above. The aim of this paper is the assessment of whether these types of basalt
mesh can satisfy as a flexural reinforcement in geopolymer composite.

2. Materials and Methods

2.1. Materials

Anticorrosive powder additive (microsilica) based on amorphous SiO2 for concrete and mortar
was purchased from Kema Mikrosilika–Sanační centrum s.r.o., Sviadnov Czech Republic. The chemical
composition of microsilica as follow (wt. %): SiO2—90, CaO—0.8, MgO—max. 1.5, Al2O3—max.
1, Na2O—0.5. This additive was added into geopolymer mortar to enhance both the workability
of the fresh mortar and mechanical strength of harden mortar. The three types of the basalt textile
corresponding to the net size (10 × 14 mm2 small net size, 22 × 22 mm2 middle net size, 36 × 36 mm2

big net size) provided by Frisiverto S.R.O company, Czech Republic are shown in Figure 1. The yarns
of basalt textile (2400 Tex) were arranged in two orthogonal directions (0/90◦) to form a textile grid, and
they were coated using a styrene–butadiene binder. Further detailed properties are shown in Table 1.
The composition of geopolymer mortar matrix was shown in Table 2. It must be noted that mixing
ratio between the components in the geopolymeric mortar indicated in Table 2 was optimized in our
lab room. In the four-point bending test of geopolymer composite specimens, basalt textiles were
placed in the molds such that the force acting on the specimen was in the longitudinal direction of the
yarn. The remaining materials (geopolymer binder, silica sand, chopped basalt fiber) used in this work
and methodology of geopolymer mortar production were mentioned in the previous publication [30].
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Figure 1. Image of basalt fiber meshes and chopped basalt fiber.

Table 1. Properties of the three various types of basalt textile provided by manufacturer.

Form Basalt Fiber Grid Basalt Fiber Grid Basalt Fiber Grid

Fiber type Basalt HTB 10/14–40 Basalt HTB 22/22–40 Basalt HTB 36/36–40

Fiber density 2.75 g/cm3 2.75 g/cm3 2.75 g/cm3

Number of threads/m 84 (lengthways);
61 (crossways)

43 (lengthways);
42 (crossways)

26 (lengthways);
25 (crossways)

weight 375 g/m2 229 g/m2 153 g/m2

Stitch spacing 10 × 14 mm
(center to center distance)

22 × 22 mm
(center to center distance)

36 × 36 mm
(center to center distance)

Tensile strength 1335 N/mm2 (lengthways);
1251 N/mm2 (crossways)

1068 N/mm2 (lengthways);
1347 N/mm2 (crossways)

1141 N/mm2 (lengthways);
1279 N/mm2 (crossways)

Elongation lengthways 1.86% 1.61% 1.62%

Elongation crossways 1.50% 1.63% 1.54%
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Table 2. Composition of geopolymer mortar matrix.

By Weigh Ratio (-) BF Content (wt % of
Geopolymer Paste)Geopolymer Cement Activator Micro Silica Micro Sand Rough Sand

1 0.8 0.1 0.2 1.5 5

2.2. Specimen Preparation

For the four-point bending test, the samples are molded in the rectangular form with the
dimensions of 400 × 100 × 15 mm3. Basalt textile was used as reinforced with geopolymer mortar
matrix, and the specimens were manufactured by hand lay-up method. The arrangement of basalt
textile in the mold was clearly described in Figure 2. They were positioned in the mold with the
desired distance by using the thin metal plates at the ends of the mold. It should be said that four
reinforcing layers were eligible number in order to ensure easy penetration of geopolymer mortar
between textile layers when the total thickness of the specimens was 15 mm. For instance, the distance
between two adjacent layers should be bigger than the size of sand grains, so this distance was 2 mm
in the case of four reinforcing layers because the distance from center to center between two adjacent
layers was 3 mm while self-thickness of fiber yarn was 1 mm. The molds were manually vibrated for
a while in order to ensure good penetration of fresh mortar between textile layers after being filled
with mortar and textile. Figure 3 shows the manufacturing process of the reinforced specimens. It
should be said clearly that the number of fiber yarns per one textile layer in the bearing direction is:
eight yarns for small net size, four yarns for middle net size and three yarns for big net size. The label
of reinforced specimens was defined as following: BRG means basalt textile reinforced geopolymer
mortar, 00 × 00 mm means a net size of basalt grid, and 0 L means the number of the textile layers.
For example, label BRG 10 × 14-1 L means that geopolymer mortar reinforced with one layer of the
basalt grid having a net size of 10 × 14 mm2. After casting, all the specimens were wrapped using
a polypropylene film, and cured at room temperature, ~26 ◦C, with 65% relative humidity for 24 h.
Afterwards, the specimens were demolded, and wrapped again using a polypropylene film, and kept
at room temperature until testing. Three specimens for each mixture were prepared. They were tested
at approximately 40 days after the casting.

