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Abstract: Flax fibers have been shown to have comparable mechanical properties to some conven-
tional synthetic fibers. Flax fabrics with different textile structures show differences in resistance
against mechanical loads mainly rooted in fabric orientation and the resultant resin impregnation.
Thus, in this study, flax fabrics with three different textile structures, fine twill weave, coarse twill
weave and unidirectional, were used as reinforcements in an epoxy matrix. The surfaces of the fabrics
were chemically treated using an alkaline treatment, and the alterations in fabric crystallinity index
(CrI) were determined using X-ray diffraction (XRD). Experimental results confirmed that textile
structures and CrI had significant effects on the mechanical properties of composites. Although an
increment in CrI, resulting from chemical treatment, always enhanced tensile and flexural proper-
ties, it adversely affected damage development once composites were exposed to impact load. In
terms of textile structures, unidirectional fabric outperformed woven fabrics in tensile and flexural
properties while in impact properties, the latter had a better performance inducing less damage
development. Finally, the mechanism of damage development in different composites was discussed
in detail using Scanning Electron Microscopy (SEM) images. It is envisaged that the results of this
study will provide an insight that will lead to the proper choice of the optimal kind of flax fabric for
different applications.

Keywords: flax fiber; epoxy; twill weave; unidirectional; textile structures; resin impregnation;
mechanical properties; impact strength

1. Introduction

Plant-based fibers such as flax [1–3], ramie [4,5], kenaf [6,7] and palm [8,9] have been
extensively exploited as reinforcing components in polymer composites. Their exclusive
features such as eco-friendliness and light weight make them an excellent contributing
factor in carbon emission reduction [10]. Additionally, their moderate price, as well as
abundance in nature, has encouraged industrial sectors and researchers to turn to these
materials even more than before. Among all natural fibers (NFs) available for composite
reinforcement, flax fiber is extensively used in various applications thanks to its superior
performance in terms of tensile strength and stiffness [11].

NFs are mostly extracted from different parts of plants such as stems, leaves or fruits
which makes them discontinuous because of the qualified length of plant organs [12,13].
Nevertheless, flax fibers can be used in long unidirectional (UD) or woven forms. The textile
structures of fabric along with structural parameters such as fiber direction, areal density
and weave type influence reinforcing effects once used in polymer matrices. Hence, gaining
insights into these variables should be considered as a must to improve the strengthening
efficiency of fibers. In this regard, Rahman et al. [14] showed that fiber orientation and
content significantly influenced the tensile and impact properties of UD-flax-reinforced
PP composites. They found that fiber orientation is a dominant factor affecting energy
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absorption capability and failure mode when laminates were exposed to different impact
analyses. Ma et al. [15] investigated the impacts of linear density and yarn structure on the
mechanical properties of ramie-fiber-reinforced epoxy composites. The results indicated
that an increase in yarn linear density decreased tensile strength and interlaminar fracture
toughness while increasing the impact properties. Baghaei et al. [16] also examined the
effect of weave patterns (satin and basket) on the properties of PLA composites reinforced
with hemp fiber. It was shown that satin fabric resulted in the lowest porosity and thus
highest tensile strength. Additionally, weave type even influenced water absorption in
the composite: basket-weave-reinforced PLA absorbed much more moisture than satin-
weave-reinforced PLA thanks to resin-rich channels. Goutianos et al. [12] found that the
structural parameters of woven fabrics such as yarn twist entirely affect their reinforcing
capabilities. They found that in woven fabrics made from low-twist yarns, the capability
of stress transferring reduces which adversely affects composite performance under a
tensile load.

