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Abstract: Natural-fiber-reinforced composites are seen as a good alternative to traditional synthetic-
fiber composites. However, to successfully implement these materials in engineering applications,
along with these materials demonstrating satisfactory load-bearing capacity, it is necessary to provide
engineers with effective material properties, as well as calculation methods that take into account
the distinctive features of natural fibers. This study investigated the effective elastic properties and
strength of materials composed of unidirectional sisal fibers within a thermosetting polymer matrix,
containing 20%, 40% and 60% fiber-volume fraction. Experiments with axial and off-axis loads in
conjunction with finite-element modeling were utilized to determine the effective mechanical response
of the composites. Analytical and numerical models were considered, using both isotropic- and
anisotropic-fiber approaches. It is shown that only by taking into account the sisal-fiber anisotropy
can the experimental results of the off-axis experiments be reproduced. The influence of sisal-fiber
transverse modulus on the overall mechanical response is a function of the sisal-fiber volume fraction.
It has been shown that the longitudinal specific strength of sisal-fiber-reinforced composites is
comparable to classical aluminum alloys or steel. Thus, this environmentally friendly composite can
be considered as an alternative in some engineering applications, such as reinforcement in concrete
composites.

Keywords: composite; natural fibers; sisal fibers; anisotropy; numerical analysis

1. Introduction

Concerns about the environmental situation, namely pollution and wasteful use of
fossil fuels, have generated a great demand for the development of new environmentally
friendly materials. Natural-fiber-based composite materials provide a compelling alterna-
tive to traditional composites and gain growing popularity in many fields of engineering,
notably in the automotive industry [1,2]. Automotive manufacturers use biocomposites
based on natural fibers in parts such as door panels, seat backs, ceiling panels, and interior
fittings. In addition to being biodegradable and recyclable, natural fibers contribute to
an overall reduction in vehicle weight, resulting in lower fuel consumption and air pollu-
tion [3]. Fast-growing annual crops, such as flax, sisal, jute, hemp and kenaf are generally
the most popular natural fibers for these applications [4].

Relative to other natural fibers, sisal fibers are among the strongest, making them suit-
able for reinforcing composites in engineering applications. In civil engineering, along with
synthetic textiles, sisal is considered as an alternative reinforcement for classic reinforced
concrete [5–7]. Sisal fibers are extracted from the leaves of the Agave sisalana plant, native
to Central America, but also found in parts of Africa, Southeast Asia, South America and
the Mediterranean. A particular advantage of sisal fiber is its resistance to salt water [4].
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The properties of sisal fiber have been studied by many researchers; however, the
characteristics of the fiber appearing in the literature vary considerably. For example,
according to various studies [8–15], the average longitudinal modulus of elasticity is in
the range from 19 GPa to 40 GPa; the average tensile strength is in the range of 400 MPa
to 675 MPa. Chand et al. [8] studied leaf fibers of different ages, from 3 to 9 years. It was
demonstrated that the fiber tensile strength increases by more than 100 MPa with the age of
the leaf. Inacio et al. [9] studied the dependence of strength on the diameter of sisal fibers
(0.04–0.4 mm); they indicate that the smaller the diameter, the stronger the fiber. While the
properties of sisal fibers in the longitudinal direction have been extensively studied, studies
on the properties in the transverse direction are scarce. Some researchers have studied the
anisotropy of sisal fiber [15–17]; in a study by Thomason et al. [17] the transverse modulus
of the fibers is 13.7 times lower than the longitudinal modulus.

The behavior of sisal-fiber-reinforced composites (SFRC) has also been investigated.
Oksman et al. [11] obtained an effective elastic modulus of about 20 GPa and an effective
tensile strength of 210 MPa for a sisal–epoxy composite with 46% volume of fibers. The
sisal–epoxy resin composites of Yan et al. [14] reached an effective tensile strength of
180 MPa and an effective elastic modulus of 15 GPa with a fiber weight fraction of about
46%. Zuccarello et al. [15] also investigated an epoxy–sisal composite system with various
fiber contents. Their effective tensile strengths along the fibers significantly exceeded those
of the above-mentioned researchers: at 40% volume fraction, 300 MPa was measured;
and at volume fraction of 70%, the strength was one and a half times higher than values
obtained by Gonzalez-Murillo and Ansell [18] for similar fractions of sisal fibers. The
strength under transverse tensile load decreased from about 20 MPa to about 5.5 MPa,
corresponding to a change in the volume fraction from 20% to 70%, demonstrating that
while the longitudinal strength increases with the increase in fiber-volume fraction, the
transverse strength decreases. Bisanda and Ansell [19] reported an effective flexural
modulus for unidirectional (UD) sisal–epoxy composites of 16 GPa and effective flexural
strength of 266 MPa at 40% volume of fibers.