2.3. Four-Point Bending Test

Four-point bending testthod was used to evaluate the composite performance of the BRG
specimens. The detailed description about the specimen arrangement and testing process was shown in
Figure 4. The testing machine with load cell capacity of 100 kN (FP Lab Test II, from LABORTECH s.r.o
Opava, Czech Republic), located at the Technical University of Liberec Laboratory, with the applied
load under displacement control at a loading rate of 2 mm/min, was used. The four-point flexural
strength can be calculated as per the Equation (1):

σ = Fl/(bh2), (1)

where σ is the four-point flexural strength in MPa; F is the load at a given point on the load–displacement
curve in N; b is the width of the tested sample in mm; h is the thickness of the sample in mm; and l is
the support span in mm.
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3. Results and Discussion

3.1. Development of the Mechanical Strength of the Geopolymer Mortar Matrix

Figure 5 provides the information about the development of the mechanical strength of geopolymer
mortar at the various periods of aging time. Three samples with dimension 30 × 30 × 150 mm3 for
each ageing time were used for flexural test, and then the compressive strength was measured on both
residual pieces obtained from flexural strength according to EN 196-1 standard [49]. It should be noted
that the 28 day specimens were named as a reference sample. A number of these specimens were then
kept at lab room (~26 ◦C, with 65% relative humidity) in order to observe the development of the
mechanical strength at the further ages, such as 60 days, 90 days, 150 days, and 180 days. From the
Figure 5, it can be seen that geopolymer mortar containing different fillers with reasonable proportion
can achieve relatively high mechanical strength. It should be said that the composition of mortar
matrix described in Table 2 has been optimized in the laboratory. At the age of 7 days, the average
mechanical strength of the samples is 11.5 MPa in flexural and 78.8 MPa in compressive strength. The
average mechanical strength of the 28 day samples (reference sample) increases flexural strength by
22% and compressive strength by 35%, compared to 7 days.
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Also from Figure 5, after 28 days of curing age it can be observed that both mechanical strengths
show a downward trend with increasing aging time. While the samples show a slight decrease in
compressive strength, the increasing aging time affects samples to have a more pronounced decrease in
their flexural strength. This phenomenon is believed to be due to degradation of basalt fiber in alkaline
environment [27,40,41]. When degradation of basalt fiber occurs, bond strength at the matrix/fiber
interface will decrease; as a result, it can lead to poor bending resistance of the sample due to reduction
of bridge effect of the chopped fiber in matrix. When compared to reference samples, the average
mechanical strength of the samples with the increasing aging time of 60 days, 90 days, 150 days,
180 days decreases the compressive strength by 6.65%, 7.65%, 9.77%, 10.21%, respectively, whereas
decreases the flexural strength by 11.07%, 11.41%, 22.42%, 22.48%, respectively. The influence of the
chopped basalt fiber on the microstructure of geopolymer mortar is clearly shown in Figure 6. The
chopped basalt fibers were randomly distributed in matrix and bridge over the micro-cracks resulting
in enhancement of mechanical strength.
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3.2. Flexural Response of Basalt Mesh Reinforced Geopolymer Composite

