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Abstract: Fiber-reinforced concrete (FRC) has been used for over a century to improve the mechanical
properties of concrete. Kevlar ® 29 fiber (KF) is one of the most popular aramid fibers used in
industrial products. This research investigated the effect of the fiber length, the weight ratio of fiber to
cement, the mix-proportion of two fiber lengths, and the sizing on the fiber surface on the mechanical
properties of Kevlar fiber-reinforced concrete (KFRC) under static, dynamic, and shock wave loadings.
Two lengths of chopped KF and three different weight ratios of fiber to cement were mixed in the
KFRC specimens for comparison. Moreover, this study also compared how the five mix-proportions
of two fiber lengths affected the mechanical properties of mix-proportion KFRC. KF was dispersed by
the pneumatic method first, and then, the separated KF was mixed into the concrete to make KFRC.
The results indicated that the KFRC specimens with a 10‰ weight ratio of fiber to cement exhibited
the maximum compressive, flexural, and splitting tensile strengths, regardless of whether the fiber
length was 12 mm or 24 mm. The main finding showed that the specimen mixed with 24 mm KF
could endure the highest impact resistance under different impact energies. From the shock wave
test, the external damage on the front and rear faces of all KFRC slabs and the KFRC slab reinforced
with two layers of KF sheets was less than that of the benchmark slab. The testing results showed
that KF greatly enhanced the static and dynamic mechanical performances of concrete, and the KFRC
specimen with a 10‰ weight ratio and 24 mm length KF with sizing exhibited the best performance.

Keywords: aramid fiber; mix-proportion; fiber-reinforced concrete; impact energy; shock wave

1. Introduction

Concrete is widely used as a material in buildings and infrastructures due to its low
price, simple production methods, and its suitability for various environments. However,
concrete is brittle for its poor tensile strength. Under an applied external load, concrete
tends to crack or peel, often leaving the steel reinforcements exposed to corrosion. These
problems greatly reduce the strength and service life of the concrete.

Fiber-reinforced concrete (FRC) is used in specific construction environments due to
its outstanding mechanical properties. Adding fiber can enhance the fracture toughness of
concrete while reducing the effects of shrinkage. Steel, glass, carbon, aramid, basalt, and
polypropylene fibers are commonly used in FRC structures [1–7]. Compared with glass and
polypropylene fibers, steel fiber provides concrete with a higher elastic modulus and tensile
strength; however, they are difficult to be distributed uniformly in concrete [8,9]. Silica
fume is mixed with steel fiber to improve impact resistance and flexural strength [10,11].
Polypropylene fiber is also combined with steel fiber to reduce crack propagation [12]. The
mechanical strength of the FRC mixed with carbon/aramid hybrid fiber is greater than that
of the FRC with carbon fiber only [13]. Glass fiber-reinforced polymer (GFRP) is lightweight,
strong and resistant to corrosion; however, it is difficult to be recycled. The incorporation
of recycled GFRP into concrete can improve the compressive and flexural strength of
concrete [14–16], while improving impact resistance and alleviating crack propagation [10].
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Carbon fiber has the characteristics of high strength, lightweight, and strong fatigue
resistance, and it is non-corrosive. The flexural strength, compressive strength, and im-
pact resistance of concrete could be enhanced by adding recycled carbon fiber-reinforced
polymer (CFRP) pieces [17–21]. Adding 3% by weight of recycled CFRP pieces into mor-
tar can improve the compressive strength by 21.9% [22]. However, carbon fiber reduces
the workability of the concrete mixture and could cause an increase in void content in
the specimens, which may reduce the strength [23–26]. When silane sizing from carbon
fiber is removed by using chemical and physical approaches, the mechanical strength of
carbon fiber-reinforced concrete (CFRC) is increased compared with that of CFRC that
has silane on the surface of the carbon fiber [27]. Incorporating carbon fiber into concrete
can effectively inhibit the development of cracks [28]. For this investigation, the carbon
fiber was dispersed by injecting the nozzle technique into the cement paste which leads to
unidirectional alignment [29]. The hydroxyethyl cellulose process aids the dispersion of
carbon fibers, and the maximum dispersion coefficients are 84–94% [30,31].

Aramid fibers have the properties of being lightweight and having high tensile
strength, and they can be resistant to abrasion and organic solvents. After the fire re-
sistance test, the compressive strength was increased by about 150% due to the presence
of aramid fibers [32]. The compressive strength of aramid FRC with a 1% fiber content
exhibited the highest strength, and it had a tendency to decline as the percentage of fiber
content increased [33].