Natural fibers are known for poor adhesion to the matrix. There are many different
chemical [20–24], physical [25] and radioactive [26] treatments that have been applied to
sisal fibers to enhance the interface strength between fiber and matrix. In most cases, treat-
ment did not result in improved mechanical properties, or the difference was insignificant.
In a recent study by Zuccarello et al. [15] it was shown that transverse failure of such
composites is the result of internal rupture of the sisal fiber rather than the debonding
between fiber and matrix. This fact explains the insignificant effect of the treatments on the
overall composite effective transverse strength.

Another important aspect associated with polymer composites based on natural fibers
is their sensitivity to moisture and thermal absorption. In recent years, research has been
carried out to improve these hygrothermal characteristics [27–29].

Determining the effective properties of composites is a key issue in applied engineering
structural analysis. However, obtaining engineering constants experimentally is a laborious
and expensive process. Therefore, the prediction of these constants is of particular impor-
tance, especially given the wide range of fiber composites. Many researchers proposed the
prediction of the effective stiffness properties based on semiempirical analytical [30–35]
or numerical [36] micromechanical models. Potluri et al. [37] compared the properties of
composites with UD natural fibers, which were obtained from some of the above-cited
analytical models, experiments and finite-element analysis (FEA). The results show that
all analytical and numerical models are similar in predicting the longitudinal effective
elastic modulus and the in-plane effective Poisson’s ratio, but significant discrepancies
in the transverse parameters were observed. A similar comparison of micromechanical
models was carried out by Rao et al. [38] for composites with chopped sisal fibers. Pantano
and Zuccarello [39] developed a numerical model, which approximates the fiber form
with a sinusoidal shape, to evaluate the influence of the waviness on the stiffness of a
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biocomposite. Finite-element approaches have been used by several researchers [18,40–44]
to investigate mechanical properties of composites containing sisal fibers.

Notwithstanding various experimental and computational studies in the literature,
there is still no sufficient information for engineers to plan structural elements from SFRC.
This is especially the case when the sisal-fiber anisotropy is to be considered. Therefore,
the overall goal of this study is to investigate the effective properties of UD composite
materials with sisal fibers, using computational analysis incorporating fiber anisotropy and
validated by experiments. In this study, micromechanical computational models, based on
the representative volume element (RVE) approach, are utilized to calculate the effective
elastic properties of SFRC composites and determine the influence of fiber anisotropy on the
effective properties. Since the data on sisal fiber as well as composites containing UD sisal
fiber are not identical, additional experiments have been performed to obtain the properties
of both sisal fiber and composites containing it for different fiber-volume fractions.

Following this introduction, in Section 2, details of the experimental, analytical and
numerical methods for studying SFRC mechanical response are given. Section 3 presents
the experimental and computational results, while discussion of the study findings and
practical implications is provided in Section 4. Conclusions are given in Section 5.

2. Materials and Methods

The composite materials investigated in this study are comprised of two constituents:
sisal fibers and a thermoset polymer. The sisal fibers were obtained from Agave sisalana
plants growing wild in the Negev region of Israel. The fibers were extracted by a simple
mechanical method [45]. The fibers were subject to thorough cleaning without any chemical
treatment. Epoxy resin manufactured by Resin Research Inc. (Tucson, AZ, USA) [46] was
taken as a polymer matrix. To obtain the longitudinal mechanical properties of the fibers,
the samples were made in the form of bundles with one, two and three times the number
of the fibers. To determine the characteristics of the polymer, samples were made with the
dimensions recommended for type I in the ASTM D638-14 standard [47]. To investigate
the mechanical response of the SFRC, samples were made in accordance with the standard
ASTM D3039/D3039M [48] for axial and off-axial load.

2.1. SFRC Fabrication Process

The hand layup method was used for the manufacturing of the composites. As a
first step, the sisal fibers were accurately aligned into thin layers so that the thickness of
the layer was equal to the diameter of the fiber (Figure 1). The layers of the fibers were
manually impregnated with resin, stacked in multilayer UD composites, and brought to
full cure in room-temperature conditions. The SFRC samples were prepared containing
20%, 40% and 60% fiber-volume fractions (Vf ), calculated based on the apparent density
of 1.2 × 103 kg/m3. The apparent density was estimated from the data in the literature,
given the presence of lumens [11,13,14]. Two types of tensile specimens were prepared.
The first type had the fibers aligned in the loading direction (axial loading) and the second
type had the fibers oriented in a 45◦ to the loading direction (off-axis loading) as seen
in Figure 2. The dimensions for the first specimen type were 250/16.5/1.2 mm3 and for
the second specimen type—200/20/2 mm3. Samples with a longitudinal fiber orientation
consist of 4, 6 and 8 layers; samples with a 45◦ fiber orientation include 6, 9 and 12 layers
for fiber-volume fractions of 20%, 40% and 60%, respectively.
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Figure 1. Sisal raw fiber (a), single layer of aligned fibers before resin impregnation (b). 

