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Abstract: Due to the high cost of laboratory testing, many researchers are considering developing
methods to predict the behavior of unreinforced and reinforced wood beams. This work aims to
create either numerical or analytical models useful for extrapolating already conducted tests to other
schemes/materials used as reinforcement. In the case of timber structures, due to the complexity
of timber, this task is difficult. The first part of the article presents an analysis of the suitability of
using a simplified mathematical model based on the equivalent cross-section method to describe the
behavior of unreinforced and reinforced with carbon-fibre-reinforced polymer (CFRP) composite
full-size laminated veneer lumber (LVL) beams. The theoretical results were compared with the
results of conducted experimental tests. The scope of the analysis includes the estimation of modulus
of rupture, bending stiffness, and determination of the neutral axis position. The equivalent cross-
section method showed good agreement in determining the bending stiffness and neutral axis
position of the strengthened sections. However, the suitability of using the equivalent cross-section
method to estimate the load-carrying capacity of a cross-section reinforced with fiber composites
still needs to be confirmed, which, according to the authors, is due to the differences between the
assumed (linear) and actual (nonlinear) strain distribution in the compression zone. The second part
uses the equivalent cross-section method to estimate the predicted bending stiffness of LVL beams
strengthened with aramid-fibre-reinforced polymer (AFRP), glass-fibre-reinforced polymer (GFRP),
and ultra-high modulus carbon-fibre-reinforced polymer (CFRP UHM) sheets. The proposed method
can be used for preliminary evaluation of strengthening effectiveness of LVL beams.

Keywords: bending stiffness; composites; modulus of rupture; neutral axis; reinforcement; wood
structures

1. Introduction

The significant increase in the cost of materials, and, thus, the cost of laboratory tests
carried out, especially on real-scale objects, necessitates the search for methods to predict
the behavior of un-strengthened and strengthened beams. Appropriately validated with
experimental tests model should allow the extrapolation of the analyses carried out to other
strengthening schemes or use of another material. These preliminary studies would be
beneficial from an economic and environmental point of view.

An effective method for studying various strengthening configurations is to use the
finite element method with advanced FEA programs. Burawska and Tarasovs used the
numerical model to analyze the effect of adhesive bond parameters on the behavior of
pine beams reinforced with CFRP straps [1]. Kula and Socha [2] described a numerical
model of the performance of a beam reinforced with CFRP strips taking into account
rheological phenomena—they concluded that reinforcement could reduce rheological
deflection gains. Nowak et al. [3] used an elastic and elastic–perfectly plastic model with
Hill criteria to represent the plastic stresses of historical beams reinforced with CFRP strips.
Raftery and Harte [4] discussed a nonlinear numerical model for predicting the behavior of
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unreinforced and reinforced laminated timber beams. Ye et al. [5] performed numerical
analysis of behavior of lap joints reinforced with CFRP sheets—obtaining a good agreement
with experimental results. Chybiński and Polus conducted experimental and numerical
analysis of the short-term behavior of bent laminated veneer lumber panels [6], comparing
2D and 3D finite element models with orthotropic and elastic–perfectly plastic material
models, respectively. They used a developed model in further studies of aluminium–timber
composite (ATC) beams with bolted connections [7] and partial shear connections [8], in
which timber slab was made of LVL panels. A good agreement between experimental and
numerical results for unreinforced and reinforced with CFRP bent wooden beams was
achieved in paper [9] using linear elastic material in compression and elasto-plastic material
in tension with orthotropic failure criteria for wood and isotropic elastic models for CFRP.
The results of numerical analysis of CFRP-strengthened timber beams using a coupled
orthotropic elasticity and anisotropic plasticity with the quadratic criterion of Hill to model
the behavior of wood showed good correspondence with experimental tests [10]. Finally, a
numerical analysis of the effect of CFRP composite type and shape on the load-carrying
capacity and stiffness of wood I beams was presented by Makowski [11].

