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Abstract: This research aims to introduce a new technique—off-site and self-form segmental concrete
masonry arches fabrication, without the need of construction formwork or centering. The innovative
construction method in the current study encompasses two construction materials forms the self-form
masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP)
composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs
and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the
extrados of the arch rings under service loadings. An experimental test was conducted on four
sophisticated masonry arch specimens. The research parameters were the Keystone thickness and the
strengthening of the self-form arch ring at the intrados. The major test finding was that the use of
thicker Keystone alters the behavior of the self-form arch and considerably increases the load carrying
capacity by 79%. Partial strengthening of the intrados with CFRP fabrics of typical arch ring Keystone
resulted considerable increase in the debonding load of fabrication CFRP sheets by 81%, increase in
the localized crushing load by 13% and considerably increase voussoir sliding load by 107%.

Keywords: masonry arches bridges; self-form segmental arches technique; CFRP; strengthening

1. Introduction

One of the oldest conventional bridge forms is the masonry arches bridges. They are robust,
durable, and economical structures. Rocks and clay bricks were the earliest masonry materials utilized
in arch construction over 4000 years. The masonry arches were historically constructed within walls of
the buildings and utilized for ventilation and the allowance of lighting through. The technology of
masonry arch construction within the years improved for achieving large spans [1]. A straightforward
identification of masonry arch bridge that which built from wedge-shaped blocks known as voussoirs
and mortar. Furthermore, arches bridges are built on a temporary framework (commonly known
as centering) as the masonry arch cannot stand alone until the placement of the last voussoir at the
apex—the Keystone. Upon completion, the centering becomes removed, and the arching force (thrust
force) starts to act at the abutments. The conventional masonry arch bridge was shown in Figure 1.

The number of masonry arch bridges is almost one million worldwide. They are ancient, and
many are carrying overestimated design loads, and they succeed to last hundreds of years. However,
maintenance of masonry arches bridges still under consideration [2]. In most cases, deterioration in
masonry arch bridges is due to water flowing throughout the structure and plant growth as a result of
water existence [3]. Lack of maintenance of masonry heritage arches built from natural stone subjected
to loading will lead to damage of the building stones at different levels [4].
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Figure 1. Conventional masonry arch bridge.

Rocks, stones, and clayey bricks are primary materials used in masonry construction, especially
for bridges, and have been proven to have sufficient durability. Most arch bridges constructed from
such materials are used for hundreds of years. Contrarily, so many bridges built from modern materials
since the 20th century, like steel and reinforced concrete, require repair and strengthening after being
in service for a relatively small part of their life span, and so are unable to meet the requirements of the
current regulations [5,6].

Utilizing FRP composites in the strengthening of structures has gained particular attention
and has been investigated in numerous experimental works [7]. Several advantages can be gained
from strengthening using FRP composites in repair as well as upgrading structures to carry extra
loads. Moreover, low-weight, cost-effective, and high-strength/weight and modulus/weight ratios are
achieved compared with some metallic materials [8,9]. Numerous experimental tests were performed
on strengthened masonry structures as well as masonry arches, shells, and vaults that experimentally
confirmed the efficiency of the strengthening system using FRP composites [10–12].

From an economic perspective it is not feasible to use a traditional technique for masonry arch
construction due to several reasons, like skilled labor cost for installing the framework and the
manufacturing of voussoirs from natural stones. Therefore, it was a necessity for cost-effective bridges
with the decline in traditional masonry arches that led to the development of FlexiArch bridges [13].

Masonry arch bridges have proved their strength and durability over the years; in addition they
have favorable aesthetics, which enhances the surroundings. Therefore, this insight brings us to
develop a new form of masonry arch bridge after a downturn in the construction of such bridges for
many years. An extensive experimental test program for the development of masonry arch bridges is
illustrated in this article.