The inclusion of fibers can greatly inhibit concrete shrinkage and improve resistance
to cracking [1]. These mixes are particularly well suited to rigid pavements, bridge decks,
expansion joints, and other concrete components subject to repeated impact by external
loadings. Fiber-reinforced concrete can improve resistance to detonation waves in applica-
tions such as air defense shelters. Table 1 lists the material properties of various popular
fibers [34,35]. As illustrated in Table 1, carbon fiber and aramid fiber have higher strength
than other fibers, and they have exceptional weather resistance. As with other fibers, glass
fiber is the weakest of not being alkali-resistant, steel fiber is susceptible to rusting, and
polypropylene lacks the strength. In addition to fiber strength, fiber elongation is also
an important factor to be considered in fiber-reinforced concrete. Therefore, since the
elongation at break of aramid fiber is significantly higher than that of carbon fiber, this
study used aramid fiber for further mechanical testing.

Table 1. Material properties of various fibers.

Property
Fiber

Carbon Fiber Aramid Fiber E-Glass Fiber Steel Fiber Polypropylene Fiber

Density (g/cm3) 1.73−1.91 1.39−1.45 2.48−2.76 7.5−8.0 0.9–0.91
Tensile strength (MPa) 3300−6000 2700−3600 1500−3000 <2600 140−700
Elasticmodulus (GPa) 230−550 60−145 70−80 140−200 3−9

Elongation (%) 0.7−2.1 2.3−4.5 1.8−3.0 <15 15

There are limited studies conducted on the mechanical properties of Kevlar fiber-
reinforced concrete (KFRC) under different loading regimes. This study aimed to expand
knowledge on the mechanical performance of KFRC from quasi-static to impulsive do-
mains and conducted a series of field explosion tests on the blast resistance of KFRC slabs
for validation.

In this study, aramid fiber (Kevlar® 29 fiber, KF) was chopped into two lengths of
12 mm and 24 mm pieces, and part of the original KF was soaked in a toluene solvent to
remove the sizing. The original KF and the sizing-removed KF were dispersed by using
a pneumatic process first and then mixed with cement, aggregate, and water to make
KFRC specimens in different proportions. The workability, compressive strength, flexural
strength, splitting tensile strength, impact resistance, and shock wave resistance of KFRC
specimens with different weight ratios of fiber to cement and mixed proportions of different
fiber lengths were measured to find the best proportion.
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2. Materials

In this study, KFRC specimens were prepared for testing, and the materials included
chopped aramid fiber, cement, and aggregate. The preparations of KFRC specimens are
illustrated as follows.

2.1. Kevlar Fiber (KF)

Kevlar® 29 is an organically synthesized aramid fiber with the monomer formula of
−[−CO−C6H4−CONH−C6H4−NH−]−, and it was obtained from DuPont Company. KF
is used in military equipment, automated parts, ship ropes, fire-resistant clothing, and
vehicle tire reinforcement materials for its high strength, high modulus, low density, and
excellent abrasion resistance. Moreover, KF can stand heat less than 450 ◦C for a few
minutes and also resist most of the chemicals such as acetic acid, hydrochloric acid, and
other solvents [36]. Table 2 shows the material properties of KF [37]. Figure 1 shows two
paths of the fiber pretreatment methods; in the first path, the original KF is dispersed by
the pneumatic dispersion process only. In the second path, the sizing of KF is removed by
the toluene solvent and then by the drying process and the pneumatic dispersion process.
In the following sections, the above original KF and the sizing-removed KF were named K
and AK, respectively.

Table 2. Material properties of Kevlar® 29 fiber.

Material Property Value

Density (g/cm3) 1.44
Tensile strength (MPa) 2920

Specific strength (MPa·cm3/g) 2030
Elastic modulus (GPa) 70

Elongation (%) 3.6
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Figure 1. The original KF and sizing-removed KF pretreatment methods.

2.2. Cement and Aggregate

In this study, the Portland cement Type I was used, and it was obtained from Taiwan
Cement Corporation (Taipei, Taiwan). According to ASTM C33/C33M–18 [38], the fineness
modulus (F.M.) of fine aggregates is 3.03; and that of coarse aggregates is 7.33. The fineness
modulus of aggregates was 5.96, as listed in Table 3.
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Table 3. Fineness moduli (FM) of fine and coarse aggregates.