Mathematical models are among the fast methods that make it possible to approximate
the basic parameters of wooden beams reinforced with modern or traditional materials.
Diverse constitutive models have been used to describe the nonlinear behavior of wood
in the compression zone. The bilinear Bazan–Buchanan model [12] assumes linear elastic
behavior up to plasticization, followed by a kink in the curve with a negative slope angle in
the compression zone. This model has been used in many works [13–16], as it corresponds
well with experimental results. When the distribution of deformation in the compressive
area was not known, a simplified linear elastic model of a perfectly plastic body was
used [17–20]. Moreover, the following assumptions were considered by researchers [21–25]
in theoretical analyses for the evaluation of the ultimate moment capacity of the strength-
ened beams: the composite material has a linear behavior; the stress–strain relationship
of timber is linear in tension; there is no slippage or debonding between fibre-reinforced
polymer (FRP) and the timber surface; and plane sections remain plane.

A simplified analytical model based on transformed cross-section characteristics was
used by Kawecki and Sumorek [26], among others, to evaluate the cost-effectiveness
of combining laminated wood with CFRP laminates. Timbolmas et al. [27] used the
transformed section method to calculate the global modulus of elasticity and corresponding
moduli in tension and compression for pure timber section and combined from different
species. Due to different behavior in tension and compression of wood, they treated
the pure section as bi-material. This assumption was the basis for the authors in further
investigation of the application of an analytical approach to analyze different layouts of
unreinforced and reinforced with CFRP composite glulam beams [28]. Halicka and Ślósarz
used a bi-material model of a cross-section to evaluate the bending stiffness of glulam
beams reinforced with prestressed CFRP [29].

The purpose of this study is to present the feasibility of using a simplified mathematical
model based on equivalent cross-sectional characteristics to predict the flexural behavior
of laminated veneer beams reinforced with carbon-fiber-reinforced polymer sheets and
laminates. The analysis included comparing experimental results with theoretical ones
regarding the modulus of rupture (MOR), bending stiffness EI, and neutral axis position at
beam failure c. The presented model was then used to predict the bending stiffness values
and neutral axis position of full-size LVL beams strengthened with AFRP aramid sheets,
GFRP glass sheets, and CFRP UHM ultra-high modulus carbon sheets. The effect of the
number of reinforcement layers on the values of these parameters was analyzed.

2. Materials and Methods

The behavior of LVL beams unreinforced and reinforced with CFRP composites is
described using the equivalent cross-section method. This paper presents only the main
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assumptions necessary from the point of view of the given issue. A detailed description of
the experimental and theoretical tests carried out is shown in the publications [30–33].

2.1. Transformed Cross Section Method

The mathematical model of the performance of full-size beams was created based on
the method of equivalent cross-section, in which reinforcement is taken into account by
proportionally increasing the geometric dimensions of the cross-section of the wooden
beam [34,35]. Experimental tests were carried out on 30 beams, 5 unreinforced and
25 reinforced, divided into a 5 element series in the following arrangement (Figure 1):
A—unreinforced beams; B—beams reinforced with one layer of CFRP sheet glued to the
bottom and side surfaces; C—beams reinforced with two layers of CFRP sheet glued one
over the other, covering the bottom and side surfaces; D—beams reinforced with two
layers CFRP sheets covering the entire lateral surfaces with an overlap in the tension
zone; E—beams reinforced with two inserts of CFRP laminate glued into grooves hol-
lowed out along the bottom surface; F—beams reinforced with CFRP laminate glued to the
bottom surface.
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reinforced with two layers of CFRP sheet covering entire side surface with overlap in tension zone 

Figure 1. Tested series: unreinforced beam (A series); beam reinforced with one layer of CFRP sheet
(B series); beam reinforced with two layers of CFRP sheet bonded in tension zone (C series); beam
reinforced with two layers of CFRP sheet covering entire side surface with overlap in tension zone
(D series); beam reinforced with two CFRP laminate inserts bonded into pre-drilled grooves (E series);
beam strengthen with CFRP laminate bonded to bottom side (F series) [33].