2. The Significance of the Present Investigation

The importance of the present research is to study the behavior of a new method for constructing
masonry arch bridges. The self-form segmental concrete masonry arches system manufactured from
plain concrete wedge-blocks and carbon fiber-reinforced polymer (CFRP) fabrics without any mortar
and centering. Furthermore, we study the contribution of using an enlarged Keystone size on the load
carrying capacity of the self-form segmental concrete masonry arches. Moreover, we investigate the
effect of upgrading the self-form segmental concrete masonry arches bridges by CFRP fabrics in the
local portion of the arch ring intrados. This study is also believed to assist in introducing a technique;
one of its achievements is the featured speed of construction.
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3. The Experimental Program

3.1. Description of Test Specimens

The test specimens comprised four experimental models of self-form segmental concrete masonry
arches rings of 2 m span and 0.8 m rise. Figure 2 shows the arch designation system, which considers
the arch ring number, thickness of the arch ring, thickness of the Keystone, and the strengthening index.
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3.2. Materials

3.2.1. Concrete

The concrete used was designed according to the BS mix design method [14,15], for a specified
compressive strength of 30 MPa at 28 days for standard cubes (150 × 150 × 150) mm3. The concrete
mix proportion is shown in Table 1.

Table 1. Concrete mix proportions.

Mixing Materials Weight (Kg) Per Cubic Meter

Cement Fine Aggregate Coarse Aggregate Water W/C Ratio

430 705 1010 210 0.49

1. Fresh Concrete Test

To confirm the mix design, the slump test was performed for fresh concrete following ASTM
C143-15a [16]. The reported slump value for the fresh concrete was 90 mm.

2. Hardened Concrete Tests

Compressive strength, splitting tensile strength, and flexural strength tests were performed on
standard concrete cubes, cylindrical, and prism specimens, respectively. These tests were conducted
following international standards [17–19]. Test results are shown in Table 2.

Table 2. Hardened concrete tests.

Sample No. Compressive
Strength, MPa Sample No. Splitting Tensile

Strength, MPa Sample No. Flexural
Strength, MPa

Cu-01 33.72 Cy-01 3.05 Pr-01 3.945
Cu-02 32.95 Cy-02 2.98 Pr-02 3.87
Cu-03 33.1 Cy-03 3.02 Pr-03 3.825

Average 33.3 Average 3.01 Average 3.88

3.2.2. Carbon Fiber-Reinforced Polymer (CFRP) Fabrics

Woven unidirectional CFRP fabrics from Al-Umara’ Bureau for Construction Chemicals, Baghdad,
Iraq type SikaWrap-300C [20] were used in the present study in the assemblage of the self-form
segmental concrete masonry arches as well the strengthening process. The CFRP fabrics were adhered
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to the arch voussoirs using two-component, thixotropic epoxy-based impregnating resin and adhesive
from Sika Group brand Sikadur-330 [21]. Technical as well as mechanical properties of CFRP fabrics
and the epoxy resin are shown in Table 3.

Table 3. Technical and mechanical properties of carbon fiber-reinforced polymer (CFRP) composite.

CFRP Fabrics SikaWrap-300C Epoxy Resin Sikadur-330

Technical/Mechanical
Property Related Data Technical/Mechanical

Property Related Data

Fiber orientation 0◦ (unidirectional) Chemical base Epoxy resin

Wrap Black carbon fibers 99% Components Two, A and B

Dry fiber density 1820 kg/m3 Appearance (Color)

Component A: white paste
Component B: gray paste

Components A + B mixed: light
gray paste

Fiber thickness 0.167 mm (based on fiber content) Density 1.30 ± 0.1 kg/L (component A + B
mixed) (at +23 ◦C)

Area density 304 g/m2
± 10 g/m2 (carbon

fibers only)
Flexural E-Modulus ≈3800 MPa (7 days at +23 ◦C)

Fiber width 500 mm Tensile strength ≈30 MPa (7 days at +23◦C)

Dry fiber tensile strength 4000 MPa Tensile modulus
of elasticity ≈4500 N/mm2 (7 days at +23 ◦C)

Dry fiber modulus of
elasticity in tension 230,000 MPa Elongation at Break 0.9% (7 days at +23 ◦C)

Dry fiber elongation
at break 1.7% Tensile adhesion strength Concrete fracture (>4 MPa) on the

sandblasted substrate

3.3. Fabrication of Self-Form Segmental Concrete Masonry Arches

Four experimental models of self-form masonry arches of 2 m span and 0.8 m rise were fabricated,
as shown in Figure 3. The geometry of the wedge-type voussoirs carefully calculated from the
arch above ring dimensions for a segment of a circular arch profile. Each arch ring consisted of
23 wedge-shaped voussoirs; the end voussoirs were slightly different in dimensions for final arch ring
installation purposes, as shown in Figure 4.
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Figure 3. Experimental models of self-form segmental concrete masonry arches. Figure 3. Experimental models of self-form segmental concrete masonry arches.
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Figure 4. Wedge-shape voussoirs geometry.