Sieve Sieve Size (mm) Weight Retained (g) Percent Retained (%) Cumulative Percent
Retained (%)

3/2” 37.5 0 0 0
3/4” 19 742.6 22.5 22.5
3/8” 9.5 1507.1 45.67 68.17
No. 4 4.75 14.8 0.45 68.62
No. 8 2.36 187.9 5.69 74.32
No. 16 1.18 270.3 8.19 82.51
No. 30 0.60 207.6 6.29 88.80
No. 50 0.30 172.7 5.23 94.03

No. 100 0.15 99.4 3.01 97.04
Pan - 97.6 2.96 -
Total - 3300.0 100 596

Fineness modulus (F.M.) = 5.96

2.3. Kevlar Fiber-Reinforced Concrete (KFRC)

The dispersed KF was added to cement and mixed in the dry state to facilitate a uni-
form distribution. The KFRC specimen was prepared by mixing the KF/cement, aggregate,
and water in the wet state, and all specimens were cured for 28 days. The control variables
of single-length KFRC preparation included the lengths of chopped KF (12 mm and 24 mm),
the KF-to-cement weight ratios (5‰, 10‰, and 15‰), and two types of chopped KF (K and
AK). The mixing ratio of cement, sand, and aggregate in concrete was 1:1.05:2.25, and the
water−cement ratio of concrete was 0.6.

Based on the mechanical test, the above single-length KFRC specimens were used to
decide the best weight ratio of KF to cement for the preparation of mix-proportion KFRC
specimens. The mix-proportion KFRC specimens were prepared by mixing two KF lengths
(12 mm/24 mm) in ratios of 80–20% (M8/2), 60–40% (M6/4), 50–50% (M5/5), 40–60%
(M4/6), and 20–80% (M2/8). As for the single-length cases, the KFRC specimens were
prepared with solely 12 mm (M10/0) and 24 mm (M0/10) KFs, where M refers to the
mixing ratio of 12 mm KF to 24 mm KF. For example, C-M8/2 indicates the specimen with
a mixing ratio of 80% 12 mm KF to 20% 24 mm KF for the compressive test.

3. Experimental Methods

The mechanical properties of KFRC were tested under static and dynamic loadings
including compressive, flexural, and impact load tests based on ASTM and ACI standards
to determine the best performance of single-length KFRC and mix-proportion KFRC for
the later shock wave loading test. Table 4 lists the numbers of test samples for benchmark
and KFRC specimens for the compressive, flexural, impact loading, and shock wave
loading tests.

3.1. Slump Test

Initially, workability is a foremost factor in controlling the variation of the fiber content
in the mixture for FRC approaches [39]. The slumps of the KFRC mixture with fiber
lengths of 12 mm and 24 mm and varying fiber-to-cement ratios (5‰, 10‰, and 15‰) were
conducted according to ASTM C143 [40].

3.2. Compressive Test

The compressive strengths of the benchmark concrete and the KFRC specimens (under
different fiber-to-cement weight proportions) were conducted as per ASTM C39-01 [41].

The cylindrical specimens, with 10 cm in diameter and 20 cm in height, were tested
in a universal test machine (HT-9501 Series. Hong-Ta, Taipei, Taiwan) with a load cell
(WF 17120, Wykeham Farrance, Milan, Italy) to determine the compressive strengths of
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specimens under loading rates of 900 to 1800 N·s−1, which was equivalent to strain rates of
10−6 s−1 to 10−4 s−1.

Table 4. The initial plan for KFRC specimens.

Experiment Weight
Ratio (‰)

Number of KFRC Specimens
Number of

Benchmarks TotalOriginal KF Sizing-Removed KF
Mix-Proportion

12 mm 24 mm 12 mm 24 mm

Compressive test
5 3 3 3 3

21 3 6010 3 3 3 3
15 3 3 3 3

Flexural test
5 3 3 3 3

21 3 6010 3 3 3 3
15 3 3 3 3

Impact loading test 10 * 20 20 20 20 20 20 120

Shock wave
loading test 10 * 2 1 3

* Determined by flexural test results.

3.3. Three-Point Bending Test

The flexural strength of the KFRC specimens was tested according to ASTM C293-
02 [42], under a loading rate of 0.020 MPa·s−1. The dimensions of the benchmark and
the KFRC specimens were 28 cm × 7 cm × 7 cm (length × width × height). The flexural
strength was calculated using Equation (1):

R =
3PL
2bd2 , (1)

where R refers to the modulus of rupture (flexural strength, MPa); P is the maximum
applied load indicated by the testing machine (N); L is the span length (mm); b is the
average width of the specimen at the fracture (mm); d is the average depth of the specimen
at the fracture (mm).

3.4. Impact Test

The impact test machine (SP-005, Sheng Peng Applied Materials Co., Ltd., Yu-Lin,
Taiwan) was used for the impact loading test. According to ACI 544.2R-89 [43], the
benchmark concrete and the KFRC specimens were examined with the dimensions of
φ 15.2 cm × 6.35 cm. The specimens were then placed inside the test equipment and then
held in a sandbox, which was used to absorb the energy that penetrated the specimen, to
determine the impact numbers under varying impact energies (50 J to 100 J), which were
controlled by the weight of the hammer and the drop height.