The basis for the calculations was the dimensions of each beam inventoried after experi-
mental testing. Photographs of selected cross-sections of beams are shown in Figure 2—photos
were taken of sections of beams cut from around the area of failure initiation.
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Figure 2. Selected cross-section cut out of tested beams: (a) unreinforced beam (A series); (b) beam
reinforced with one layer of CFRP sheet; (c) beam reinforced with two layers of CFRP sheet bonded
in tension zone; (d) beam reinforced with two layers of CFRP sheet covering entire side surface
with overlap in tension zone (D series); (e) beam reinforced with two CFRP laminate inserts bonded
into pre-drilled grooves (E series); (f) beam strengthen with CFRP laminate bonded to bottom side
(F series).

The proportional increase in dimensions was determined using the η coefficient, which
determines the ratio of the elastic modulus of the composite material and the laminated
veneer [34,35]:

η =
E f

Ed
, (1)

where Ef—modulus of elasticity of composite material in fibre (main) direction;
Ed—modulus of elasticity of laminated veneer lumber. The modulus of elasticity of the
veneer and CFRP laminate was assumed based on experimental results of 14 GPa and
195 GPa, respectively. The modulus of elasticity of the CFRP sheet was assumed according
to the data declared by the material manufacturer—265 GPa [36].

The substitute width of the veneer bz was determined separately for the reinforcement
glued to the sidewalls (assuming a sheet thickness of 0.333 mm and carbon tape of 1.4 mm
for the calculations) and glued to the underside (the width over which the reinforcement
was applied), according to the formulas:

• for composite parts oriented in vertical fashion:

bz= n · t f · η, (2)

• for composite parts oriented in horizontal fashion:

bz= n · b f · η, (3)

where tf—thickness of composite; bf—width of composite; n—number of composite layers.
Examples of equivalent sections of reinforced beams (series B–F) are shown in Figure 3.



Fibers 2023, 11, 24 5 of 17
Fibers 2023, 11, x FOR PEER REVIEW 5 of 17 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Transformed cross-section of reinforced beams: (a) beam reinforced with one layer of 

CFRP sheet (B series); (b) beam reinforced with two layers of CFRP sheet bonded one on another (C 

series); (c) beam reinforced with two layers of CFRP sheet (D series); (d) beam reinforced with two 

CFRP laminate inserts bonded into pre-drilled grooves (E series); (e) beam reinforced with CFRP 

laminate bonded to bottom side (F series). 

2.2. Methods 

2.2.1. Modulus of Rupture (MOR) 

The maximum normal stress occurring in the outermost fibers of the bent section 

(flexural strength) was estimated according to the formula (based on [34,35]): 

Figure 3. Transformed cross-section of reinforced beams: (a) beam reinforced with one layer of CFRP
sheet (B series); (b) beam reinforced with two layers of CFRP sheet bonded one on another (C series);
(c) beam reinforced with two layers of CFRP sheet (D series); (d) beam reinforced with two CFRP
laminate inserts bonded into pre-drilled grooves (E series); (e) beam reinforced with CFRP laminate
bonded to bottom side (F series).
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2.2. Methods
2.2.1. Modulus of Rupture (MOR)

The maximum normal stress occurring in the outermost fibers of the bent section
(flexural strength) was estimated according to the formula (based on [34,35]):

MOR =
Mmax·z

Iy
, (4)

where Mmax—maximum bending moment; z—distance from neutral axis to external com-
pressed fibers; Iy—moment of inertia of transformed or solid cross-section.

For reinforced beams, the geometric characteristics of the equivalent cross-section were
used. For unreinforced beams, the geometric characteristics of the solid section were used.
The calculations assumed a linear stress distribution over the height of the cross-section.

Except MOR, a theoretical value of maximum bending moment Mtheo carried by
transformed cross-section was evaluated using reversed analysis based on Formula (4),
assuming the maximum normal stress for the unreinforced LVL beam from the experimental
test. For the calculations, a maximum normal stress in LVL equal to 57.8 MPa was assumed.

