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Abstract: The present work was aimed to evaluate the adsorption properties of activated carbons
based on prickly pear seeds (PPS) and conductive polymer matrix based on polyaniline (PANI) for
the removal of anionic Congo red (CR) dye from aqueous solutions. The adsorbent was prepared by
polymerization of aniline in the presence of activated PPS by phosphoric acid and sodium hydroxide.
The samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA) and the Brunauer–Emmett–Teller (BET) methods. The adsorption
kinetics were studied using UV-visible (UV/Vis) spectroscopy. The characterization data suggest that
the adsorption of the Congo red dye is enhanced because PANI chain molecules, which are especially
accountable for removal through π–π interaction and H–bonding with the CR, are adsorbed/tethered
onto the acid-activated PPS (PPSH), and thus surmount the mass transfer limitation by being best
exposed to the CR-adsorbed molecule. The adsorption kinetics follows the pseudo-second order
process. The correlation coefficients (R2) for Langmuir, Freundlich and Tempkin showed that the
adsorption values obey Freundlich and Tempkin isotherm models. Moreover, the isotherm was most
accurately described by the Freundlich model, and the maximum removal percentage was calculated
to be 91.14% under optimized conditions of pH 6.6, 1 g/L of adsorbent dosage, and an initial CR
dye concentration of 20 mg·L−1. Importantly, the hybrid adsorbent exhibited the highest adsorption
capacity (80.15%) after five cycles of the adsorption–desorption process. Thermodynamic parameters,
such as entropy changes, enthalpy changes and Gibbs free energy, were also evaluated. These results
indicated that the PANI matrix can generally be better utilized for the removal of Congo red dye
when appropriately dispersed on the surface of suitable support materials. These results provide a
new direction to promote the separable adsorbents with increasing performance for adsorption of
dye impurities from wastewater.

Keywords: PANI; prickly pear seeds; activated carbon; adsorption; Congo red

1. Introduction

Dyeing effluents from textile finishing or printing industries pose a major environ-
mental risk due to the pollution of freshwater with toxic and hazardous substances, which
are dangerous to aquatic ecosystems and humans, as well as depleting drinking water
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resources [1,2]. This problem is becoming more significant as the discharge of dyeing
effluents has increased significantly in recent years [3]. For this reason, innovative, environ-
mentally friendly, and renewable technologies for wastewater treatment are necessary, and
the number of developments in this field is constantly increasing in recent years [4].

Congo red (CR) is a widely used anionic dye, which is widely used in research labora-
tories and industries and is an environmental problem [5,6]. Nowadays, various methods
and technologies such as ozonization, degradation or oxidation, ion-exchange, membrane
separation, biochemical processes, etc. are used to remove the dye from wastewater [7–10].
However, the above methods are relatively expensive and have low selectivity because
they cannot be reused. Therefore, there is an urgent need for an effective method to remove
dyes in a cost-effective, environmentally friendly, and selective manner.

Carbon based products (CBPs) are considered as perfect candidates for the removal of
organic contaminants due to their elevated stability and high specific surface area [11,12].
Biomass-derived carbons offer many advantages over other carbons due to their stability
and harmlessness as well as bio-based feedstocks [13–15]. However, the low porosity of the
pyrolytic carbon formed means that biomass-derived carbons have a low specific surface
area [16]. Consequently, selective, effective, and reversible adsorption and desorption of
dyes with a CBP remains a major challenge. Biomass-derived porous carbons are produced
using physical or chemical activation processes [17,18]. Bio-based precursors for activated
carbon material such as fruits, seeds or leaves of plants, etc. are renewable raw materials
and can contribute to the pollutants’ elimination from wastewater [19–21]. In the study by
Amran et al., adsorption properties of activated carbon prepared from Casuarina fruit were
investigated for the removal of cationic (methylene blue) and anionic (Congo red) dyes [22].
Green synthesis of ZnO nanoparticles from Averrhoe carrambola fruit extract for Congo
red dye photodegradation was investigated in the study by Chakraborty [23].