The impact energy was calculated by the equation: E = m × g × h, where E is the
potential energy (J), m refers to the mass (kg), g is the gravitational acceleration (m·s−2),
and h indicates the height (m).

3.5. Shock Wave Test

To determine the blast resistances of the benchmark concrete and the KFRC specimens,
shock wave tests were performed on D10 rebar-reinforced samples prepared in dimensions
of 50 cm × 50 cm × 15 cm. The fiber length and the weight ratio of the KFRC slab were
determined by flexural test results. The explosive used in the contact explosion test was
150 g of C-4 dynamite placed in the center of the front face of the slabs. Figure 2a presents
the KFRC slab under shock wave loading. As shown in Figure 2b, two-layer KF sheets
(perpendicular alignment) were attached on the rear side of the strongest flexural strength
KFRC slab by the epoxy (SB 838, Sam Bond Company, Taoyuan, Taiwan) to form the Kevlar
fiber-reinforced polymer (KFRP). The mixing weight ratio of resin to hardener was 2:1 to
produce SB838 epoxy resin. The fiber area weight (FAW) of the KF sheet was 225 g·m−2,
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and its mechanical properties were as follows: The Young’s modulus was 1.28 × 105 MPa;
the tensile strength was 2.18 × 103 MPa; the thickness was 0.145 mm·layer−1; the ultimate
strain was 3.6%.
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traps under C-4 dynamite.

The RC slabs were damaged by shock wave and reflected tensile stress wave. Therefore,
four momentum traps (65 cm × 15 cm × 15 cm) were placed around the sides of the slabs
to prevent extraneous damage caused by the reflected tensile stress waves in this study. In
addition, petroleum jelly was applied to the gap between the slab and the momentum trap.
The configuration of the rebar reinforcements inside the slab is shown in Figure 2c. The
setup of the shock wave test is shown in Figure 2d.

3.6. NMR Spectroscopy Analysis

The KF was immersed in a toluene solvent for 24 h to dissolve the components of
sizing on the KF surface. It was identified by the nuclear magnetic resonance (NMR)
spectrum (Oxford 300 MHz, Bruker, Germany) to most likely be beeswax [44]. Figure 3
shows the NMR spectra of KF sizing.
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4. Results and Discussions

The results of compressive strength, flexural strength, and impact performance are
listed below.

4.1. Slump Test Results

The slump values of the benchmark concrete and the KFRC specimens with different
fiber-to-cement weight ratios are shown in Table 5. The results showed that the greater the
weight ratio of KF to cement, the poorer the workability. The concrete mixture with a 15‰
weight ratio was hard for grouting [40].

Table 5. Slump values of the benchmark concrete and the KFRC specimens under various weight ratios.

Fiber-to-Cement Weight Ratio (‰) 0 5 10 15

Slump (mm) 230 120 70 15

4.2. Compression Test Results
4.2.1. Single-Length KFRC

In this subsection, to determine the compressive strength, KFRC specimens were
tested under different proportions of fiber lengths (12 mm and 24 mm) and fiber-to-cement
weight ratios (5‰, 10‰, and 15‰) on both original KF and sizing-removed KF. Table 6
shows the compressive strengths of the benchmark concrete and the KFRC specimens, and
the labels and naming conventions are explained in the note section of the table. From the
results presented in Table 6, the KFRC specimens with different KF-to-cement ratios all
demonstrated higher compressive strength than the benchmark concrete. The test results
also showed that the KFRC specimens with 10‰ KF had a greater strength increment
than samples with 5‰ and 15‰ KF in both AK and K test groups. Out of all specimens,
C-K10L24 had the highest increment in compressive strength (i.e., 39.1%). Generally, the
compressive strength increment of KFRC with 24 mm KF was larger than that of KFRC
with 12 mm KF. It is also worth noting that improvements in compressive strength were
not seen when using sizing-removed fibers, as shown in Figure 4 below.
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Table 6. Compressive strengths of the benchmark concrete and the KFRC specimens under various
weight ratios of KF to cement.