2.2.2. Bending Stiffness EI

Three methods were used to analyze bending stiffness, two of them based on the
results of experimental tests and one based on theoretical analysis, including:

1. A method based on the curvature of the beam during bending (conducted using
experimental data);

2. A method based on the characteristics of the equivalent cross-section using the elastic
modulus of laminated veneer (conducted using simplified mathematical model);

3. A method based on a formula that describes the deflection value of a beam loaded
with two concentrated forces (conducted using experimental data).

Methods 1 and 3 were used to validate the simplified analytical model (method 2),
which was applied at the design stage to predict the strengthening effectiveness using
different composites as a reinforcement.

In the first method, the bending stiffness EI1 of unreinforced and reinforced full-length
beams was determined as the product of the bending moment at the center of the element
span M and the radius of curvature ρ (Figure 4) in the plane of bending xy according to the
formula [37]:

1
ρ
=

M
EI1

→ EI1= M · ρ, (5)

where EI1—bending stiffness; M—bending moment; ρ—radius of curvature. A constant
value of curvature and bending moment for the analyzed part of beam was assumed.

The curvature of the element κ in the xy plane is described using an arc plotted from
points lying along a horizontal line running halfway up the cross-sectional height—the
x-axis of the local coordinate system on the face of the beam. A point at the center (P2) and
points offset by 100 mm from the axis of application of concentrated forces (P1, P3) were
used to create the arc. The distance between points P1 and P2 and P2 and P3 was 500 mm.

The radius of curvature ρ of the beam was estimated from the geometric relationships
present in a right triangle, using the estimated deflection arrow and the distance (horizontal
component) between points P1 and P2, according to the formula [37]:

ρ2 = (ρ − f )2 + (xl)
2 → ρ =

f 2 +x2
l

2 · f
, (6)

where ρ—radius of curvature; xl—distance between point P1 and P2; f —displacement of
point P2 from line drawn between points P1–P3.
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In the second method, the bending stiffness EI2 was determined as the product of
the moment of inertia of the equivalent cross-section Iy (or solid cross-section) and the
modulus of elasticity of the veneer Ed in bending according to the formula:

EI2 = Ed · Iy, (7)

where Ed—modulus of elasticity of LVL; Iy—moment of inertia of transformed or solid
cross-section.

In the last method, the bending stiffness of EI3 was estimated using the transformed
deflection formula for a beam subjected to four-point bending according to the formula:

u =
Pa

24EI3
(3L 2−4a2) → EI3 =

Pa
24u

(3L 2 − 4a2), (8)

where P—loading force; u—midspan deflection; a—distance between support axis to the
nearest concentrated force; L—span of beam.

2.2.3. Position of Neutral Axis

The offset of the neutral axis from the geometric center of the height of the laminated
veneer cross-section, hereafter denoted by the symbol c, was determined based on the
strain profiles in the central section evaluated using digital image correlation [33]. The
point of intersection of the curve with the vertical axis (the change in the sign of the strain)
was determined by linear interpolation between the values closest to either side of the
vertical axis in the center section. Schematically, the location of the center of gravity of the
reinforced beam section is shown in Figure 5.
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3. Results

The results of the analyses are presented in terms of three aspects of the beams’
performance: modulus of rupture (MOR), bending stiffness EI, and neutral axis position c.

3.1. Modulus of Rupture (MOR)

The average values of the bending strength MOR and the average values of theoretical
Mtheo and experimental maximum bending moment M for the tested beams are shown in
Figure 6. The most significant values of MOR are recorded for the B series and the smallest
for the D series beams. An inverted order can be seen in the case of the maximum bending
moment of the cross-section—the smallest values are for the B and E series beams and
the largest for the D series. There are several reasons for this: the incompatible reality
assumption of linear stress distribution over the height of the cross-section, the way the
composite reinforcement is distributed, and the degree of reinforcement of the cross-section.
The stress distribution in the compression zone is bilinear and linear in the tension zone; the
mathematical model assumed linear in both zones. The higher the degree of reinforcement,
the higher the moment of inertia of the equivalent cross-section, and, thus, the lower the
value of MOR—when in the calculations, the value of the bending moment between the
different test series is similar. The distribution of sheets along the lateral surfaces causes a
proportional thickening of the cross-section, which does not significantly translate into the
value of the shift of the neutral axis of the cross-section.