The prickly pear fruit (PPF) is the fruit of the prickly pear tree (Opuntia ficus-barbarica)
and a member of the cactus family (Cactaceae), which grows in all semi-arid areas and
is particularly cultivated in Central America and the Mediterranean region [24]. The
utilization of this material could be a favorable alternative for the elimination of pollutants
in wastewater due to its low cost, relative abundance, environmental friendliness, and
effectiveness. The PPF is an oval fruit weighing from 70–220 g, containing a thick shell
(30–60%), which consists of numerous hard-coated seeds (3–10%) [25]. PPF can be classified
as an aliment of nutraceutical and functional significance because of its elevated content of
chemical components that have beneficial feeding and health properties [26]. It is generally
consumed as fresh fruit or prepared as compounds such as jam, juice, congealed fruit, and
others [27]. After processing, the seeds are usually discarded because they contain high
levels of unsaturated oil [28], which can be extracted by cold pressing. Recently, various
research assessed the possibility of dried PPF material for pollutants’ elimination from
wastewater. Barka et al. [29] reported PPF adsorption efficiency of heavy metals (Cd and
Pb) and dyes (Alizarin S, Eriochrome Black T and Methylene Blue) from aqueous solutions.
Cid et al. [30] utilized PPF waste in its untreated and activated forms as adsorbent for dyes.

Among the conductive polymer, PANI is one of the most popular ones because it
exhibits high redox stability, simple synthesis, and high performance capacity and is
ecofriendly and inexpensive [31–33]. From the scientific and technological point of view,
PANI is selected as an active material because of its easy preparation, efficiency, and broad
effectiveness [33]. It has been shown that PANI is very well used in combination with
hybrid materials to improve the properties, such as PANI/Cellulose [34], PANI/Walnut
shell [35], PANI@Almond shell [36], PANI/Chitosan [37], and PANI modified almond [38].

In this study, polyaniline@activated-prickly-pear seeds (PANI@PPSH) were synthe-
sized by simple in situ oxidative polymerization and characterized by various methods,
including FT-IR, XPS, TEM, XRD, TGA, and BET. The prepared PANI@PPSH biocomposite
was used for the elimination of Congo red (CR) dye from aqueous solutions. The influences
of physicochemical parameters such as CR concentration, pH influence, and contact time
on removal efficiency were studied. The modelling of kinetics and equilibrium isotherm for
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CR removal by PPSH, PPSOH, and PANI@PPSH was determined. The renewal capability
of PANI@PPSH bioadsorbent was also investigated.

2. Materials and Methods
2.1. Materials

The seeds of prickly pear (Opuntia ficus-barbarica A. Berger) fruits were collected from a
plantation in the region of Mascara of western Algeria in August 2021. The monomer aniline
(ANI) (≥99.5% purity, Aldrich, St. Louis, MI, USA), ammonium persulfate (APS) (≥98%
purity, Merck KGaA, Darmstadt, Germany), ammonia solution (NH4OH) (25% purity,
Merck KGaA, Darmstadt, Germany), phosphoric acid (H3PO4) (70% purity, Merck KGaA,
Darmstadt, Germany), sodium hydroxide (NaOH) (37% purity, Merck KGaA, Darmstadt,
Germany), Congo red dye (CR) (dye content ≥ 35 %, Sigma-Aldrich, St. Louis, MI, USA),
ethanol (C2H5OH) (96% purity, Merck KGaA, Darmstadt, Germany), filter paper (EAPI
Company, Annaba, Algeria) and the ultrapure H2O (18.2 MΩ.cm, ELGA LabWater, Lane
End, UK) were applied in all experiments.