 
Figure 2. Schematic description of tensile tests for different specimens (dimensions in mm). 

2.2. Mechanical Loading Experiments 
Tests for measuring the fiber properties, epoxy properties and the effective properties 

of the SFRC were carried out on a Shimadzu Autograph AGS-X testing machine [49] with 
load capacity from 1 kN to 10 kN, giving display force accuracy within ±0.5%. The testing 
system includes an external sensor amplifier ESA-CU200 and material data-processing 
software TRAPEZIUM X. Strain measurements were carried out with axial and transverse 
extensometers, products of Epsilon technology corp. (Jackson, WY, USA) [50]. A sche-
matic description of tensile testing for fiber bundles, SFRC specimens with axial load, 
SFRC specimens with 45° off-axis load and for polymer matrix specimens is shown in 
Figure 2. 

2.3. Analytical and Numerical Determination of SFRC Effective Properties 
UD composites are considered to be transverse isotropic with symmetry about the 

axis along the fiber. The fiber direction (longitudinal direction) is defined as the local 1-
direction of a lamina, the 2-direction is the transverse direction of the ply, and the 3-direc-
tion represents the out-of-plane direction. A transversely isotropic material is described 
by five independent constants: longitudinal modulus 𝐸ଵଵ, transvers modulus 𝐸ଶଶ, Pois-
son’s ratio 𝜈ଵଶ, in-plane and out-of-plane shear modulus 𝐺ଵଶ and 𝐺ଶଷ, respectively. To 
determine the effective properties of the SFRC composites, two approaches are consid-
ered: the fiber is taken as an isotropic and as an anisotropic elastic material. 

In accordance with both approaches, numerical micromechanical models utilizing 
the RVE [36] are used. For this, unit cell models were developed in the FEA software 
ABAQUS [51]. The Abaqus/Standard [52] analysis of static linear perturbations is carried 
out with applied unit strain in the x, y, z directions and unit shear strain along the fiber 
direction. Because the model is periodic, symmetry boundary conditions apply to planes 
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Figure 2. Schematic description of tensile tests for different specimens (dimensions in mm).

2.2. Mechanical Loading Experiments

Tests for measuring the fiber properties, epoxy properties and the effective properties
of the SFRC were carried out on a Shimadzu Autograph AGS-X testing machine [49] with
load capacity from 1 kN to 10 kN, giving display force accuracy within ±0.5%. The testing
system includes an external sensor amplifier ESA-CU200 and material data-processing
software TRAPEZIUM X. Strain measurements were carried out with axial and transverse
extensometers, products of Epsilon technology corp. (Jackson, WY, USA) [50]. A schematic
description of tensile testing for fiber bundles, SFRC specimens with axial load, SFRC
specimens with 45◦ off-axis load and for polymer matrix specimens is shown in Figure 2.

2.3. Analytical and Numerical Determination of SFRC Effective Properties

UD composites are considered to be transverse isotropic with symmetry about the
axis along the fiber. The fiber direction (longitudinal direction) is defined as the local 1-
direction of a lamina, the 2-direction is the transverse direction of the ply, and the 3-direction
represents the out-of-plane direction. A transversely isotropic material is described by five
independent constants: longitudinal modulus E11, transvers modulus E22, Poisson’s ratio
ν12, in-plane and out-of-plane shear modulus G12 and G23, respectively. To determine the
effective properties of the SFRC composites, two approaches are considered: the fiber is
taken as an isotropic and as an anisotropic elastic material.

In accordance with both approaches, numerical micromechanical models utilizing
the RVE [36] are used. For this, unit cell models were developed in the FEA software
ABAQUS [51]. The Abaqus/Standard [52] analysis of static linear perturbations is carried
out with applied unit strain in the x, y, z directions and unit shear strain along the fiber
direction. Because the model is periodic, symmetry boundary conditions apply to planes
that are not subject to displacement (Figure 3a–c). In the case of shear deformation, the
plane transverse to the fiber is not a plane of symmetry; coupling-constraint boundary
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conditions are set for these surfaces (Figure 3d,e). The numerical models use an element
type of C3D8R (8-node linear block, reduced integration) [53].
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The macrostresses are derived by averaging the stress tensor over the volume of the
RVE [53]:

σα = Cαβεβ (1)

where:
Cαβ = σα =

1
V

∫
V

σα(x, y, z) dV with εβ = 1 (2)