Therefore, the suitability of this mathematical model for predicting the flexural
strength of a reinforced cross-section cannot be confirmed. However, it can estimate
the maximum stress in the tensile zone.

High accuracy was obtained for predicted (theoretical) values of maximum bending
moment carried by transformed cross-section with the experimental results. It is then
worth noting that a simplified mathematical model can be used for the evaluation of the
maximum load a reinforced LVL beam can withstand. However, this calculation requires
knowledge/assumptions about maximum normal stress for the unreinforced cross-section.

Failure modes of tested beams were discussed in detail in [30–33].

3.2. Bending Stiffness EI

Figure 7 shows graphs describing the changes in stiffness EI1 as a function of the
bending moment M from the beginning of the test until the maximum value of the bending
moment is reached, determined according to method 1. The graphs describing the behavior
of elements reinforced with composite materials carry the curve of the course of changes in
stiffness for beam A3, representing the upper limit of values for unreinforced beams.
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The bending stiffness EI1 of reinforced beams is higher than that of reference beams.
As the load increases, the bending stiffness decreases—the negative slope of the relation-
ship EI1—M curves. Due to the nature of changes in the curvature of the relationship,
“bending stiffness EI1—bending moment M” can be divided into three parts, representing,
respectively, (Figure 8):

1. Initial phase—rapid changes (decreases in stiffness) associated with stabilizing beams
in the test stand. Typically, this phase lasts up to a load approximately equal to 5 kN;

2. Middle phase—relative linear behavior, without significant changes in the curvature
course;

3. Final phase—begins at the point of change in the slope of the curve in the final
stage of the test. The difference in slope is related to the nature of the failure and
the accompanying change in stiffness, for example, due to crack propagation in the
compression zone. This phase does not occur for beams whose failure occurs suddenly
and is caused by exceeding the strength of the veneer in the tensile area, as is the case
for unreinforced beams.

Figure 9 shows the average bending stiffness values determined according to methods
1–3. Due to the changes in stiffness during the test, a load interval of 0.1 to 0.4 Fmax
(maximum load) located in the middle phase of the operation was used to determine the
stiffness values for each beam. The stiffness increments for the A series beams are given
in parentheses. The highest increase in stiffness is recorded for beams reinforced with
two layers of carbon sheets, amounting to more than 30% and 40% for the C and D series,
respectively, for methods 1 and 3; and more than 40% and 60% for the C and D series,
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respectively, for method 2. The smallest increase is characterized by elements reinforced
with carbon strips glued into the grooves, which averaged just over 10%.
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Table 1 shows the relative differences between the values calculated by method 2 and
method 3 in respect to method 1.
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Table 1. Relative differences between the values calculated by methods 2 and 3 in respect to method 1.

Series A B C D E F

Method 2 −7.57% −1.25% 0.24% 1.05% −4.97% −1.14%
Method 3 −19.56% −14.60% −17.15% −22.24% −17.69% −16.25%

Most of the average EI bending stiffness values estimated based on the equivalent
cross-section method (method 2) are lower than those estimated based on the curvature
of the member (method 1). The most significant differences of more than 7% are recorded
for reference beams A. Good agreement of results is obtained for beams reinforced with
carbon sheets (B, C, D series) and tapes glued to the bottom surface (F series), for which the
maximum differences are slightly more than 1%. For beams reinforced with laminate glued
into grooves, the difference is 4.97%.

The values estimated from the transformed formula for beam deflection at mid-span
(method 3) differ significantly from the other two methods. The differences range from
−14.60% for B series beams to 22.24% for D series beams in respect to method 1.