Normal strength concrete with specifying compressive strength of 30 MPa at day 28 was designed
for casting concrete voussoirs. Steel molds were fabricated very precisely for casting concrete voussoirs.

Upon completion of curing the wedge-shaped voussoirs, the fabrication stage of the self-form
arch started as shown in Figure 5. The voussoirs were laid contiguously on the flat rigid bed, and
the surfaces of the voussoirs were grinded utilizing an electrical grinder. Furthermore, the voussoirs
were restrained temporarily by thick two wood panels and five F-clamp distributed evenly. Soon after,
the epoxy resin components were mixed mechanically and applied on the top surface of voussoirs.
The fabrication accomplished by bonding one layer of CFRP fabrics (layer width 200 mm and length
3000 mm) on the epoxy coated area and left for curing. Figure 6 illustrates the fabrication stages for the
self-form segmental concrete masonry arch.
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form arch was done from three positions exactly on third-span, as shown in Figure 7. The self-form 
arch was lifted, in the beginning, from the Keystone (L2), until the other two other lifting locations 
released from the resting bed. Lifting process continued simultaneously from three points, the 
wedge-shaped voussoirs will rotate, and the gap in-between closed. The self-form arch was formed, 
as a segment of a circle, upon completion of the lifting process as shown in Figure 8. 

 
Figure 7. The self-form arch ready for forming, typical Keystone arch (a), distinguish Keystone arch 
(b). 

Figure 5. Fabrication of self-form segmental concrete masonry arches.

Self-form arches with thicker Keystone were fabricated in a similar manner. The distinguished
thicker Keystone (100 mm thick.) was placed at the mid (instead of typical 80 mm thick voussoir V12)
as shown in Figure 6a. The process of fabrication of was done and the self-form arch was erected
accordingly as shown in Figure 6b.
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3.4. Lifting Self-Form Segmental Concrete Masonry Arches

The self-form arch was initially fabricated on a rigid steel bed in a flat shape. Lifting of the self-form
arch was done from three positions exactly on third-span, as shown in Figure 7. The self-form arch
was lifted, in the beginning, from the Keystone (L2), until the other two other lifting locations released
from the resting bed. Lifting process continued simultaneously from three points, the wedge-shaped
voussoirs will rotate, and the gap in-between closed. The self-form arch was formed, as a segment of a
circle, upon completion of the lifting process as shown in Figure 8.
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Figure 8. Formation of self-form segmental concrete masonry arches.

3.5. Strengthening of Self-Form Segmental Concrete Masonry Arches

Strengthening of the self-form masonry arches by CFRP textile was investigated in order to
discover the contributions of CFRP composites on the load carrying capacity of the self-form masonry
arches. After lifting, forming and installing the self-form masonry arch, the intrados of two sound
arches were partially strengthened with one layer of CFRP fabrics with a width of 200 mm and a length
of 450 mm. The strengthening layer was placed in the local region of the Keystone as shown in Figure 9.

Fibers 2019, 7, x FOR PEER REVIEW 7 of 15 

 
Figure 8. Formation of self-form segmental concrete masonry arches. 

3.5. Strengthening of Self-Form Segmental Concrete Masonry Arches 

Strengthening of the self-form masonry arches by CFRP textile was investigated in order to 
discover the contributions of CFRP composites on the load carrying capacity of the self-form masonry 
arches. After lifting, forming and installing the self-form masonry arch, the intrados of two sound 
arches were partially strengthened with one layer of CFRP fabrics with a width of 200 mm and a 
length of 450 mm. The strengthening layer was placed in the local region of the Keystone as shown 
in Figure 9. 

 
Figure 9. Strengthened self-form masonry arch F2-80-80-ST. 