The effective properties of the lamina are calculated from the stiffness matrix Cαβ using
the following formulas:

E11 = C11 −
2C2

12
C22+C23

E22 =
(
C11(C22 + C23)− 2C2

12
) C22+C23

C11C22−C2
12

ν12 = C22
C22+C23

ν23 =
C11C23−C2

12
C11C22−C2

12
G12 = C66

G23 = C44 = 1
2 (C22 − C23) =

E2
2(1+ν23)

(3)

To verify the results computed using the RVE methodology, a comparison to an
analytical solution was performed similar to standard solution-verification methods [54].
The two analytical models used are: Periodic Microstructure Model (PMM) for an isotropic
fiber by Luciano and Barbero [55,56] and the closed form expression of the Mori–Tanaka
theory (MTT) [57] by Abaimov et al. [58] for an anisotropic fiber. Details regarding the two
analytical models are given in Appendices A and B.

2.4. Finite Element Modeling of SFRC Mechanical Response

To examine the validity of the obtained effective parameters of the SFRC laminate,
modeling of the SFRC tensile experiments is carried out for each fiber-volume fraction with
the corresponding effective elastic parameters, calculated assuming either the isotropic or
anisotropic approaches. Geometric models are built in accordance with the dimensions
of the experimental samples, an SC8R-type shell element with a size of 0.4 mm is used.
Convergence tests were conducted in order to check the influence of the mesh size on the
computed results, as discussed in Appendix C. For each model, the corresponding parame-
ters are entered in the table of lamina settings available in ABAQUS [52]. Layup orientation
is defined as 0◦ and 45◦, respectively, to the direction of the fiber in the experimental
tests. The boundary conditions are defined as fixed at the bottom with a displacement-
boundary condition at the top (griped ends are not deformed). An analysis is performed
in Abaqus/Standard using an implicit time-integration scheme. In Figure 4, the SFRC
specimen model geometry, boundary conditions and mesh are shown.
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3. Results
3.1. Sisal-Fiber Mechanical Properties

A total of 15 tensile tests were performed on different sisal-fiber bundles: five for each
bundle group, which contained different quantitative content of the fibers. During the
loading, at first the fibers were stretched, then some of the fibers began to break before
the load reached the maximum measured value; the bulk of the fibers broke after this in
the strain range of 1.5–2%, and only some of the fibers reached a strain of 2.5% (Figure 5).
The critical value of the load increased with an increase in the number of fibers: the 44,
88 and 132 g specimen bundles, on average, withstood 419, 807 and 1197 N, respectively.
Thus, with an increase in the number of fibers, the load-bearing capacity also grew close
to a linear relationship. In general, the longitudinal elastic modulus varied from 22.5 GPa
to 29.6 GPa; it is worth noting that the difference between the maximum and minimum
values for each test group decreased with an increase in the number of fibers. The standard
deviation of the elastic modulus decreased from 2.4 GPa to 1.5 GPa with a threefold increase
in the number of fibers. Nevertheless, the average value of the elastic modulus for each
group was almost the same and close to 25 GPa, which corresponds to the obtained value
of the modulus of elasticity in the study of Oksman et al [11].
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3.2. Matrix Mechanical Properties

The tensile behavior of the epoxy resin is nonlinear and corresponds to the typical
behavior of plastics. The average value of tensile strength at yield point is σm = 44.6 MPa
at a strain of 2.8%. The modulus of elasticity was measured at the initial segment of the
curve, which is close to linear, as shown in Figure 6. The obtained modulus of elasticity is
Em = 2.3 GPa; the Poisson’s ratio is νm = 0.4.



Fibers 2022, 10, 43 7 of 17

Fibers 2022, 10, 43 7 of 18 
 

3.2. Matrix Mechanical Properties 
The tensile behavior of the epoxy resin is nonlinear and corresponds to the typical 

behavior of plastics. The average value of tensile strength at yield point is 𝜎௠ = 44.6 MPa 
at a strain of 2.8%. The modulus of elasticity was measured at the initial segment of the 
curve, which is close to linear, as shown in Figure 6. The obtained modulus of elasticity is 𝐸௠ = 2.3 GPa; the Poisson’s ratio is 𝜈௠ = 0.4. 

 
Figure 6. Epoxy tensile tests: stress–strain curves (left) and the experiment setup (right). 