The BRG specimens made of geopolymer mortar reinforced with one to four layers of each type
of basalt mesh were tested at the age of about 40 days after casting by the four-point bending test
method. Figure 7 represents the classical curves of flexural load–displacement behavior of textile
reinforced concrete composite under the four-point flexural test, whereas the response of the flexural
load–displacement curves of all the tested BRG specimens was described in Figure 8. As demonstrated
in Figure 7, there are two distinctly different types of the load–displacement response of the specimens
under flexure which consist of displacement-softening behavior and displacement-hardening behavior.
In the field of fiber reinforced concrete, the materials refer to displacement-softening behavior (Figure 7a);
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when first crack initiates, the specimen is then destroyed due to localization of this crack. As further
load continues to increase, the presence of the fiber is unable to produce the post-crack strength higher
than the first-crack strength, however, it helps to restrict sudden brittle failure. Depending on the
number of fiber yarns, fiber characteristics, and fiber alignment, the figure of the load, displacement
curves softens down differently. In this case, BRG 10 × 14-1 L, BRG 22 × 22-1 L, BRG 22 × 22-2 L and
BRG 36 × 36-1-4 L produced a displacement-softening behavior with low load bearing capacity, see in
Figure 8. The remaining reinforced specimens, in contrast, show a displacement-hardening behavior,
see in Figure 7b. This kind of behavior is accompanied by multiple cracks and further load bearing
capacity after the formation of the first crack. In this behavior, the first crack stress is maintained, and
the load is transferred to the other weak parts of the matrix through the fiber yarns. So the first crack
does not localize to the increasing applied load. Instead, new cracks will be developed somewhere
else in the matrix. Consequently, the increase in applied load results in formation of multi-cracks
and higher load bearing capacity. For these specimens, load displacement curves were illustrated in
three obvious parts corresponding to the stages in the bending test. The first stage is the elastic-linear
pre-cracking stage which is established by the combination of geopolymer matrix and reinforcement
through a linear increase in load until the first crack appears. The second stage is a multiple-cracking
phase, as proven fluctuation of the curve when the load continues to apply. The number of cracks in
each specimen almost results in this stage and the profile of this phase strongly relates to the number
of textile layers, the stiffness of matrix, the organization of textile in matrix, and the bond strength at
the interface between fiber yarn and matrix. The third stage is the post-cracking or crack-widening
phase. It is indicated by the expansion of the cracks; the present cracks continue to become broader
until the specimens break down by rupturing or slipping of the fiber yarns of the textile.

The effect of different layers of basalt textile having a small net size on the flexural performance
of BRG specimens is described over the flexural load–displacement curves in Figure 8a. With the
increasing number of textile layers in the composite, its bearing load capacity obviously increases.
The figure of the curves changed positively when a textile layer increased from one layer to four
layers. While specimens reinforced with one textile layer broke down smoothly due to localization of
first crack, the increasing number of textile layers affect specimens having the failure manner into a
more brittle fracture, i.e., a sudden loss of bearing load capacity after reaching the maximum load.
Moreover, the dropping length of the second stage is also precisely related to the reinforcement rate,
and the figure of this stage of the curve is significantly different. The higher the number of textile
layers, the less fluctuation of the curve. This leads to a higher slope and flexural stiffness of specimens
in this second stage. A similar conclusion is also represented for specimens reinforced with basalt
textile having a middle net size, as see in Figure 8b. On the other hand, the specimens are required
to be reinforced with a minimum of three layers in order to achieve a clear displacement-hardening
behavior. Figure 8c exhibits the flexural load–displacement curves of specimens which are reinforced
with basalt textile of a big net size. Unexpectedly, even when using of four layers; the specimens could
not produce a displacement-hardening behavior. At this point, we can be concluded that the number
of fiber yarns per each textile layer plays a key role in composite behavior of the specimens. For
instance, with the same total number of fiber yarns in specimen, BRG 22 × 22-3 L specimens showed a
displacement-hardening behavior, whereas BRG 36 × 36-4 L specimens was unable to do so. Figure 8d
gives a clear view of the effect of the net size on the response of flexural load–displacement curves of
the BRG specimens, in which specimens reinforced with one textile layer are taken as a representation.
Although these specimens show a displacement-softening behavior, specimens reinforced with basalt
textile of smaller net size restrict the longer failure as well after the end of the first stage.
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Figure 8. Flexural load–displacement curves of the specimens reinforced with the basalt textile having:
(a) a net size of 10 × 14 mm2; (b) a net size of 22 × 22 mm2; (c) a net size of 36 × 36 mm2; (d) comparison
between one-layer reinforced specimens based on three.