2.2. Measurements

X-ray photoelectron spectroscopy (XPS) was applied to calculate the surface com-
ponents of materials by a spectrometer (VG Microtech Ltd., London, UK). Wide-angle
X-ray diffraction (XRD) patterns were performed at room temperatures with specimens
on a Madison instrument (WI, USA) diffractometer with Cu/Kα radiation (λ = 1.5418Å)
at a scanning rate of 0.02◦min−1 over a range of 2θ = 0.2–60◦. Fourier transform infrared
spectrum (FT–IR) (Varian, Inc., Palo Alto, CA, USA) was implemented by a Bruker Inc. (Bil-
lerica, MA, USA) Model-Alpha spectrometer between 500–2000 cm−1. The morphologies of
the samples were determined with a scanning electron microscope (SEM) Hitachi, S-4160,
Iidacho, Japan). UV-Visible spectroscopy (Hitachi U3000-Spectrophotometer) was applied
to calculate CR concentrations. Thermogravimetric analysis (TGA) was performed using a
simultaneous thermogravimetric analyzer (Hitachi-STA 7200, Fukuoka, Ja-pan). The pH
value was determined by an instrument (Multiparameter Benchtop Water Quality Meter,
86505-EB-AZ, Barcelona, Spain). Information about the BET surface area and porosimetry
was provided using an Autosorb (iQ, Shanghai, China) system at liquid nitrogen tempera-
ture (77 K) [29,39].

The zero point of charge (pHPZC) was determined according to the method described
by Cid et al. [30]. First, the initial pH of the solution was studied in an array of 2.0–12.0
using HCl and NaOH in NaNO3 solutions. After precise measurement of the pHinitial,
an adsorbent was added to each flask and the solution was agitated for 48 h to reach the
equilibrium. After this period, the pH of the solution (pHf) was measured. The pHPZC was
derived from the curve pH = pHi − pHf = f(pHi) as the intercept of the abscissa.

2.3. Adsorbents’ Preparation
2.3.1. Carbon Preparation

The PPS seeds were repeatedly washed with H2O to remove foreign material and
then oven dried at 323 K for 48 h. After these procedures, the PPS were ground to a fine
powder in the size range of 30 to 70 µm using a laboratory mill (Fisher Bioblock Scientific,
Illkirch, France).

Chemical activation was performed by blending the PPS (10 g) and H3PO4 (weight
ratio 1:1). The suspension was then stirred for about 180 min until homogenized. Then, the
solution was filtered and washed with deionized H2O until the pH of the water became
neutral [40]. Afterwards, the carbonization process of materials was carried out; the PPS-
H3PO4 was converted into solid carbon (PPSH). The carbonization occurred by storing 20
g of PPS-H3PO4 at 110 ◦C for 24 h. The impregnated samples were pyrolyzed in a furnace
(Model DHG-9023A, Everich, Hangzhou, China) under an inert atmosphere at 450 ◦C for 2
h. The PPSH sample was crushed with a mortar and sieved with a sieve, and the product
was stored in plastic clamps and glass bottles. Similarly, the PPSH sample was treated and
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activated with an aqueous NaOH solution at a concentration of 1 M. Then, the chemically
treated samples were dried in an electric oven (Elba EEO-A4218, Fiamma Holdings Berhad,
Bandar Manjalara, Malaysia) at 450 ◦C for 2 h, ground, and stored in plastic containers.
This final product was named PPSOH.

2.3.2. PANI@PPSH Preparation

The chemical preparation of polyaniline with PPSH (PANI@PPSH) as nanoadsorbent
was carried out according to the methodology proposed by Mahi et al. [30]. Dispersions of
1 g PPSH in 100 mL of H3PO4 (1 M) solution were performed by ultrasonic combustion for
30 min. Then, 1 mL of aniline (ANI) was added to the solution and the blend was sonicated
for 1 h. Afterwards, 50 mL of H3PO4 acid (1 M) consisting of ammonium persulfate
(APS) (oxidant: monomer molar ratio was 1:1) was added dropwise to the solution with
continuous stirring and stirred overnight at room temperature. The product precipitate was
filtrated and washed several times with C2H5OH and H2O to eliminate excess oligomers
containing the oxidant. Finally, the final PANI@PPSH adsorbent was dried at 70 ◦C for 24 h.
A graphical exemplification of the preparation of the adsorbents is presented in Scheme 1.
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2.4. Adsorption Experiments