Additionally, reinforcing effects in polymer composites are also dependent on factors
such as the relative concentration of the reinforcing phase and the strength of the interfacial
bond that they establish with the polymer matrix [17–19]. Ansari et al. [20] showed
that an upsurge in the volume fraction of glass fiber increases flexural strength while
adversely affecting the tensile properties of glass fiber/epoxy composites. Furthermore, in
another study, it was found that the thermal and mechanical properties of jute-reinforced
polyester composites are substantially influenced by both fiber orientation and volume
fraction. Indeed, different fiber loadings and orientations altered load-carrying capacity
which resulted in different failure mechanisms [21]. It is worth noting that higher volume
fractions of the fiber will not necessarily enhance mechanical properties. As an illustration,
Singh et al. [22] demonstrated that by increasing fiber content from 33 to 44%, a reduction
in the tensile and flexural strength of jute-reinforced PLA composites was observed mainly
due to higher void contents at high fiber loadings. Likewise, Rahman et al. [14] discerned
that higher volume fractions of fiber in flax/PP composites reduced laminate resistance
against impact force. Fiber/matrix adhesion also plays a significant role in the mechanical
performance of the final composite since it facilitates the transfer of load from the matrix
to the fiber. Therefore, the weak interaction of polymer matrix and fiber will adversely
affect the mechanical properties of composites [23]. In order to improve the interaction
between the fiber and the matrix, chemical modification is mostly used to remove lignin
and hemicellulose from the fiber surface [24]. Although chemical modification is expected
to enhance some mechanical properties, it might sacrifice other characteristics which
inevitably deteriorates composite performance under different loads [23]. For instance,
Zhu et al. [25] found that chemical treatment of novel flax/tannin composites deteriorated
the impact properties of the composites. Thus, while chemical treatment is expected to
bring about some advantages, the resultant demerits should not be overlooked.

A thorough investigation is needed on the effects of textile structures, their volume frac-
tion and chemical treatment on the mechanical properties of natural fiber epoxy composites.
More importantly, it is vital to gain insight into the damage mechanisms of different types
of fiber structures and how they react to applied loads, since it can provide more detailed
evidence about the reinforcing effects of different textures of flax fibers. Therefore, this
study focused on the mechanical behavior and damage mechanisms of different flax fabrics
with distinctive textile structures in epoxy composites. Moreover, the influence of chemical
treatment, leading to alterations in CrI, and the volume fraction of these fabric textures on
the mechanical properties of the resulting composites were extensively explored.

2. Materials and Methods

Diglycidyl ether bisphenol A (DGEBA) epoxy resin (105 west system epoxy) and
polyamine curing agent (209 extra slow hardener) were supplied by Adhesive Technologies
Ltd. (Auckland, New Zealand). Fine twill weave, coarse twill weave and unidirectional
flax fabrics (Flax ply UD180) with areal densities of 145, 565 and 180 g/m2, respectively,
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were provided by Lineo (Bruxelles, Belgium). Figure 1 shows the three different types of
fabric structures used in this study, each with an average fiber diameter of 17 µm. The
crimp ratio in woven fabrics, which is an indicator of fiber bundle undulation, depends on
the width (w), thickness (b) and spacing (g) of fiber bundles. In this study, φ is the angle
between fibre dundles, crimp ratio (cr) is calculated based on weave density (dw), laminate
thickness (t) and number of fabric layers (n) according to the following relationship, which
can be visually seen in literature [26]:

cr = tanφ =
b

w + g
=

t
2n
1

dw

=
tdw

2n
(1)
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2.1. Chemical Treatment

Fabric surface treatments were carried out using alkaline (NaOH) solutions. Firstly,
the fabrics were treated with sodium hydroxide (NaOH) solutions at a concentration of
94% for 33 min. Secondly, the fabrics were washed with distilled water at least 10 times to
remove the residual solvent. Finally, they were heated in an oven at a temperature of 40 ◦C
for 8 h.

2.2. Composite Manufacturing

Composites were manufactured using a hand-lay-up method. The number of layers
was selected according to density and areal density of different flax fabrics to maintain the
designated volume fractions of the final composites. Then, each fabric layer was stacked
on others in an aluminum mold following resin impregnation. Next, the resin-impregnated
and laid-up fabric layers were compressed in a press at a pressure of 0.7 MPa and room
temperature for 24 h. Subsequently, the manufactured laminates with the thickness range
of 2.8–2.95 mm were cut into different dimensions, according to pertinent standards, for
various analyses. The compositions of samples prepared for this study are summarized in
Table 1. L unidirectional and T unidirectional refer to longitudinal unidirectional fabric and
transverse unidirectional fabric, respectively.

Table 1. Details of composite laminates manufactured.