Figure 9 shows the influence of ageing time on the durability of the BRG 10 × 14-4 L through the
response of the average flexural load-displacement curves. It was found that with the increasing rate of
aging time, the reinforced specimens decreased bearing-load capacity. This reduction can be attributed
to degradation of the basalt fiber which is contained in both chopped basalt fiber and basalt mesh.
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3.3. Mechanical Properties of Basalt Mesh Reinforced Geopolymer Composite

Table 3 details the results of the mechanical properties of the tested BRG specimens obtained
from the four-point bending test, such as first-crack load, first-crack stress, ultimate-crack load,
ultimate-crack stress, ultimate displacement, the number of cracks, and flexural toughness, whereas
Figure 10 shows representative graphs of the flexural strength and flexural toughness of the BRG
specimens. It should be noted that, at this kind of composite material, mechanical properties extremely
depend on both the arrangement of textile layer in matrix and direction of the applied load. For
instance, the specimens reinforced with one layer do not always gain a stable value of flexural strength
assuming that this textile layer is changed position of the arrangement, and it would bring higher
bearing load capacity in case that textile layer is positioned closer to the tension edge with respect
to ensuring the anchoring capability of textile [30]. Subsequently, the first-crack stress depends in
part on the process of the specimen production. Due to insertion of textile mesh layer in specimens,
the fresh mixture should be carefully cast into the mold in order to gain a good penetration of matrix
between textile layers. As shown in Figure 10a, the green dashed line shows the significant variation of
first-crack stress between the tested specimens. The BRG 22 × 22-3 L, BRG 22 × 22-4 L specimens show
the worst values in strength, for this reason it can be explained by fact that those specimens were badly
produced which resulted in formation of many cavities surrounding the fiber yarn over the remaining
specimens [50].The specimens reinforced with more number of textile layers, on the other hand,
obviously lead to higher ultimate-crack stress, expect for those reinforced with basalt textile of a big
net size. For basalt textile of a small net size, the specimens reinforced with two, three and four layers
increased in ultimate-crack stress by 61.40% MPa, 110.75% MPa, 172.99% MPa, respectively, compared
to one-layer reinforced specimens. For basalt textile of a middle net size, the specimens reinforced
with three to four layers increased in ultimate-crack stress by 23.11% MPa, 72.09% MPa, compared to
one-layer reinforced specimens. For the basalt textile of a big net size, although four textile layers were
applied, the specimens were still unable to obtain the ultimate-crack stress over first-crack stress. This
can be explained by three reasons: (i) due to bigger net size making insufficient distribution of fiber
yarns in the specimens, (ii) low tensile strength of itself fiber yarn affecting the composite behavior (see
in Table 1), (iii) insertion of basalt textile in geopolymer mortar during ageing has caused a partial
reduction in its mechanical strength due to alkaline environment [27,42]. Toughness, so-called energy
absorption capacity, is defined as the resistance of a material to failure or crack propagation. Material
with large energy absorption capacity obviously has higher energy to maintain crack propagation.
Flexural toughness of the tested specimens is measured as area under respective load-displacement
curves up to the peak load. According to the graphical representation of the toughness values in
Figure 10b, it was found that using basalt mesh of big net size results in very poor resistance of the
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BRG specimens to failure and their toughness value is almost the same. A similar conclusion is also
represented for the BRG 10 × 14-1 L, BRG 22 × 22-2 L and BRG 22×22-2 L. By contrast, toughness value
of the remaining BRG specimens improved obviously with the increasing number of textile layers
and type of net size. For example, the BRG 10x14-2L has a toughness value in 7177.50 N·mm, this
value increased to 11.55% (8365.33 N·mm) with BRG 10 × 14-3 L and increased to 63.61% (11742.88
N·mm) with BRG 10 × 14-4 L. On the other hand, BRG 10 × 14-4 L has toughness value in 11742.88
N·mm, this value decreased to 44.67% (6496.57 N·mm) with BRG 22 × 22-4 L and decreased to 97.71%
(268.56 N·mm) with BRG 36 × 36-4 L.

Table 3. Summary of the experimental results of BRG specimens.