Batch adsorption experiments were conducted in 100 mL glass vials. In typical experi-
ments, 0.1 g of adsorbent was added into the 100 mL CR solution (5, 10, 20, 30, 50, 100 and
150 mg L−1, respectively) and shaken. After reaching equilibrium by shaking, the final CR
concentration was filtrated and analyzed by UV-Vis. The removal percentage of CR was
determined using the following equation [41]

Removal =

(
C0 − Ceq

)
C0

× 100% (1)

where C0 is the initial CR concentration and Ceq is the equilibrium concentration of CR. The
removal percentage was measured by varying the adsorbent quantity, initial concentration
of CR, temperature and contact time. To determine the adsorption capacity, the uptake of
CR per gram of adsorbent was determined using the following equation.

Qeq =

(
C0 − Ceq

)
V

m
(2)
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where Qeq (mg·g–1) is the adsorption capacity at equilibrium, V (L) is the total volume of
reaction solution, and m (g) is the mass of adsorbent.

3. Results and Discussion
3.1. Characterization and Structural Analyses

Figure 1a shows the XRD patterns of PANI, PPSH, PPSOH, and PANI@PPSH samples.
The X-ray patterns of two materials (PPSH and PPSOH) showed the presence of a typical
PPF structure. It had strong crystalline peaks at 16.89◦ and 23.49◦, corresponding to the
(110) and (002) planes of crystals [42]. Moreover, PANI was semi-crystalline in nature, as
shown by three peaks centered at 2θ = 16.45◦ (011), 20.22◦ (020), and 25.87◦ (200), which was
due to the presence of benzenoid with the quinonoid group in the polymer chain [43]. The
characteristic peaks of two constituents were observed in the XRD patterns of PANI@PPSH,
indicating that the hybrid material was successfully synthesized.
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spectrum (before and after adsorption) of samples.

The raw PPS, PPSH, PPSOH, and PANI@PPSH (before adsorption) IR spectrum
(Figure 1b) displayed that there were modifications in the surface sample. The activation by
H3PO4 and NaOH led to a peptization and dissolution of polysaccharide, lignin, cellulose,
and hemicellulose in the raw product [14]. The band at about 1600–1654 cm−1 can be
assigned to the benzene ring (C=C). The disappearance of this band after chemical activation
of PPS proved that the chemical bonds were broken during the carbonization process.
Moreover, in the hybrid adsorbent, typical bands of PANI were found at 828 cm−1 due
to C–C stretching of quinoid rings and deformation of the benzenoid rings, respectively.
The band at 1159 cm−1 for PANI appeared to be due to C=N stretching vibration. The
transmittance peak at 1306 cm−1 due to the C–N bond, 1496 cm−1 due to the C=C stretching
vibration of benzenoid rings, and 1585 cm−1 due to the stretching vibration of quinoid rings
and the observed peak positions are in agreement with the report of other work [33]. In
addition, the IR spectrum was obtained for PANI@PPSH after CR adsorption. Based on the
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shift of the spectra and the reduction and disappearance of the bands, it was determined
CR adsorption by different functional groups had an influence.

The pore size distribution and also the surface area of adsorbents were studied using
the Brunauer–Emmett–Teller (BET) theory (Figure 2a). All adsorbents exhibited type III
isotherms and similar H3 hysteresis loop. The calculated BET surface areas of PPSH,
PANI, PPSOH, and PANI@PPSH were 42.79 m2·g−1, 29.25 m2·g−1, 20.21 m2·g−1, and
51.28 m2·g−1, respectively. The total average pore size and BET area of the adsorbents are
presented in Table 1. The larger pore size and pore volume of the PANI@PPSH composite
compared to the other adsorbents might be credited to the formation of new mesopores at
the interface between the PANI layers and the PPSH, resulting in more active sites. The
increased pore volume and pore size of the hybrid adsorbent would be a beneficial feature
to promote the migration of adsorbate molecules into the mesopores during the adsorption
process [44].