Laminate Code Number of Woven
Fabric Layers, n

Laminate Thickness
(mm)

Fabric Volume
Fraction (%) Crimp Ratio of Yarns

33 Fine Twill 8 2.83 33 0.042
44 Fine Twill 11 2.94 44 0.032

33 Coarse Twill 2 2.8 33 0.049
44 Coarse Twill 3 2.9 44 0.033

33 L Unidirectional 6 2.8 33 -
33 T Unidirectional 6 2.9 33 -
44 L Unidirectional 9 2.8 44 -
44 T Unidirectional 9 2.9 44 -
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2.3. Characterizations

Tensile properties of flax-reinforced epoxy composites were determined according
to ASTM D3039 [27], using a universal testing machine (Instron 5567). Tensile tests were
performed on specimens (250 × 25 × 2.8 mm3) with a crosshead speed of 2 mm/min and
a gauge length of 50 mm. A video extensometer was employed to determine the tensile
modulus between 0.05 and 0.25% strains.

Flexural properties of composites were determined according to ASTM D790 [28].
The specimens were rectangular in shape (70 × 12.7 mm2). The crosshead speed and the
length of supporting span were set based on the thickness of the specimens, as instructed
in the standard.

Drop weight impact testing of the composite samples was carried out in a drop weight
impact tester (Imatek IM10T-20, made in London, UK) according to ASTM D7136 [29].
A hemispherical impactor with a diameter of 16 mm was applied to obtain the histories
pertaining to energy–time and force–displacement of the composites. Moreover, four
clamps were used to hold the specimens and prevent them from moving once the load
touched the laminates. The total impact mass, including force transducer, crosshead and
impactor nose was around 9.745 kg. Impact analysis software (IM10T-20 version 1.1) was
also used to analyze the results and carry out the pertinent calculations. For the analyses
that were carried out in the warp direction, at least five samples were tested, and the
average results were reported.

The XRD patterns of flax fibers were collected using a D2 phaser Bruker Diffractometer
(made in Billerica, MA, USA) having a source of Cu Kα at 45 kV and 330 mA while the
scanning range changed from 10◦ to 60◦.

To visualize the quality of resin impregnation in woven fabrics and the difference in
structure of the resultant composites, samples were polished through six levels ending in a
polish grade of 1 µm, and optical microscopy (LEICA DM 2500, made in Wetzlar, Germany)
images were captured.

The impact fracture surfaces of laminates were visually checked for any external
damage. To capture the scaled image, a digital camera was used. Additionally, images
were analyzed using ImageJ software version 2020 to determine the damaged area of
each laminate.

The morphology of composite specimens was also viewed using a SEM (FEI Quanta
200F, made in Waltham, MA, USA) following surface platinum coating.

3. Results and Discussion
3.1. X-ray Diffraction

Cellulose crystallinity is regarded as a paramount characteristic of natural fibers. Plant
fabrics with high cellulose crystallinity are desirable in composite applications since the
crystallinity is directly correlated with the strength and stiffness of the fibers [1,2]. Thus,
any attempt to modify the fiber should not compromise its crystallinity. In this regard,
to assess the efficiency of chemical modification on flax fabric, cellulose crystallinity was
characterized by XRD. Generally, cellulose is characterized by peaks appearing at 2θ = 15.5,
16.5 and 22.8◦ pertaining to (1 0 1), (0 0 2) and (0 0 4) reflections [30]. Additionally, the (0 0 2)
reflections are considered the main crystalline peak of cellulose 1 [28]. The crystallinity
index (CrI) of the fiber can be determined by the Segal empirical method [31] using the
following equation:

CrI =
I002 − Iam

I002
(2)

where I002 represents the maximum intensity of the (0 0 2) crystalline peak, and Iam is the
minimum intensity of the amorphous component between (1 0 1) and (0 0 2) peaks (see
Figure 2). The crystallinity indices for untreated and treated flax fabrics were determined
from the XRD patterns using Highscore software of the XRD (Version 5.1) and can be seen
in Figure 2. The crystallinity index for three different flax fabrics increased after chemical
treatment. This increment is ascribed to the removal of non-crystalline components such as
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amorphous hemicellulose, lignin and non-cellulosic parts which consequently allows the
cellulose fibers to have a more crystalline structure [31].
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3.2. Tensile and Flexural Properties
3.2.1. Effect of Fiber Volume Fractions on Tensile and Flexural Properties