Specimen
The Average Value (Standard Deviation)

First-Crack
Load (N)

First-Crack
Stress
(MPa)

Ultimate
Load (N)

Ultimate
Stress
(MPa)

Ultimate
Displacement

(mm)

Number
of Cracks

[-]

Flexural
Toughness

(N·mm)

The experimental results of the specimens reinforced with the different types of the basalt textile

BRG 10 × 14-1 L
802.87 10.70 802.87 10.70 0.74 2 279.74
(5.44) (0.07) (5.44) (0.07) (0.04) (0) (23.50)

BRG 10 × 14-2 L
838.11 11.17 1295.34 17.27 8.02 4 7177.50
(5.15) (0.07) (90.34) (1.20) (0.07) (0) (394.91)

BRG 10 × 14-3 L
792.11 10.56 1691.06 22.55 8.15 10.33 8365.33
(67.55) (0.90) (53.69) (0.72) (0.14) (0.57) (677.24)

BRG 10 × 14-4 L
819.70 10.93 2190.68 29.21 8.30 12 11742.88
(99.01) (1.32) (91.57) (1.22) (0.98) (0) (131.25)

BRG 22 × 22-1 L
736.37 9.82 736.37 9.82 0.68 2 234.16
(11.46) (0.15) (11.46) (0.15) (0.15) (0) (35.25)

BRG 22 × 22-2 L
646.61 8.62 695.98 9.28 1.06 2 400.87
(69.91) (0.93) (41.75) (0.56) (0.41) (0) (136.56)

BRG 22 × 22-3 L
565.00 7.53 907.39 12.09 6.43 5.67 4305.43
(26.64) (0.36) (39.24) (0.52) (0.54) (0.57) (406.93)

BRG 22 × 22-4 L
589.85 7.86 1267.17 16.90 7.46 6.67 6496.57
(39.67) (0.53) (58.97) (0.79) (0.31) (0.57) (482.88)

BRG 36 × 36-1 L
748.24 9.98 748.24 9.98 0.84 2 270.66

(107.84) (1.44) (107.84) (1.44) (0.17) (0) (24.84)

BRG 36 × 36-2 L
666.29 8.88 666.29 8.88 0.72 2 240.30
(73.63) (0.98) (73.63) (0.98) (0.02) (0) (28.05)

BRG 36 × 36-3 L
741.11 9.88 741.11 9.88 0.70 2 286.64

(101.47) (1.35) (101.47) (1.35) (0.06) (0) (76.50)

BRG 36 × 36-4 L
717.70 9.57 717.70 9.57 0.69 2 268.58
(7.60) (0.10) (7.60) (0.10) (0.08) (0) (35.54)

The experimental results of four-layer reinforcing specimens at the different periods of aging time

40 day sample 819.70 10.93 2190.68 29.21 8.30 11.33 11742.88
(99.01) (1.32) (91.57) (1.22) (0.98) (0.57) (131.25)

60 day sample 509.66 6.79 2006.76 26.76 8.54 12 10126.90
(53.48) (0.71) (122.23) (1.63) (0.88) (0) (859.55)

90 day sample 619.33 8.25 2060.92 27.47 8.67 11.33 9864.42
(37.12) (0.49) (121.13) (1.62) (0.53) (0.57) (483.69)

150 day sample 614.33 8.19 1714.90 22.87 6.62 11.33 7634.17
(5.51) (0.07) (42.50) (1.47) (0.38) (0.57) (667.48)

180 day sample 531.67 7.08 1682.97 22.49 6.64 11.33 6995.69
(26.10) (0.35) (36.12) (0.43) (0.50) (0.57) (793.56)
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Figure 10. The comparison of the flexural strength (a) and flexural toughness (b) of the BRG specimens
corresponding to various net size and number of textile layers.

Figure 11 provides information about the average values of the flexural strength and flexural
toughness of the BRG 10 × 14-4 L specimens at the different periods of aging time. In general, with the
increasing ageing time, the mechanical strength of the BRG specimens decreased significantly especially
after 180 days of ageing. BRG reference has flexural strength value in 29.21 MPa, BRG specimens
aged at 60 days, 90 days, 150 days, 180 days decreased in flexural strength by 8.39% (26.76 MPa), 6.0%
(27.47 MPa), 21.7% (22.87 MPa), 23% (22.49 MPa), respectively (see in Figure 11a and Table 3). A similar
reduction of flexural toughness of the BRG specimens can be seen in Figure 11b.
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3.4. Failure Mode