3.3. SFRC Mechanical Properties 
SFRC tensile tests with axial load were performed on three series of samples with 

fiber-volume fractions of 20%, 40% and 60%. At least five samples were tested for each 
fiber-volume fraction. For the 20% fiber-volume fraction, the typical fracture mode is close 
in shape to that of a homogeneous material—an almost straight line perpendicular to the 
load direction (Figure 7a). For a 60% fiber-volume fraction, the fracture takes the form of 
vertical stripes parallel to the fiber direction (Figure 7c). For a 40% fiber-volume fraction-
a combined vertical and horizontal mixed mode or a diagonal failure mode is observed 
(Figure 7b). According to the test results, the effective modulus of elasticity for the SFRC 
with 20%, 40% and 60% fiber-volume fractions are 6.2 ± 0.55 GPa, 11.2 ± 0.48 GPa and 13.8 
± 0.96 GPa respectively; the effective tensile strength values are 118.8 ± 8.69 MPa, 211.4 ± 
11.30 MPa and 251.8 ± 18.98 MPa, respectively (Figure 8). The strain at failure for all com-
posite compositions is 1.8% ± 0.14%, which is in the range of strain at break of the fibers, 
given in Section 3.1. 

  
Figure 7. Tensile failure SFRC with axial load for 𝑉௙ = 20% (a), 𝑉௙ = 40% (b), 𝑉௙ = 60% (c) and 
with off-axis load (d). 

Figure 6. Epoxy tensile tests: stress–strain curves (left) and the experiment setup (right).

3.3. SFRC Mechanical Properties

SFRC tensile tests with axial load were performed on three series of samples with
fiber-volume fractions of 20%, 40% and 60%. At least five samples were tested for each
fiber-volume fraction. For the 20% fiber-volume fraction, the typical fracture mode is close
in shape to that of a homogeneous material—an almost straight line perpendicular to the
load direction (Figure 7a). For a 60% fiber-volume fraction, the fracture takes the form of
vertical stripes parallel to the fiber direction (Figure 7c). For a 40% fiber-volume fraction-a
combined vertical and horizontal mixed mode or a diagonal failure mode is observed
(Figure 7b). According to the test results, the effective modulus of elasticity for the SFRC
with 20%, 40% and 60% fiber-volume fractions are 6.2 ± 0.55 GPa, 11.2 ± 0.48 GPa and
13.8 ± 0.96 GPa respectively; the effective tensile strength values are 118.8 ± 8.69 MPa,
211.4 ± 11.30 MPa and 251.8 ± 18.98 MPa, respectively (Figure 8). The strain at failure for
all composite compositions is 1.8% ± 0.14%, which is in the range of strain at break of the
fibers, given in Section 3.1.
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The tensile tests under off-axis loading were performed at an angle of 45◦ relative to
the fiber in the SFRC specimens with fiber-volume fractions of 20%, 40% and 60%. All
tested samples, regardless of the percentage of fiber content, had the same fracture form—a
diagonal line at 45◦ along the fiber (Figure 7d). The effective modulus of elasticity for the
SFRC with 20%, 40% and 60% fiber-volume fractions and the fiber direction in 45◦ to the
load are 2.5 ± 0.29 GPa, 2.3 ± 0.30 GPa and 2.1 ± 0.20 GPa, respectively; the effective tensile
strengths of the SFRC are 13.2 ± 1.5 MPa, 10.8 ± 1.7 MPa and 7.1 ± 1.8 MPa, respectively
(Figure 9). It is important to note that the effective tensile strength is small (much smaller
than the critical stress for the matrix); the low fiber-matrix bonding strength, as well as low
transverse strength of the fiber itself, can be the cause of the observed fracture.
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3.4. Estimation of Effective SFRC Mechanical Properties from RVE Computations

All numerical and analytical predictions of the effective properties of the lamina are
based on the following assumptions:

• fibers are uniformly distributed throughout the matrix,
• the fibers and the matrix are perfectly bonded,
• the matrix is free of voids.

A total of twelve computational models for the various volume fractions, assuming
the fiber is either an isotropic or an anisotropic material, are built to define the laminate
constants. The input parameters of the fiber and the matrix, obtained from the above
experiments and partially supplemented from the literature [15,17], are presented in Table 1.
The dimensions of the RVE models are calculated from the ratio of fiber volume to matrix
volume, according to the hexagonal array configuration [36], based on the average sisal
fiber diameter of 200 µm, taken from the literature [9].

Table 1. Parameters of sisal fiber (index f ) and epoxy matrix (index m) for effective properties
calculation.