Figure 3 shows the tensile properties of unidirectional and woven flax fabric epoxy
composites. In these figures, the measured p values are less than 0.05 which substantiates
the significance of the results from a statistical perspective. As seen, an increase in flax
fiber volume fraction in untreated samples, irrespective of fabric structure, leads to an
enhancement in the tensile strength of all composites. For composite samples reinforced
with 33% fine twill weave fabric, the tensile strength and modulus are equal to 72.5 MPa
and 4.9 GPa, respectively. These values reach 91.8 MPa and 6.4 GPa when the fiber volume
percentage is 44%. For coarse twill weave composites, the tensile strength and modulus
increase from 57.3 to 76.6 MPa and from 4.3 to 5.9 GPa, respectively. For unidirectional
composites, the longitudinal tensile strength surges from 195 to 239 MPa, and the modulus
increases from 10.8 to 14.5 GPa. The transverse tensile properties also follow the same
pattern while the improvement is negligible. The tensile strength increases from 27.4 MPa
to 27.8 MPa, and the tensile modulus reaches 3.7 GPa from 3.1 GPa. This means that in the
transverse direction, an increase in fiber volume fraction does not significantly enhance the
tensile properties.
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both flexural strength and modulus in longitudinal and transverse directions. When a
fiber-reinforced composite is subjected to stress, fibers act as load carriers, and the applied
stress is transferred from the matrix to the fiber contributing to uniform and efficient stress
distribution which is subsequently followed by an enhanced mechanical performance
in the composite. At low fiber volume fraction, fibers cannot efficiently transfer load to
adjacent layers leading to fracture and thus lower mechanical properties [1]. Likewise, at a
higher volume fraction of fibers, if resin cannot efficiently impregnate between fibers, the
agglomeration of unimpregnated fibers occurs resulting in inefficient stress transfer and
composite failure.

3.2.2. Effect of Chemical Treatment on Tensile and Flexural Properties

The effect of alkali treatment on the tensile and flexural properties of flax-reinforced
epoxy composites is also seen in Figure 3. As observed, the tensile and flexural strength
of all composites increased with fiber treatment. Alkaline treatment, as substantiated
by XRD analysis and CrI, successfully removes the impurities and waxy particles from
fiber surfaces and, by increasing fiber roughness, contributes to mechanical interlocking
eventually leading to stronger interfaces (see Figure 4). It should also be noted that
the improvement rate in the transverse direction of the unidirectional fabric is far more
significant. In fact, the properties of composites in the transverse direction are mostly
influenced by fiber–matrix interface quality, and hence, higher interfacial strength leads to
a more pronounced increment [1].
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3.2.3. Effect of Direction in Unidirectional Fabric on Tensile and Flexural Properties

The unidirectional composites were examined in both longitudinal and transverse
directions. The composite samples showed exceptional strength in the longitudinal di-
rection where the tensile strength value was 196 MPa compared to 27.4 MPa in the
transverse direction at 33% fiber volume fraction. At 44% fiber volume fraction, tensile
strength increased and reached 239 MPa and 27.8 MPa in the longitudinal and transverse
directions, respectively.
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The flexural properties of unidirectional composites were also examined in both
longitudinal and transverse directions. The flexural strength and modulus were much
higher in the longitudinal direction. For composites reinforced with 33% flax fiber, the
longitudinal flexural strength and modulus were 199 MPa and 10.8 GPa, respectively, while
in the transverse direction, a flexural strength of 56.2 MPa and a modulus of 3.09 GPa
were recorded.

3.2.4. Effect of Flax Fabric Textile Structure on Mechanical Properties

The effect of flax fabric textile structure on mechanical properties was also studied.
A comparison between two kinds of woven fabrics clarifies that at the same fiber volume
fraction, the recorded values for flexural and tensile properties in composites made from
fine twill weave, which possess a lower yarn crimp ratio and areal weight, which leads
to lower weave density, are higher than that of coarse twill weave composites. Indeed,
the lower weave density results in thinner fiber bundles in the fabric weave which then
facilitates the process of fabric wetting by the resin. On the contrary, higher weave density
leads to thicker fiber bundles and thus smaller resin channels in the resultant composites as
shown in Figure 5. Therefore, it is deduced that weave density and thus the crimp ratio
directly influence the flexural and tensile properties of composites. In this regard, it is
hypothesized that woven fabrics with different crimp ratios encounter disparate stiffness
degradations [31]. Indeed, fabrics with a higher crimp ratio and weave density are more
vulnerable to property degradation once exposed to tensile or flexural stress [25,27,32,33],
because fiber-free interfaces contribute toward the applied stress [16]. Similarly, in this study
at 33% and 44% of fiber volume fractions, in unmodified samples, fine twill samples possess
26 and 20% higher tensile strengths, respectively, than their coarse twill counterparts.
Likewise, the lower crimp ratio and weave density of fine twill weave composites compared
to coarse twill ones lead to a significant discrepancy in the tensile modulus where the former
possesses 12 and 8% higher values at 33 and 44% of fiber volume fractions, respectively.
It can also be deduced that fabric with a lower crimp ratio and weave density can be
impregnated more effectively with the matrix leading to more pronounced fiber/matrix
cohesion. Fine twill weave fabrics in their structure will have more significant resin channels
between their bundles compared to coarse twill weave fabrics. The fiber bundles that are
adjacent to resin channels can bring about effective load transfer in the composites, thereby
leading to more resistance against mechanical loads (see Figure 4).