Specimen 1
Compressive Strength (MPa)

Increment (%)
1 2 3 Average

C-B 22.99 23.31 25.62 23.98 -
C-K5L12 26.34 27.51 27.94 27.27 13.7
C-K10L12 31.17 31.91 32.82 31.97 33.3
C-K15L12 25.75 26.14 26.34 26.07 8.7
C-K5L24 27.48 27.57 28.43 27.83 16.1
C-K10L24 31.28 33.76 35.05 33.36 39.1
C-K15L24 25.58 25.63 26.28 25.83 7.7
C-AK5L12 24.27 24.88 27.17 25.44 6.1

C-AK10L12 27.28 29.78 29.99 29.02 21.0
C-AK15L12 23.52 23.99 24.52 24.01 0.1
C-AK5L24 24.7 27.6 28.89 27.06 12.8

C-AK10L24 28.08 30.3 30.6 29.66 23.7
C-AK15L24 23.06 26.4 26.54 25.33 5.6

1 C, compressive strength; B, benchmark; K5, 5‰ weight ratio of original KF to cement; AK10, 10‰ weight
ratio of sizing-removed KF to cement; L12, 12 mm fiber; L24, 24 mm fiber; the number 5 in the specimen names
represents a 5‰ weight ratio, the number 10 in the specimen names represents a 10‰ weight ratio, and the
number 15 in the specimen names represents a 15‰ weight ratio.
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Figure 4. Compressive strengths of the benchmark concrete and the KFRC specimens under various
weight percentages.

The strengths of the KFRC with both 5‰ and 15‰ KF had a much smaller increment
in compressive strength comparing with that of the 10‰ KF specimens. Figure 5 illustrates
the assumption of fibers distribution in the concrete specimens. As shown by the results
from the slump test and the compressive test, specimens with a 15‰ fiber-to-cement ratio
were difficult to be mixed evenly into slurry, and they exhibited the smallest slumps and
the lowest compressive strength. This phenomenon could be explained by the larger
fiber surface and the tangling of fiber that led to more pores in 15‰ specimens, which
consequently resulted in a lower strength [45]. The compressive strength highly depended
on the fiber content and the fiber distribution in specimens.
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The fiber distribution of the C-K5 KFRC specimen could be depicted by Figure 5a,
as it had the least amount of KF. The insufficiency of the fiber content, as shown in test
results, produced a poorer performance in strength increment. In contrast, when the fiber-
to-cement ratio was over a certain limit, as seen in specimen C-K15 KFRC where fiber
content was the highest within this test group, the performances in strength were lower
than that of 5‰ KF specimens, ranging from 0.1% to 8.7%. In addition, from the slump test,
KFRC specimens with a 15‰ weight ratio had the lowest workability and consequently
led to fiber content being not uniformly distributed, as shown in the schematic in Figure 5c.

The fiber distribution in C-K10 KFRC specimens, which had the highest increment in
strength out of the three fiber-to-cement ratios, was most likely represented by Figure 5b,
as it showed a more uniform spread of fiber content. It could be inferred that in order
to achieve the greatest improvement in strength, the two crucial factors are the optimal
proportion of fiber content and the uniformity of the fiber distribution in specimens.

4.2.2. Mix-Proportion KFRC

In this subsection, five mix-proportion KFRC specimens (M8/2, M6/4, M5/5, M4/6,
and M2/8) were prepared to determine and compare the maximum compressive strength
with those of the single-length KFRC specimens (M10/0 and M0/10). As seen from the
results in compression tests, KFRC specimens with a 10‰ mixing ratio, C-K10L12 and
C-K10L24, had the greatest increment in compressive strength; therefore, the 10‰ fiber-to-
cement ratio was used in this section of the experiment. As mentioned in Table 7, C-M8/2
indicates the specimen prepared with a mixing ratio of 80% 12 mm KF and 20% 24 mm KF
for compression tests.

The compressive strengths of the mix-proportion KFRC specimens were greater than
that of the benchmark specimen by 24% to 39%. In contrast, when comparing the strengths
of mix-proportion KFRC specimens with that in single-length KFRC specimens, a clear
improvement of the use of mix proportion was absent. However, as depicted in Figure 6,
within the mix-proportion specimens, there was a tendency in the increase of compressive
strength with the increase of the 24 mm KF weight ratio.

4.3. Three-Point Bending Test Results
4.3.1. Single-Length KFRC

Three-point bending test was conducted on all specimens to determine their respective
flexural strengths. As shown in Table 8, the KFRC specimens with 10‰ KF attained the
highest flexural strength when compared within groups and with the benchmark specimens.
Figure 7 shows the flexural strengths of the benchmark specimens and the KFRC specimens
under various weight ratios and lengths between the original KF and sizing-removed KF
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groups. When comparing the original KF and sizing-removed KF specimens, across all test
groups, the specimens with sizing removed exhibited a lower flexural strength; however,
the differences in strength were slightly noticeable.

Table 7. Compressive strengths of the benchmark concrete and the mix-proportion KFRC specimens.