4. Instrumentation and Testing 

Four self-form arches were fabricated. The arches rings were positioned in the loading frame 
and restrained against translation displacements in both horizontal and vertical directions. The load 
applied at the apex of the self-form arches on the keystone employing the hydraulic actuator as 
displayed in the schematic diagram of test setup Figure 10. Four digital indicators were used to 
measure arch translations: two were used to measure outward horizontal displacement at the 
abutments, while two more were utilized to record the outward inclined translations at the third-
spans. Furthermore, two precisely calibrated linear variable differential transducers (LVDTs) were 
also used for measuring the vertical displacements of the self-form masonry arches at the keystone. 

Compressions, as well as tensile stains at both of the extrados and intrados of the arches, were 
also measured. Two types of single element wire strain gauges—PL-60-11-3L and BFLA-5—were 
used for recording strains in both concrete voussoirs and EBR-CFRP fabrics; respectively. Technical 

Figure 9. Strengthened self-form masonry arch F2-80-80-ST.

4. Instrumentation and Testing

Four self-form arches were fabricated. The arches rings were positioned in the loading frame and
restrained against translation displacements in both horizontal and vertical directions. The load applied
at the apex of the self-form arches on the keystone employing the hydraulic actuator as displayed
in the schematic diagram of test setup Figure 10. Four digital indicators were used to measure arch
translations: two were used to measure outward horizontal displacement at the abutments, while two
more were utilized to record the outward inclined translations at the third-spans. Furthermore, two
precisely calibrated linear variable differential transducers (LVDTs) were also used for measuring the
vertical displacements of the self-form masonry arches at the keystone.

Compressions, as well as tensile stains at both of the extrados and intrados of the arches, were
also measured. Two types of single element wire strain gauges—PL-60-11-3L and BFLA-5—were
used for recording strains in both concrete voussoirs and EBR-CFRP fabrics; respectively. Technical
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specifications, for both types of strain gauges, are described in Table 4. Four strain gauges were
located at the third span and near the supports. Two strain gauges were used for measurement tensile
strains in EBR-CFRP fabrics, while the other two gauges used for measurements compression strain in
concrete voussoirs. Data logger type CR-1000 from Campbell Scientific Inc. (Logan, UT, USA) used for
recording the strains, loadings from the load cell, and the LVDT’s readings.
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Table 4. Technical specifications of Tokyo Measuring Laboratory (TML) strain gauges.

Model
Gauge Size, mm Backing Size, mm Gauge

Materials
Backing
Material

Resistance Ω Application
Length Width Length Width

PL-60-11-3L 60 1 74 8 Wire SG * Transparent
plastic 120 Concrete

BFLA-5 5 1.5 12.3 3.3 Foil SG * Foil 120
Carbon and
Composite

material

* SG = Strain Gauge.

5. Results and Discussion

Four self-form segmental concrete masonry arches, as detailed in Section 3.3, were tested under
static loads considering the study of selected parameters. Two of those arches were upgraded by
strengthening the intrados with CFRP fabrics in the limited mid-span region. Test results, as well as
the contribution of strengthening by CFRP fabrics on the loading capacity of self-form masonry arches
masonry arches, are summarized in Table 5.

Table 5. Test results of self-form segmental concrete masonry arches.

Arch
Designation

Keystone Joints
Opening Load, N

Initial Localized
Crushing Load, N

EBR-CFRP
Debonding Load, N

Voussoirs Sliding
Load, N

Ultimate
Load, N

Failure
Mode

F1-80-80-NS 570 3210 3490 3700 5590 Partially
crushed

F2-80-80-ST - - 6540 7260 7570 No crushing

F3-80-100-NS 3150 3640 6310 7680 10,010 Partially
crushed

F4-80-100-ST - 6580 5880 6770 8020 Partially
crushed
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5.1. Observed Behavior and Failure Mode

The behavior of self-form masonry arches under loading was monitored at different loading
stages. Five distinguished loading stages were observed and considered as illustrated herein:

1. Load cause joints opening of the keystone, which occurs at an early stage of loading of self-form
masonry arch ring. When the load applied on the keystone (V12), the joints V11-V12 and V12-V13
were opened accordingly.

2. Initial localized crushing load: most of the self-form masonry arch intrados (inner curve of
the arch ring) under compression, except under the keystone. In accordance with, high stress
concentration being on the corner of the wedge-shape concrete blocks which caused localized or
partial crushing.