ρf[
g

cm3 ] Ef1 [GPa] Ef2[GPa] νf12 νf23 Gf12[GPa] ρm[ g
cm3 ] Em[GPa] νm

1.2 25 1.6 0.6 0.2 1.1 1.1 2.3 0.4

Calculation of the components of the stiffness matrix is carried out according to
Equation (2), based on the output data at an element integration point of the stresses in
different directions (S11, S22, S33, S12, S13, S23 in ABAQUS) and local volume (IVOL in
ABAQUS). The effective properties of the lamina are calculated based on the obtained
components of the stiffness matrix according to Equation (3). For illustration, the output of
the stresses for fiber defined as isotropic is shown in Figure 10, and as anisotropic is shown
in Figure 11, for fiber-volume fractions of 20%, 40% and 60% in both cases. The stresses
in the direction of the unit strains (Section 2.3) are shown. The transverse stiffness of an
isotropic fiber is higher than the stiffness of the matrix, while the transverse stiffness of an
anisotropic fiber is less than the stiffness of the matrix; accordingly, there is a difference in
the stress distribution in the RVE models.
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The computed effective properties of the SFRC using the numerical RVE approach
(Equations (2) and (3)) with either isotropic or anisotropic fibers are given in Table 2.

For verification of the RVE methodology, the relative error δ between the computed
values from the RVE and the values obtained using two analytical models PMM [55,56]
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(Equations (A1)–(A22)) and MTT [58] (Equations (A23)–(A30)) (Table 2) was calculated
using the following expression:

δ =
fRVE − fANA

fANA
× 100% (4)

The maximal relative error between numerical and analytical computations was
δ = 3.453% for the isotropic case (PMM [55,56]) and δ = 0.056% for the anisotropic case
(MTT [58]).

Table 2. Calculated effective properties of SFRC using the numerical RVE models and analytical
PMM and MTT models with fibers as isotropic (ISO) and as anisotropic (ANISO).

Vf Approach E11[GPa] E22[GPa] ν12 ν23 G12[GPa] G23[GPa]

20%

ISO (PMM) 6.861 3.452 0.355 0.525 1.162 1.132
ANISO (MTT) 6.853 2.323 0.429 0.475 0.871 0.788

ISO (RVE) 6.858 3.433 0.355 0.526 1.159 1.125
ANISO (RVE) 6.851 2.322 0.428 0.475 0.870 0.787

40%

ISO (PMM) 11.411 5.024 0.313 0.506 1.679 1.668
ANISO (MTT) 11.400 2.152 0.462 0.424 0.923 0.755

ISO (RVE) 11.407 4.888 0.313 0.517 1.673 1.616
ANISO (RVE) 11.399 2.151 0.462 0.424 0.922 0.755

60%

ISO (PMM) 15.950 7.575 0.273 0.454 2.566 2.605
ANISO (MTT) 15.942 1.962 0.501 0.354 0.978 0.724

ISO (RVE) 15.944 7.562 0.273 0.452 2.554 2.602
ANISO (RVE) 15.938 1.961 0.500 0.354 0.977 0.724

3.5. Measured and Simulate Effective Mechanical Response of SFRC

The effective parameters of composites, obtained in Section 3.2, are introduced into
numerical models of the tensile tests, built in the ABAQUS software, according to the
description in Section 2.4. The analysis is carried out on 12 models: 6 for axial and 6 for
off-axial loading, for different fiber-volume fractions of 20%, 40% and 60%. The results
of the analysis are shown in relation to the corresponding experiments in Figure 12: for
axial load in the left column and for off-axis loading at 45◦ to the fiber orientation in the
right column.
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4. Discussion

When addressing the applicability of natural fiber composites as engineering load-
bearing components, two of the main engineering properties are of interest: the specific
strength and the specific modulus. These are defined as the ratio between effective strength
and density and effective modulus and the density respectively. Both the effective modulus
(Table 2) and the effective strength (Figure 8) of the SFRC in the fiber direction increases with
an increase in the volume fraction of the fibers. This results in specific strength values of
105–216 [10−3 MPa/(kg/m3)] and specific modulus values of 5.5–11.9 [10−3 GPa/(kg/m3)]
for composites obtained in this study. The values for the specific strength of the sisal–
epoxy composites in the fiber direction are comparable to the specific strengths of classical
engineering materials such as aluminum alloys and steel, which have specific strengths of
51–229 [10−3 MPa/(kg/m3)] and 43–269 [10−3 MPa/(kg/m3)], respectively. With regard to
the specific modulus, the sisal–epoxy composites are lacking in effective stiffness compared
to classical alloys with specific modulus of 24–25 [10−3 GPa/(kg/m3)] for aluminum
alloys and 26–27 [10−3 GPa/(kg/m3)] for steels. As is known from the literature [59], in
terms of effective fracture toughness (2.19–5.54 MPa m1/2), sisal-epoxy composites are
also inferior to metals. Nevertheless, the high longitudinal specific strength, which can
surpass several aluminum and steel alloys, makes SFRC a very good candidate for some
engineering applications, such as those in which the sisal–epoxy composite is itself used
as a reinforcement [7]. It should also be noted that for the sisal–epoxy composite to be
applicable as a structural component, a standard laminate structure should be utilized
in which different UD sisal–epoxy laminae are stacked in different orientations. This is
required for a general-purpose component, as it was demonstrated in this study that the
strength of the SFRC decreases significantly under off-axis loading (Figure 9). Such a drastic
decrease in the off-axis strength of a single lamina can be caused both by a weak bonding
between the fiber and the matrix and/or by low transverse strength of the sisal fibers; both
reasons can also explain the decrease in strength with increasing fiber-volume fraction.