Fibers 2024, 12, x FOR PEER REVIEW 9 of 19 
 

direction at 33% fiber volume fraction. At 44% fiber volume fraction, tensile strength in-
creased and reached 239 MPa and 27.8 MPa in the longitudinal and transverse directions, 
respectively. 

The flexural properties of unidirectional composites were also examined in both lon-
gitudinal and transverse directions. The flexural strength and modulus were much higher 
in the longitudinal direction. For composites reinforced with 33% flax fiber, the longitudi-
nal flexural strength and modulus were 199 MPa and 10.8 GPa, respectively, while in the 
transverse direction, a flexural strength of 56.2 MPa and a modulus of 3.09 GPa were rec-
orded. 

3.2.4. Effect of Flax Fabric Textile Structure on Mechanical Properties 
The effect of flax fabric textile structure on mechanical properties was also studied. 

A comparison between two kinds of woven fabrics clarifies that at the same fiber volume 
fraction, the recorded values for flexural and tensile properties in composites made from 
fine twill weave, which possess a lower yarn crimp ratio and areal weight, which leads to 
lower weave density, are higher than that of coarse twill weave composites. Indeed, the 
lower weave density results in thinner fiber bundles in the fabric weave which then facil-
itates the process of fabric wetting by the resin. On the contrary, higher weave density 
leads to thicker fiber bundles and thus smaller resin channels in the resultant composites 
as shown in Figure 5. Therefore, it is deduced that weave density and thus the crimp ratio 
directly influence the flexural and tensile properties of composites. In this regard, it is 
hypothesized that woven fabrics with different crimp ratios encounter disparate stiffness 
degradations [31]. Indeed, fabrics with a higher crimp ratio and weave density are more 
vulnerable to property degradation once exposed to tensile or flexural stress [25,27,32,33], 
because fiber-free interfaces contribute toward the applied stress [16]. Similarly, in this 
study at 33% and 44% of fiber volume fractions, in unmodified samples, fine twill samples 
possess 26 and 20% higher tensile strengths, respectively, than their coarse twill counter-
parts. Likewise, the lower crimp ratio and weave density of fine twill weave composites 
compared to coarse twill ones lead to a significant discrepancy in the tensile modulus 
where the former possesses 12 and 8% higher values at 33 and 44% of fiber volume frac-
tions, respectively. It can also be deduced that fabric with a lower crimp ratio and weave 
density can be impregnated more effectively with the matrix leading to more pronounced 
fiber/matrix cohesion. Fine twill weave fabrics in their structure will have more significant 
resin channels between their bundles compared to coarse twill weave fabrics. The fiber 
bundles that are adjacent to resin channels can bring about effective load transfer in the 
composites, thereby leading to more resistance against mechanical loads (see Figure 4). 
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4. Impact Properties
4.1. Effect of Fiber Volume Fractions on Impact Properties