3. Debonding of CFRP fabrics load: this was recorded as a critical loading stage. The debonding
of fabrication CFRP fabrics was specifically in the top surface of the Keystone, as a result, the
keystone was released and freely to slide.

4. Voussoir initial sliding load: debonding of fabrication CFRP fabrics was followed by sliding of
the Keystone. However, the friction forces as well as the thrust compression force tend to prevent
Keystone sliding.

5. Ultimate loading: the loading that was recognized by progressive sliding of the keystone.

The behavior of the self-form masonry arches subjected to loading at the apex started with the
opening of the joints of the Keystone voussoir V12. The joints V11-V12 and V12-V13 opened at an early
loading stage followed by localized crushing of some voussoirs (in the corners) along the intrados of
the arch ring with a further increment of the applied loading. This is due to the concentration of the
compression stresses over a small part over the section of the voussoirs. Under further loading, partial
Debonding of the fabrication CFRP fabrics observed along the keystone. Debonding of CFRP fabrics
was followed by sliding of the keystone until it almost entirely released from the CFRP fabrics, and
the arch ring tend to split out into two segments, which is considered the ultimate loading. Figure 11
shows the loading stages of self-form masonry arches.
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5.2. Displacements of Self-Form Masonry Arches at the Keystone

The tested specimens of self-form masonry arch rings have no mortar or backfilling, owing to
that, the arch rings were not fully restrained against displacements when subjected to loading at any
level except at support. Furthermore, the behaviors of self-form masonry arches were almost similar to
traditional arches when loaded at the keystone. The apex voussoir deflected downward, yet both of
the quarter-to-third and support segments of the arch ring were displaced outward. However, the
existence of CFRP fabrics in the extrados tends to limit or prevent arch displacement. Upgrading of
self-form masonry arches by CFRP even at the local region in the intrados reduced those displacements.

Figure 12 shows the load–displacement behavior of the self-form masonry arches at the keystone.
A considerable increase in the load carrying capacity of the self-form arch F3-80-100-NS with 25% thicker
keystone compared to the self-form masonry arch F1-80-80-NS was 79%, although the displacements
for both arches was almost the same at ultimate loading. This behavior was due to the contribution of
the used thicker keystone in resisting the loads that cause debonding, sliding and crushing as well as
the ultimate loading. The outward displacement of the arch specimens at the third span as well as the
supports were shown in Figure 13. It is clear that the arch F3-80-100-NS displaced much more than the
arch F1-80-80-NS by 20–226%. This behavior was probably due to the thicker keystone of the former
arch ring, where the keystone prevented from sliding due to its large dimension in addition to the high
thrust force until loading reached twice the load that causes sliding of the keystone of arch F1-80-80-NS.
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Figure 12. Load vs. vertical downward displacements of self-form arches at the keystone.
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Figure 13. Load vs. outward displacements of self-form masonry arches.

5.3. Strains in the Self-Form Segmental Concrete Masonry Arches

Load vs. compression strain in the concrete voussoirs V2 and V7 in the intrados of the tested
self-form masonry arches is shown in Figure 14. As aforementioned, arch F3-80-100-NS sustained
higher ultimate load than arch F1-80-80-NS by 79%. Moreover, the compression strain developed in
voussoirs V2 and V7 of arch F3-80-100-NS were 38% and 29%, respectively, than that developed in
arch F1-80-80-NS. The increment in strains was probably due to the effect of using thicker as well
as broader keystone in arch F3-80-100-NS, which produces higher localized thrust forces and hence
higher compression strain.
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Figure 14. Load vs. compression strain in the concrete voussoir.

Figure 15 shows the load vs. tensile strain generated in the fabrication CFRP sheets read by the
strain gauges adhered on the extrados of the self-form masonry arch ring at voussoirs V2 and V7.
The tensile strain developed in voussoirs V2 and V7 of arch F3-80-100-NS were 31% and 81% than arch
F1-80-80-NS, respectively. The resulted in higher strain in arch F3-80-100-NS, which was expected
as the thrust force developed in arch F3-80-100-NS was almost twice than that in arch F1-80-80-NS.
Furthermore, the thrust force was probably being tangent or close to the intrados of arch F3-80-100-NS
at V7 which produces higher tensile stress in limited depth of voussoir V7 which was carried mostly
by CFRP fabrics and hence producer higher tensile strain.
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5.4. Contribution of Strengthening CFRP Fabrics