3.3. Neutral Axis Position c

Figure 10 shows the changes in neutral axis position c—measured from the geometric
centroid of LVL section—as a function of load values for selected unreinforced and rein-
forced LVL beams tested. The trend of changes is either parabolic (usually curved upward)
or linear, the slope of which can be both positive and negative. At the initial stage of the test,
the amplitude of position displacements is the largest and decreases as the load increases.
Abrupt changes in the curves of reinforced beams can cause beam failure.

The course of changes in curvature can be divided into phases similar to those for
changes in stiffness described in Section 3.2 (Figure 11). As the load increases, the amplitude
of displacements of the neutral axis position decreases—the highest values are recorded
in the initial phase of the test. During this time, the neutral axis can repeatedly change its
position relative to the center of the height of the cross-section, passing between positive
and negative values of the coordinates of the ordinate axis. This phenomenon is typical
for all tested elements (phase 1). The middle phase, the largest one, is when no significant
changes occur (phase 2). The final value of the position of the center of gravity of the
reinforced section is most influenced by the reinforcement method and the nature of the
beam failure. Lateral torsional buckling of beams—twisting of the center profile—causes
a shift of the neutral axis in the direction of the compressed fibers. Destruction in the
compression zone causes the neutral axis to shift toward the tensile fibers. In the case of
unreinforced beams, the way they are destroyed does not affect the changes in position in
the final phase of the test (phase 3).

Table 2 shows the average values of the offset of the neutral axis from the center of the
height of the cross-section recorded for the maximum load value and the offset estimated
according to the equivalent cross-section method. In parentheses are given the percentage
differences from the measured position. The highest agreement between experimental
and theoretical results is obtained for beams reinforced with two layers of carbon sheets
covering the entire lateral surface (D series)—2%. A similar agreement is obtained for
beams reinforced with one layer of CFRP sheet and CFRP laminate glued into the grooves.
The most significant differences between the actual and theoretical positions of the neutral
axis are recorded for beams reinforced with laminates glued to the bottom surface (F series).
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Table 2. Average values of offset of neutral axis from geometric centroid of beam at failure.

Series
Position of Neutral Axis c [cm]

Based on Strain Distribution Transformed Cross-Section

A 0.22 0.00
B −0.62 −0.83 (−25%)
C −1.12 −1.39 (−19%)
D −0.87 −0.85 (2%)
E −0.44 −0.67 (−33%)
F −2.04 −1.01 (102%)

4. Discussion

Due to the high agreement of the values of bending stiffness EI and the position
of the neutral axis c between the experimental results and the simplified mathematical
model, it was decided to present the predicted values of these parameters for other types
of composite sheets. The results of calculation can be used for optimization purposes,
comparing strengthening effectiveness with price and the labor of strengthening technique.

The simulation was carried out for reinforcement with AFRP aramid sheets, GFRP
glass sheets, and CFRP UHM ultra-high modulus carbon sheets. The effect of the number of
reinforcement layers on the value of these parameters was also evaluated. It was assumed
that reinforcement would be applied to the beams’ entire side and bottom surfaces—scheme
in Figure 3c. This is the most effective of the reinforcement techniques presented. The
characteristics of the FRP composite materials used in the analyses are shown in Table 3.

Table 3. Selected mechanical and physical parameters of composites [38–40].

Sheet Type AFRP Sheet S&P
A-Sheet 120

GFRP Sheet S&P G-Sheet
E 90/10B

CFRP UHM Sheet S&P
C-Sheet 640

Modulus of elasticity Ef [GPa] 120 73 640
Tensile strength ft,f [MPa] 2900 3400 2600

Density ρf [kg/m3] 1450 2600 2120
Elongation at rupture εf [%] 2.5 4.5 0.4

Thickness for dimensioning tf [mm] 0.200 0.308 0.189
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The predicted values of bending stiffness and neutral axis positions are shown in
Table 4. Of course, as expected, the most effective solution is using carbon sheets with an
ultra-high elastic modulus. Beams reinforced with aramid and glass sheets exhibit similar
behavior—the lower elastic modulus of the glass sheet is compensated for by its greater
thickness relative to the aramid sheet. As the stiffness of the material and the number of
reinforcement layers increase, the reinforcement efficiency increases.