Specimen 1
Benchmark Mix-Proportion KFRC (L12 mm/L24 mm)

C-B C-M10/0 C-M8/2 C-M6/4 C-M5/5 C-M4/6 C-M2/8 C-M0/10

Compressive
strength

(MPa)

22.99 31.40 29.79 32.92 31.41 33.96 31.90 31.18
23.31 31.34 30.37 30.41 32.38 32.52 35.12 32.13
25.62 30.93 29.85 29.23 32.37 30.42 33.04 32.88

Average
compressive

strength (MPa)
23.98 31.22 30.00 30.85 32.05 32.30 33.35 32.06

Increment (%) - 30 25 29 34 35 39 34
1 C, compressive strength; B, benchmark; M, mix-proportion KFRC with a mixing ratio of 12 mm KF to 24 mm
KF; the number 10 in the specimen names represents a 100% mixing ratio; the number 8 in the specimen names
represents a 80% mixing ratio; the number 6 in the specimen names represents a 60% mixing ratio; the number
5 in the specimen names represents a 50% mixing ratio; the number 4 in the specimen names represents a 40%
mixing ratio; the number 2 in the specimen names represents a 20% mixing ratio; the number 0 in the specimen
names represents a 0% mixing ratio.
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When compared with the benchmark specimen, all three different weight ratios pro-
duced a higher flexural strength. The KFRC specimens with a 10‰ fiber ratio had the
strongest strength within each group, and this occurrence could explain by 10‰ being the
more desirable ratio; thus, the fibers were more uniformly mixed. KFRC specimens with a
5‰ fiber content had a relatively lower strength, and the reason could be the inadequate
fiber content in the specimen, leading to a weaker bounding force between the fiber and
cement elements. Similarly, the KFRC specimens with a 15‰ fiber-to-cement weight ratio
also had a lower increment in strength. As discussed in the compression test result, the
lower flexural strength was caused by the larger fiber surface and the tangling of fibers
creating a porous structure in concrete, which were also evident in this test.
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Table 8. Flexural strengths of the benchmark and KFRC specimens under various percentages (5 ‰,
10 ‰, and 15 ‰).

Specimen Flexural Strength (MPa) Avg. Flexural Strength
(MPa)

Increment
(%)

F-B 1 5.12 4.76 4.68 4.85 -
F-K5L12 5.75 6.31 6.44 6.17 27
F-K10L12 6.73 6.76 6.97 6.82 41
F-K15L12 5.9 6.19 6.31 6.14 27
F-K5L24 5.87 6.26 6.28 6.13 26
F-K10L24 6.62 6.69 6.81 6.71 38
F-K15L24 5.85 5.9 6.25 6 24
F-AK5L12 5.79 6.11 6.34 6.08 25

F-AK10L12 6.5 6.61 6.64 6.58 36
F-AK15L12 5.85 6.15 6.27 6.09 26
F-AK5L24 5.78 5.93 6.12 5.94 23

F-AK10L24 6.46 6.53 6.61 6.54 35
F-AK15L24 6.03 6.11 5.85 6 24

1 F, flexural strength; B, benchmark; K5, 5‰ weight ratio of original KF to cement; AK10, 10‰ weight ratio of
sizing-removed KF to cement; L12, 12 mm fiber; L24, 24 mm fiber; the number 5 in the specimen names represents
a 5‰ weight ratio, the number 10 in the specimen names represents a 10‰ weight ratio, and the number 15 in
the specimen names represents a 15‰ weight ratio.
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4.3.2. Mix-Proportion KFRC

The aim of this subsection is to investigate the flexural strengths of mix-proportion
KFRC specimens and compare results with that from single-length specimens. As men-
tioned in the above section, KFRC specimens with a 10‰ fiber content produced the
highest flexural strength within each test group; thus, the 10‰ mixing ratio was used in
this section.

Table 9 lists the flexural strength results of mix-proportion KFRC specimens, and as
could be seen from the table, the flexural strengths of mix-proportion KFRC specimens
increased from 26% to 31% relative to that of the benchmark specimen. However, as
clearly illustrated in Figure 8, when examining the flexural strength among different mix
proportions, there was no evident relation between KF length and the flexural strength.
The test results did not seem to suggest that KF length is a crucial factor in the flexural
strength of KFRC.
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Table 9. Flexural strengths of the benchmark and mix-proportion KFRC specimens.

Specimen
Benchmark KF Mix-Proportion (L12 mm/L24 mm)

F-B 1 F-M10/0 F-M8/2 F-M6/4 F-M5/5 F-M4/6 F-M2/8 F-M0/10

Flexural strength
(MPa)

5.12 6.14 6.12 6.54 6.28 6.20 6.15 6.56
4.76 6.44 6.22 6.25 6.11 6.06 6.52 6.36
4.68 5.95 6.04 6.26 6.15 6.37 6.08 6.13