Figure 12 shows the failure mode of the BRG specimens under the four-point bending test. In
general, all of the specimens had the same failure mode by the flexural failure due to the rupture
of basalt fiber yarn in matrix, and no debonding of the fiber yarn or a gradual peeling process of
geopolymer mortar happened during the testing. The difference can be seen clearly in the number of
cracks and crack spacing between the reinforced specimens. With the increasing number of reinforcing
layers, the BRG specimens displayed more cracks and narrow crack spacing; for this reason, it is
because the amount of energy that the specimens absorb will be greater and accumulates faster during
the multiple cracking stage. Moreover, the number of cracks also depends significantly on the number
of fiber yarns per each layer (Table 3). The failure with single crack results in the specimens BRG
10 × 14-1 L, BRG 22 × 22-1 L, BRG 22 × 22-2 L, and all specimens BRG 36 × 36-1-4 L. It can be said that
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using basalt textile of a big net size (shown in Figure 12c), even when using four strengthening layers
also make it impossible to help BRG specimens achieving a displacement-hardening behavior. The
failure of these specimens is characterized by the widening of the first crack.Fibers 2019, 7, x FOR PEER REVIEW 12 of 16 
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Figure 12. Photographs of cracks distribution of the tested specimens: (a) basalt textile of a net size of
10 × 14 mm2; (b) basalt textile of a net size of 22 × 22 mm2; (c) basalt textile of a net size of 36 × 36 mm2;
(d) rupture failure of the tested specimen.

The imprint of fiber yarn embedded in mortar matrix was clearly shown in Figure 13. It can be
observed that good specimen production leads to better penetration of fresh mortar between textile
layers resulting in a denser matrix structure with less cavities at the mortar matrix–fiber yarn interface
(Figure 13a). Additionally, the presence of filaments separated from fiber yarn indicates that there is
a good bonding strength at interface between fiber yarn and mortar matrix. By contrast, the image
shown in Figure 13b points out a different view of the mortar matrix–fiber interface, which shows
many cavities.
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4. Conclusions

Based on three types of the basalt mesh corresponding to net size provided by Frisiverto S.R.O
company Czech Republic, this paper investigated the flexural performance of basalt textile-reinforced
geopolymer mortar composite. The specimens were produced and tested at the age of about 40 days
after casting in order to evaluate the influence of the number of textile layers and net size on the
flexural strength of the reinforced specimens. Additionally, a number of the BRG 10 × 14-4 L specimens
were left for longer ageing times in order to determine their degradation over time. Based on the
experimental results achieved, the following conclusions were outlined:

• With the arrangement of basalt mesh in the BRG specimens in this study, displacement-hardening
behavior can only be achieved when the specimens are reinforced with multiple textile layers.
With the increasing number of textile layers, the mechanical properties of the BRG specimens were
improved significantly, especially with the BRG specimens reinforced with basalt mesh having a
small net size. There is no impact on the mechanical strength of the BRG reinforced with basalt
mesh of big net size, failure of these BRG specimens is due to localization of the first-crack. This
can be attributed to two main reasons: (i) partial loss of the mechanical strength of basalt fiber in
an alkali environment, (ii) low tensile strength of the fiber yarn while using basalt mesh of big net
size reflects the behavior of the BRG specimens. It can be concluded that using basalt mesh of big
net size as reinforcement is not useful. So, the author suggests that only basalt textile of small net
size should be used to reinforced in specimens due to reinforcement effectiveness; or in case of
using basalt mesh of big net size, fiber yarn should be resized to its size by way of fiber yarn that
should be made of more individual filaments to improve its low tensile strength.

• Under four-point bending tests, all BRG specimens have the same failure mode by flexural failure
due to the rupture of fiber yarn in mortar matrix and no debonding of fiber yarn or a gradual
peeling process of mortar matrix during testing. On the other hand, the specimens reinforced
with more textile layers lead to a greater number of cracks.

• When the BRG specimens were exposed at longer ageing times (60, 90, 150, 180 days), degradation
of the mechanical strength with the increasing ageing time was revealed. The obvious loss of the
durability is after 150 days of ageing time compared to the reference. This reduction happened in
both specimens of mortar matrix and BRG specimens, so it can be attributed to the presence of
basalt fiber in the geopolymer. The author suggests that the BRG specimens should continue to be
tested at longer aging times in order to evaluate their durability.

• The specimen production phase also plays an important role in the first-crack strength of these
composites. The subjectivity in the specimen production can lead to the BRG specimens having
many cavities at the interface between mortar matrix and fiber yarn which results in a decrease of
the mechanical strength of the BRG specimens.
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