4.1. The Influence of Fiber Anisotropy on the Mechanical Response

The effective longitudinal modulus of elasticity is largely a function of the modulus of
elasticity of the fiber, and as one would expect, it increases with increasing fiber-volume
fraction. However, the transverse modulus of the sisal fiber is much lower, and even lower
than the modulus of the matrix; as a result, with an increase in the volume fraction of
the fiber, the effective transverse modulus of elasticity of the composite decreases. Both
longitudinal and transverse modules must be considered by designers when planning SFRC
structures. In this study, a numerical analysis was carried out, validated by experiments,
for the correct determination of engineering constants for a given material.

As seen in Figure 12 in the left column, in the case of axial loading in the fiber
direction, both isotropic and anisotropic fiber computational approaches give identical
results which match the experimental curves. However, a significant difference between
the parameters of the two approaches is observed when simulating tensile tests of materials
with a fiber direction of 45◦ as seen in Figure 12, right column. It is not possible to
reproduce the observed effective mechanical response for the off-axis-oriented fibers under
the assumption of fiber isotropy. Since well-established models for the prediction of
effective properties of composites with man-made fibers assume the fibers are isotropic,
they cannot describe well sisal-fiber composites due to their highly anisotropic structure.
The greater the volume fraction of fibers in the composite, the greater the difference
between simulation and experiments for the off-axis case. The simulations with elasticity
parameters obtained considering the anisotropy of the fibers give a good approximation to
the experimental results for both the axially and off-axis-oriented fiber layout. Moreover,
as can be seen from Figure 12, the parameters of the sisal fiber, partially identified in this
work and partially taken from the literature, produce computed values that match the
experimental results well.
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4.2. The Influence of Fiber-Volume Fraction on the Mechanical Response

In general, sisal fibers, as well as UD sisal–epoxy composites, exhibit linear elastic
behavior up to failure (Figures 5 and 12). During the experiments on the composites,
characteristic forms of failure were noted, a transverse crack path at low fiber-volume
fractions and longitudinal cracks at high fiber-volume fractions. With that, the observed
linearity of the load-bearing capacity of the fiber bundles does not represent the effective
strength of the composite. Analyzing the average strengths of SFRC, at 20% and 40%
the values increase in proportion to the fiber volume fraction, but at 60% the increase
is noticeably lower (Figure 8). Presumably, at high fiber-volume fractions, a significant
variation in sisal fiber diameters and strengths (which is less typical for synthetic fibers)
causes shear stresses leading to matrix fracture and splitting along the fibers, and thus
reducing the strength of the composite.

The current study has several limitations which need to be addressed. Firstly, it
was assumed that a perfect bonding exists between the sisal fibers and the matrix. This
assumption may be justified for the initial stages of loading, but may not be accurate
close to the composite load-bearing capacity or in the case of off-axis loading. Secondly,
although the micromechanical modeling approach provided effective properties that are in
agreement with the tensile experiments, the exact microstructure of the sisal fiber was not
specifically addressed in the micromechanical RVE analysis. It is known that the sisal fiber
has a porous structure. This specific structure may influence the effective response under
different loading modes which incorporate significant shear stresses. Future work will take
into account both of these important aspects.

5. Conclusions

Environmentally friendly composite materials reinforced with natural sisal fibers
were the subject of research in this work. Sisal fibers extracted from the Agave sisalana
plant, grown in the Negev region of Israel, were initially characterized by mechanical
testing. Then, sisal–epoxy composite specimens with different sisal-fiber compositions
were fabricated. Tensile experiments were conducted in which the SFRC specimens were
loaded in the axial direction or off-axis with respect to the sisal-fiber direction. The study
utilized both analytical and micromechanically based numerical approaches to estimate
the effective properties of the composite from values of the individual constituents (i.e.,
sisal fiber and epoxy resin). Next, the effective properties calculated using the different
analytical and numerical methods were incorporated in finite-element simulations of the
tensile tests on the SFRC specimens. Using the simulations, it was demonstrated that sisal-
fiber anisotropy cannot be overlooked and must be incorporated in any mechanical analysis
of the SFRC. Only by considering the anisotropy of the sisal fiber can the mechanical
response, obtained in the off-axis experiments, be reproduced in the computations. The
influence of sisal-fiber transverse modulus on the overall mechanical response is a function
of the sisal-fiber volume fraction. Based on this study, it is possible to obtain engineering
constants for UD SFRC materials with other fiber-volume fractions without additional
experimentation. It has been shown that the longitudinal specific strength of SFRC is
comparable to classical aluminum alloys or steel. Thus, this environmentally friendly
composite can be considered as an alternative in some engineering applications, such as
reinforcement in concrete composites.
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Appendix A