Average flexural
strength (MPa) 4.85 6.24 6.13 6.35 6.18 6.21 6.25 6.35

Increase
percentage (%) - 29 26 31 27 28 29 31

1 F, flexural strength; B, benchmark; M, mix-proportion KFRC with a mixing ratio of 12 mm KF to 24 mm KF; the
number 10 in the specimen names represents a 100% mixing ratio; the number 8 in the specimen names represents
a 80% mixing ratio; the number 6 in the specimen names represents a 60% mixing ratio; the number 5 in the
specimen names represents a 50% mixing ratio; the number 4 in the specimen names represents a 40% mixing
ratio; the number 2 in the specimen names represents a 20% mixing ratio; the number 0 in the specimen names
represents a 0% mixing ratio.
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4.4. Impact Test Results

From the above compressive and flexural test results, the KFRC specimens mixed
with 10‰ original KF attained a higher compressive and flexural strength than the others;
fiber length is unlikely a factor that improves the strength of KFRC, as seen in test results
that the flexural strength did not increase with the increase of the length of carbon fiber
pieces. However, their impact resistance might differ from static mechanical properties.
In this section, the impact-resistant numbers of single-length KFRC with original KF and
sizing-removed KF and M5/5 mix-proportion KFRC specimens were tested to verify
the variations.

Table 10 lists the impact-resistant numbers at the time of failure under different impact
energies (50 J to 150 J). Under the 50 J impact, the average impact-resistant numbers of
the benchmark, I-AK10L12, I-AK10L24, I-K10L12, I-K10L24, and I-M5/5 specimens were
about 13.8, 255.5, 296.8, 316.0, 402.5, and 344.5, respectively, and the other impact energies
presented similar results.
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Table 10. Impact energy−number relationships of the benchmark specimens and the KFRC specimens.

Specimen
Impact

Energy (J)
Impact-Resistant Number Increment

(%)1 2 3 4 Average

I-B 1

150 1 1 1 2 1.3 -
125 2 2 2 2 2.0 -
100 3 4 4 4 3.8 -
75 7 7 8 8 7.5 -
50 12 14 14 15 13.8 -

I-AK10L12 1

150 2 2 2 3 2.3 80
125 3 3 4 4 3.5 75
100 10 11 14 15 12.5 233
75 47 56 59 60 55.5 640
50 238 245 263 276 255.5 1758

I-AK10L24 1

150 2 2 3 3 2.5 100
125 3 4 4 5 4.0 100
100 13 16 17 18 16.0 327
75 62 66 67 71 66.5 787
50 273 291 308 315 296.8 2058

I-K10L12 1

150 2 2 3 3 2.5 100
125 4 4 4 5 4.3 113
100 17 21 22 24 21.0 460
75 64 66 70 71 67.8 803
50 297 312 318 337 316.0 2198

I-K10L24 1

150 3 3 3 3 3.0 140
125 5 5 6 7 5.8 188
100 24 28 29 32 28.3 653
75 71 72 77 82 75.5 907
50 388 397 402 423 402.5 2827

I-M5/5 2

150 2 2 3 4 2.8 120
125 4 4 5 6 4.8 138
100 17 22 24 29 23.0 513
75 67 72 77 93 77.3 930
50 299 334 356 389 344.5 2405

1 I, impact test; B, benchmark; K10, 10‰ weight ratio of original KF to cement; AK10, 10‰ weight ratio of
sizing-removed KF to cement; L12, 12 mm fiber; L24, 24 mm fiber. 2 I, impact test; M, mix-proportion KFRC with a
mixing ratio of 12 mm KF to 24 mm KF; the number 5 in the specimen name I-M5/5 refers to a 50% mixing ratio.

Figure 9 illustrates the relationship between the impact energy and the impact number
for each specimen. The impact test results showed that KFRC specimen I-K10L24 had the
highest overall impact resistance performance under different impact energies compared
with the other specimens, especially below 100 J. For the impact energy higher than 100 J,
the differences in impact number were insignificant. It could still be concluded that the
impact resistance of the single-length KFRC specimen with 24 mm original KF was the
strongest. However, due to the lack of data on different mix-proportion KFRC specimens,
the conclusion as to the strongest 12 mm to 24 mm KF ratio cannot be drawn. Nevertheless,
it could be noticed that, as seen in Figure 9, the I-M5/5 KFRC specimen had an obvious
improvement in impact resistance than I-K10L12, the single-length 12 mm KFRC specimen.
According to the impact test result and the above speculation, a longer fiber had a stronger
bounding force with cement; thus, it can reduce the slipping phenomenon.
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The KFRC specimens were broken into three to four pieces, and the benchmark
specimens were broken in two pieces under repeated impacts at 50 J, as shown in Figure 10.
The impact failure images of the M5/5 KFRC specimen, as shown in Figure 11, showed that
the strong adhesion of the KF in the concrete inhibited crack propagation which led to an
improved impact strength. Based on the results from the impact test, it can be interpreted
that the toughness of KF could improve the brittleness of concrete.
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4.5. Shock Wave Explosion Test Validation