Typical force–displacement curves of epoxy composites reinforced with different
flax fabrics are illustrated in Figure 6. These graphs can be divided into two distinctive
zones, namely zone A and zone B. Zone A demonstrates the elastic response of composite
laminates until the point at which force reaches the damage initiation threshold. It is
hypothesized that the total energy is absorbed by composites through elastic deformation,
and all energies absorbed beyond this point, in zone B, contribute to the creation of dam-
age. Indeed, in zone B, damage initiates and develops while the impactor continues to
move toward the specimen until it is completely stopped at the turning point. Damage
development in zone B can happen through various mechanisms such as matrix cracking,
delamination and fiber breakage. Thus, it is deduced that the larger zone B is an indi-
cation of damage development through composite laminate and consequently a larger
damaged area [34]. As seen, the impact force threshold goes to higher values once fiber
volume fraction increases, suggesting more resistance against impact force in all composites.
These findings are consistent with tensile properties where higher fiber content resulted
in enhanced tensile properties. Additionally, for unidirectional, fine twill and coarse twill
composites, zone B in corresponding graphs becomes smaller when fiber content increases
from 33% to 44%. It shows that more fiber inclusion to the epoxy reduces damage develop-
ment in impact analysis. This matter can also be investigated through the damage initiation
energy and propagation energy shown in Figure 6. The results show that fiber inclusion
enhances the damage initiation energy and consequently reduces the propagation energy
in composites [1]. The reduction in crack propagation energy exemplifies that damage
development in composite laminate decreases.

In addition, when fabric is chemically modified, the maximum force threshold in-
creases, because CrI enhances, and the existence of more crystalline parts promotes the
maximum force that composites can tolerate. Moreover, chemically treated fibers have
a lower initiation energy and thus more propagation energy (see Figure 6b). Beyond
the maximum impact force, the amount of absorbed energy increases, and consequently,
composites experience more severe damage [14]. This phenomenon is attributed to the
higher tensile strain of the treated composites. The contraction of flax fabric micro-fibrils
induced by applying alkaline treatment accounts for the higher tensile strain of the treated
composites [35,36]. Additionally, it is hypothesized that higher tensile strain at the break of
a given composite results in a higher amount of absorbed energy which will be followed
by more pronounced damage development [37]. Similar trends were also reported in other
studies [14]. Furthermore, it has been reported that the amount of energy absorption during
the impact test increases when fiber internal bonding with the matrix is enhanced [14]. As
discussed earlier, chemical treatment enhances the adhesion between flax fiber and the
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epoxy matrix which also accounts for the higher amounts of absorbed energy and more
severe damage in composites made from treated fibers.
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4.2. Effect of Flax Fabric Textile Structure Resulting from Different Yarn Diameters on
Impact Properties

For a given volume fraction, composites made from two different kinds of woven
fabrics with different yarn diameters represent divergent trends in energy absorption. As
seen in Figure 6, zone B in fine twill weave composites is evidently larger, suggesting
a more severely damaged area in these laminates, despite having a higher impact force
threshold. Earlier, some differences were observed in the structure of final composites
made from these two kinds of fabric which influence energy absorption during impact
tests. It is hypothesized that more resin-rich areas facilitate crack propagation under an
impact load [34]. As discussed earlier in Figure 4, fine twill weave composites have more
resin-rich areas which are unreinforced spots in the laminates and, once exposed to impact
force, facilitate crack propagation. In fiber-reinforced composites, the polymer matrix is the
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component that possesses the lowest modulus, and thus, the more it is exposed to the load,
the larger cracks are expected to result. Moreover, the amount of energy dissipated by the
matrix is quite low, and the presence of more fibers hinders extreme damage development
in composites. Since the crimp ratio of coarse twill weave fabric is higher due to the
presence of thicker fiber bundles, an overwhelming amount of impact load is tolerated, and
as a result, a smaller damage area is caused. It is also deduced that in these laminates, fiber
fracture is the major contributing factor in damage development. In addition, natural fibers
themselves are regarded as composite structures consisting of a lignin and hemicelluloses
matrix reinforced by stiff cellulose micro-fibrils having a lumen cavity in the central part.
The lumen cavity brings about a porous structure in the natural fiber which enhances
composite impact strength [14]. Additionally, as seen in Figure 7, composites reinforced by
coarse twill weave fabric show higher crack initiation energy and thus lower propagation
energy compared to those made from fine twill weave fabric.Fibers 2024, 12, x FOR PEER REVIEW 13 of 19 
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4.3. Effect of Direction in Unidirectional Fabric on Impact Properties

Unidirectional composites do not absorb as much energy as those made from woven
fabrics, because in these composites, damage mostly happens in-plane along the fiber direc-
tion [38], and fiber presence impedes the creation of large matrix deformation. Therefore,
it is deduced that the dominant fracture mechanism in unidirectional composites is fiber
fracture [39].