In the Periodic Microstructure Model (PMM) [55,56], the transversely isotropic effec-
tive properties of lamina are given by the following formulas:

E11 = C∗
11 −

2C∗
12

2

C∗
22 + C∗

23
(A1)

E22 =

(
2C∗

11C∗
22 + 2C∗

11C∗
23 − 4C∗

12
2)(C∗

22 − C∗
23 + 2C∗

44
)

3C∗
11C∗

22 + C∗
11C∗

23 + 2C∗
11C∗

44 − 4C∗
12

2 (A2)

G12 = G13 = C∗
66 (A3)

ν12 = ν13 =
C∗

12
C∗

22 + C∗
23

(A4)

ν23 =
C∗

11C∗
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11C∗
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11C∗
44 − 4C∗

12
2

3C∗
11C∗

22 + C∗
11C∗

23 + 2C∗
11C∗

44 − 4C∗
12

2 (A5)

G23 =
E22

2(1 + ν23)
(A6)

where the stiffness tensor having six coefficients is given by

C∗
11 = λm + 2µm −

Vf

D

[
S2

3
µ2

m
− 2S6S3

µ2
mg

− aS3

µmc
+

S2
6 − S2

7
µ2

mg2 +
aS6 + bS7

µmgc
+

a2 − b2

4c2

]
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C∗
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Vf

D
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[

S3
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− S6 − S7
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(A8)

C∗
22 = λm + 2µm −
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Vf
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[
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4c2
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(A10)

C∗
44 = µm − Vf

−2S3
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+

1(
µm − µ f
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C∗
66 = µm − Vf

− S3
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+

1(
µm − µ f

)
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(A12)

where

D =
aS2

3
2µ2

mc
− aS6S3

µ2
mgc

+
a
(
S2

6 − S2
7
)

2µ2
mg2c

+
S3
(
b2 − a2)

2µmc2 +
S6
(
a2 − b2)+ S7

(
ab + b2)

2µmgc2 +

(
a3 − 2b3 − 3ab2)

8c3 (A13)

a = µ f − µm − 2 µ f νm + 2µm ν f (A14)

b = −µm νm + µ f ν f + 2µm νm ν f − 2 µ f νm ν f (A15)
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c =
(

µm − µ f

)(
µ f − µm + µ f ν f − µm νm + 2µm ν f − 2µ f νm + 2µm νm ν f − 2 µ f νm ν f

)
(A16)

g = (2 − 2νm) (A17)

The subscripts m and f refer to matrix and fiber, respectively. The Lamé constants of
both materials are obtained in terms of the elastic modulus E, the Poisson’s ratio ν, and the
shear modulus G:

λm =
Emνm

(1 + νm)(1 − 2νm)
, µm = Gm =

Em

2(1 + νm)
(A18)

λ f =
E f ν f(

1 + ν f

)(
1 − 2ν f

) , µ f = G f =
E f

2
(

1 + ν f

) (A19)

For a composite reinforced by long cylindrical fibers, periodically arranged in a square
array, the constants S3, S6, S7 are given as follows:

S3 = 0.49247 − 0.47603Vf − 0.02748V2
f (A20)

S6 = 0.36844 − 0.14944Vf − 0.27152V2
f (A21)

S7 = 0.12346 − 0.32035Vf + 0.23517V2
f (A22)

Appendix B

In the Mori–Tanaka theory (MTT) prediction [58] the transversely isotropic effective
properties of lamina are given by the following formulas:

Ee f f
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Appendix C

In this section, the results of the mesh-sensitivity tests are provided. The convergence procedure [54] was
conducted on a rectangular model with dimensions 150/16/1.2 mm, with material parameters corresponding to
40% fiber-volume fraction model and with axial load. Both local stress values and global strain energy values
were examined in the verification process. The model was discretized into elements of the type of continuum
shell (SC8R) with different sizes and was subject to deformation of 1 mm in tension. The results of the analysis
are displayed graphically on Figures A1 and A2. The chosen mesh size for the analysis is 0.4 mm, since the next
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reduction in cell size results in a rather small change (0.016%). Further refinement of the mesh will have little
effect on the final solution, but can significantly increase the processing time.
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