Table 4. Predicted values of bending stiffness and position of neutral axis for reinforced LVL beams.

Sheet Type AFRP Sheet S&P
A-Sheet 120

GFRP Sheet S&P G-Sheet
E 90/10B

CFRP UHM Sheet S&P
C-Sheet 640

Number of Layers 1 2 3 1 2 3 1 2 3

Bending stiffness EI2 [kNm2] 485 556 625 481 550 618 742 1051 1354
Position of neutral axis c [cm] −0.28 −0.54 −0.75 −0.26 −0.51 −0.72 −1.06 −1.55 −1.83

The effects of reinforcement on stiffness and neutral axis position discussed here are
only a fragment of the behavior to be analyzed for reinforced beams subjected to bending.
In addition, elements such as bending capacity, ductility, and maximum deflection should
also be considered. An essential parameter in these analyses can be the value of elongation
at failure of the composite material that can cause premature failure of the “beam-glue-
reinforcement” system.

5. Conclusions

This paper analyzes the feasibility of using the equivalent cross-section method to
analyze the behavior of unreinforced and composite-reinforced laminated veneer beams.
In addition, the results of the analytical analysis were compared with the results of experi-
mental tests. To summarize:

1. The suitability of using the equivalent cross-section method to estimate the cross-
sectional capacity of laminated veneers reinforced with fiber composites has not been
confirmed. This is related to the assumption of a linear distribution of stresses in the
compression and tension zones. In contrast, the actual distribution is linear in the
tension zone and nonlinear in the compression zone. The degree of reinforcement and
the way the composite reinforcement is redistributed between the compression and
tensile zones greatly influence the MOR value;

2. A high correspondence was obtained between the average values of EI bending stiff-
ness estimated according to the method of equivalent characteristics (method 2) and
the values derived from experimental tests (method 1). In the case of reinforcement
with CFRP sheets and CFRP tapes glued to the external surface, the difference slightly
exceeds 1%, and in the case of tapes glued into the grooves, less than 5%. The most
significant discrepancies are recorded for reference beams—more than 7%. Of the
three methods discussed for estimating the bending stiffness EI, method 3 (based on
the formula for deflection at the center of the beam) differs the most from the others;

3. Changes in the shape of the curves describing changes in bending stiffness as well as
the position of the neutral axis can be divided into three zones: initial (stabilization),
middle (constant work), and final (decrease in stiffness). The final phase occurs
only in the case of reinforced beams; the failure initiated in the compression zone—a
significant reduction in bending stiffness. The equivalent cross-section most accurately
describes the position of the neutral axis at failure for beams reinforced with sheets
glued to the outer surfaces and CFRP laminates glued into the grooves. Beams
reinforced with laminates glued to the bottom surface are the worst in this respect;

4. For the reinforcement simulation, using carbon sheets with an ultra-high modulus of
elasticity proves the most beneficial due to the increased bending stiffness. In contrast,
the least beneficial is the use of glass sheets. As the stiffness of the reinforcement and
the number of sheets used increase, the effectiveness of the reinforcement increases.
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3. Nowak, T.P.; Jasieńko, J.; Czepiżak, D. Experimental tests and numerical analysis of historic bent timber elements reinforced with

CFRP strips. Constr. Build. Mater. 2013, 40, 197–206. [CrossRef]
4. Raftery, G.M.; Harte, A.M. Nonlinear numerical modeling of FRP reinforced glued laminated timber. Compos. Part B Eng. 2013,

52, 40–50. [CrossRef]
5. Ye, L.; Wang, B.; Shao, P. Experimental and Numerical Analysis of a Reinforced Wood Lap Joint. Materials 2020, 13, 4117.

[CrossRef] [PubMed]
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