As discussed above, the I-K10L24 KFRC specimen presented the highest impact
resistance and static mechanical properties; therefore, this section used the KFRC slabs
(50 cm × 50 cm × 15 cm) with a 10‰ weight ratio of 24 mm original KF to cement for
the shock wave test. When dynamite exploded, shock waves carried tremendous energy
transmitting to RC and KFRC slabs. Explosion damage tended to manifest as cratering
on the front face and spalling on the rear face. In the following, SW-B was the benchmark
RC slab (without KF), SW-K10L24 was the rebar-reinforced KFRC slab, and SW-K10L24-A
was the rebar-reinforced KFRC slab with KFRP (two layers of KF sheets in perpendicular
directions) attached to the bottom (rear surface). A contact explosion is the most extreme
form of near-field explosion, and localized failure types were expected. The shock wave test
results showed that the failure type of the slabs was observed from the post-photographs
of the specimens, as shown in Figure 12.

Table 11 summarizes the failure types and damaged areas of the specimens. The failure
type “cratering” was caused by the compressive stress wave generated by the explosion,
and “spalling” was caused by the rebound tensile wave which was produced as the
compressive wave propagating through the slab to the rear face. If the slab failed to absorb
the energy of the compressive stress wave and the rebound tensile wave, “perforation and
breaching” might appear in the slab. Evidence of perforation and breaching were observed
in both SW-B and SW-K10L24 slabs, but the damaged area of the SW-K10L24 slab was
smaller than that of the SW-B slab.

Table 11. Failure types and external damage measurements of the benchmark and KFRC specimens.

Specimen 1 Slab Surface Depth
(cm)

Min. Diameter
(cm)

Max. Diameter
(cm)

Damaged Area
(cm2) Failure Type

SW-B
Front - 30 37 881 Perforation

and breachingRear - 34 47 1288

SW-K10L24
Front - 20 28 452 Perforation

and breachingRear - 25 40 830

SW-K10L24-A

Front 3.2 18 24 346 Cratering

Rear
(removing KFRP) 5.6 20 37 638 Spalling

1 SW, shock wave test; B, benchmark; K10, 10‰ weight ratio of original KF to cement; L24, 24 mm fiber; A,
attached KFRP on the bottom of the slab.
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From the external damage evaluation, S-K10L24 and S-K10L24-A slabs had a better
blast resistance in both the inner and outer diameters; their damaged areas were less
significant than that of SW-B slab. As seen from the external damage evaluation, KFRC
specimens, when in comparison with normal concrete, had almost unparalleled blast
resistance. In addition, this finding confirmed that KFRC can substantially improve the
mechanical properties of concrete.Fibers 2022, 10, x FOR PEER REVIEW 16 of 19 
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Figure 12. The failure images of SW-B, SW-K10L24, and SW-K10L24-A specimens under shock wave
loading: (a) front face of SW-B; (b) rear face of SW-B; (c) front face of SW-K10L24; (d) rear face of
SW-K10L24; (e) front face of SW-K10L24-A; (f) rear face of SW-K10L24-A (with KFRP sheet); (g) rear
face of SW-K10L24-A (KFRP sheet was removed).
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5. Conclusions

Based on the above quantitative and qualitative mechanical tests of KFRC, this study
has shown how fiber length, the weight ratio of fiber to cement, mix-proportion of two
fiber lengths, and sizing on fiber surface affected the mechanical properties of KFRC under
static, dynamic, and shock wave loadings. Several conclusions are drawn as follows:

1. Evidence that 10‰ KF was the more optimal weight ratio than 5‰ and 15‰ KF can
be found in the static mechanical test results, as it produced higher increments in both
compressive strength and flexural strength. Moreover, this finding was evident in all
combinations (fiber lengths and types).

2. Mix-proportion KFRC specimens did not exhibit enhanced effects on the compressive
and flexural strength when compared with single-length KFRC specimens; however,
within the mix-proportion KFRC test group, the static mechanical strength increased,
as the ratio of longer-piece fiber increased.

3. KF could improve the impact resistance of concrete, and KFRC specimens with single-
length 24 mm KF content demonstrated the strongest impact resistance.

4. The explosion damage of the KFRC slabs was less than that in benchmark RC slabs,
as seen in the external damage evaluation. The external damage evaluation provides
a clearer understanding that the explosion damage of the KFRC slabs was less than
that in benchmark RC slabs. Therefore, KFRC can effectively enhance the shock wave
resistance; in addition, attaching KFRP to the rear side of the slab could prevent the
development of spalling on KFRC.
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