Moreover, irrespective of fiber volume fraction, the energy absorption of transverse
unidirectional composites is higher than that of longitudinal composites because in the
transverse direction, fewer fibers exist in the direction of impact load, and as a result, matrix
damage, thanks to mismatching between the polymer matrix and fibers, also happens [38]
which eventually increases the damaged area. This can be observed in Figure 7 where in
the longitudinal direction, propagation energy is lower than the transverse direction, sug-
gesting less damage development, though it is not significant. In unidirectional composites,
energy absorption is overwhelmingly in the fiber direction which is clearly observable in
Figure 6 where zone B in transverse reinforced flax composites is larger, indicating the
creation of more damage.

4.4. Inspection of Damage Induced by Impact Loading

The differences in the crack areas and damaged zones of different composite laminates
are illustrated in Figures 8 and 9. The impact damage in composite samples originates from
fiber failure, fiber–matrix debonding, fiber pull-out and fiber failure and fracture.
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On the surface of fine twill weave composites, a cross-shaped crack covering the center
of the laminate exists. However, the damaged area in 33% included fiber is larger. In
addition, the impactor created a dent in composites made from 33% and 44% coarse twill
weave composites while the dent is more severe in the latter. Therefore, as discussed before,
the damaged area in the fine twill weave composite is larger compared to that in the coarse
twill weave composite. Structural features in the two woven fabric composites associated
with different crimp ratios, such as resin-rich pockets which are more frequent in fine twill
weave composites, do play a pivotal role in the damage tolerance of these composites as
described previously.

A comparison between the front and back of epoxy composites reinforced with 33%
and 44% volume fractions of unidirectional fabric clarifies that these laminates do not show
enough resistance against the impactor. The severity of damage is more significant for the
laminates reinforced with 33% fiber where they were separated into two pieces. In the
front side of unidirectional composites, the dominant damage mechanism is fiber breakage
which is observed as a longitudinal crack along the fiber direction. On the back side,
matrix cracks along the fiber direction are dominant which is accompanied by delamination
clearly observable from the upper layers. In addition, a peanut-shaped delamination area
is observed in composites reinforced with 33% fiber which is rooted in the distribution of
interlaminar shear stress at the interface of 0◦ and 90◦ cross-ply laminates [14].

4.5. Microscopic Analysis of Impact Fracture Surface of Composites

The impact fracture surfaces of composites were viewed by SEM to gain a better
understanding of how flax fiber with different textures reacts to impact load. As seen
in Figure 10, in composites made from fine twill flax fabric, cracks tend to propagate
through the resin-rich area which is consequently followed by the breakage of fiber bundles.
Thus, the dominant fracture mechanisms in these composites are matrix cracking and
fiber breakage. On the other hand, in composites made from coarse twill flax fabric, as
discussed earlier, much thicker fiber bundles and less resin-rich area exist, and as a result,
fiber bundles are the part of the laminate most exposed to the impact load. Thereby, fiber
breakage is regarded as the most significant mechanism in impact tests [14]. Further, as
discussed earlier, the existence of less resin-rich area in composites increases strength
against an impact load, because in fiber-reinforced composites, the matrix possesses the
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lowest modulus. That is why these composites absorb less energy in the crack propagation
stage compared to their counterparts made from fine twill flax fabric. The impact fracture
surfaces of composites made from unidirectional fabric were also evaluated using SEM. In
Figure 9, as seen, fiber splits into separate parts, and thus, fiber breakage is the major crack
propagation in these composites. Other researchers have also reported that fiber breakage
and pull-out are the chief mechanisms of energy dissipation in long fiber composites [14].
Moreover, in these composites, cracks develop along the fiber direction which may also
detach fiber from the matrix [40,41].
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5. Conclusions

In this study, flax/epoxy composites made from fabrics with different structures
were extensively evaluated in terms of performance under different mechanical loads.
The fabrics were also subjected to alkaline treatment to see how chemical modification
influences composite performance. It was found that composites made from fine twill
weave fabric outperformed those made from coarse ones, resulting from the difference
in yarn diameters, while composites reinforced with longitudinal unidirectional fabric
surpassed both. It was also shown that chemical treatment, although it increased the
mechanical properties of all composites, negatively affected their impact strength. Also, in
impact analysis, composites made from fine twill weave fabric showed lower resistance
and thus more significant damage area because of having more resin-rich areas in the
resultant composites. It is expected that the findings of this study will be used in exploiting
an appropriate fabric type for various applications.
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