Strengthening of the self-form masonry arches was done partially and limited to the mid-loading
zone. Considering arches F1-80-80-NS and F2-80-80-ST, which are typical except the later, were
strengthened by CFRP fabrics as shown previously in Figure 3b. The strengthening enhanced the load
carrying capacity of arch F2-80-80-ST by 35% and considerably reduced the vertical displacement at the
keystone by 70% concerning arch F1-80-80-NS. The failure mode of a strengthened arch was different,
and joint opening, as well as sliding of the Keystone, was prevented by the strengthening CFRP fabrics
from sliding. Moreover, the strengthening CFRP fabrics limited the thrust force within the middle
of the depth of the arch ring and hence prevented the generation of localized stresses as well as the
crushing of the voussoirs. Furthermore, partial strengthening by CFRP fabrics for voussoirs V11 to
V13 makes these mid-three voussoirs behave as a rigid segment and slide over the unstrengthened
closest voussoir V15, as shown in Figure 16c.

Relating to self-form masonry arches F3-80-100-NS and F4-80-100-ST, both of those arches have
distinguished thicker Keystone, and the same arch barrel except the later was strengthened by
CFRP fabrics as shown in Figure 3d. Despite the strengthening considerably decreased the vertical
displacement of the arch F4-80-100-ST at the keystone by 52%, the load carrying capacity was reduced
by 19% compared to arch F3-80-100-NS. This behavior due to the existence of partial strengthening
of arch ring intrados from voussoirs V11 to V13 prevented the sliding of V12. Additionally, partial
strengthening CFRP fabrics make these mid-three voussoirs behave as a rigid segment and slide over
the least thickness of the ring (without strengthening) over the closest voussoir V14. Also, debonding
of fabrication CFRP fabric and sliding of voussoir V14 over V15 was an additional reason, as shown in
Figure 16d.
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6. Conclusions

An experimental program comprised of four self-form segmental concrete masonry arches with a
span of 2 m and a rise of 0.8 m was conducted to introduce the behavior of novel method for fabrication
masonry arches without any formwork as well as voussoirs binding mortar. The parametric study
focused on the effect of using distinguished thicker keystone by 25% among the typical arch ring
voussoirs and the contribution of partial strengthening the intrados of the arch ring by CFRP fabrics in
order to investigate the load carrying capacity of the self-form arches. Based on the results obtained
from the experimental program, the following conclusions are presented.

• The self-form segmental concrete masonry arches are easy to fabricate, consisted of precise precast
concrete voussoirs, and could install without the need of any construction framework.

• The use of a thicker keystone altered the behavior of the self-form masonry arch as well as
considerably increased the load carrying capacity and reduced the vertical displacements.
Furthermore, the existence of a thicker keystone in self-form masonry arch F3-80-100-NS delayed
the joints opening to loading more than 5 times the load that causes the joint opening of self-form
masonry arch F1-80-80-NS.

• The upgrading of self-form arch F2-80-80-ST, which not used thicker keystone, by the partial
strengthening of the intrados with CFRP fabrics was found effective. A considerable increase in
the debonding load of fabrication CFRP fabrics by 81%, increase the localized crushing load by
13%, considerably increase voussoir sliding load by 107% as well as the ultimate load carrying
capacity of the self-form masonry arch by 79% compared with unstrengthened arch F1-80-80-NS.

• The upgrading of distinguished thicker Keystone self-form arch F4-80-100-NS by the partial
strengthening of the intrados with CFRP fabrics alter the behavior and was found useful at an
earlier stages of loading. The strengthening of the intrados considerably increases the localized
crushing load by 80%. However, a decrease in all other loading stages was found by 7, 11, and
19% for CFRP fabrics debonding load, voussoir sliding load, and ultimate load, respectively, in
relation to unstrengthened arch F3-80-100-NS.

7. Area of Future Studies

To summarize the recommendations for future work, the following points are highlighted.

• Investigation of the behavior of self-form masonry arches with backfilling.
• Formulating numerical model for analyzing self-form masonry arches.
• Studying the effectiveness of variable self-form masonry arches barrel thickness on the load

carrying capacity.
• Considering more grades of concrete and discover the localized crushing stresses, if they exist.
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