Table 1. Textural properties of adsorbents.

Materials SBET
(m2·g−1)

Pore Volume
(cm3·g−1)

Average Pore Size
(nm) pHPZC

PANI 42.79 1.81 28.52 5.1
PPSH 29.25 2.34 36.77 6.9

PPSOH 20.21 2.21 37.55 9.2
PANI@PPSH 51.28 2.85 40.94 6.7
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The values of the pHPZC are shown in Table 1. These indicate that the PANI and
PPSOH adsorbents had a contrary effect on the surface of the adsorbents. On the other
hand, the PPSH and PANI@PPSH materials exhibited a slightly acid surface (pHPZC is 6.9
and 6.7, respectively). The PPSOH adsorbent had a basic character (pHPZC is 9.2), and
PANI had an acid character (pHPZC is 5.1). In contrast, the two adsorbents (PPSH and
PANI@PPSH) exhibited pHPZC < 7, indicating an acid character of their surfaces.

TGA was used for the evaluation of the thermal stability of different adsorbents and
also for the evaluation of the decomposition behavior of the prepared materials (Figure 2b).
The weight loss (TGA) of PANI@PPSH consisted of the drying water loss stage (25–190 ◦C)
with the weight loss (9.54 mass%). During the second stage, the weight loss (43.67 mass%)
in the range from 190 ◦C to 530 ◦C was assigned to the breaking of chemical compounds of
PANI from their frameworks. Finally, the carbonization stage (≥530 ◦C) showed a weight
loss of 8.96% at 900 ◦C, while PANI amounted to 69.21%. This was because the presence
of PPSH on the polymer chain favored the growth of the crystal [38], while the PPSH
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and PPSOH adsorbents showed an overall weight losses at 900 ◦C of 44.34% and 46.92%,
respectively.

To detect the molecular structure of PANI@PPSH, XPS analysis was carried out, as
depicted in Figure 3. The C1s spectra (Figure 3a,b) of PPSH and PANI@PPSH were resolved
into four types of C atoms, which were attributed to C–C/C=C bonds (peak at 284.5 eV)
and to oxygen-containing bonds such as C–O (285.5 eV), C=O (287.3 eV), and O–C=O
(289.0 eV) [45]. PPSH had the highest oxygen content among the two adsorbents. Moreover,
two peaks appeared in the N1s spectrum of PPSH (Figure 3c). The first peak at 399.46 eV
was associated to the –NH2, which belonged to the characteristic basic functional group of
seeds fruit. Another peak at 401.41 eV was assigned to –NH–C=O (amide) of the acetylated
unit. In comparison with PANI@PPSH, three peaks at 398.27 eV, 400.46 eV, and 401.87 eV
were evident, demonstrating the presence of –N=, –NH/–NH–C=O, and –NH+ groups [46],
as shown in Figure 3d. Two peaks appeared in the N1s spectrum of PPSH (Figure 4c). The
first peak at 399.46 eV was associated to the –NH2, which belonged to the characteristic
basic functional group of the seeds fruit. Another peak at 401.41 eV corresponded to the
–NH–C=O (amide) of the acetylated unit. In comparison with PANI@PPSH, three peaks
at 398.27 eV, 400.46 eV, and 401.87 eV were evident, demonstrating the presence of –N=,
–NH/–NH–C=O, and –NH+ groups [46], as shown in Figure 3d. The XPS analysis further
proved the successful synthesis of the hybrid adsorbent.
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Figure 4 shows the surface morphology of the synthetized adsorbents. The SEM micro-
graphs showed remarkable change in the surface morphology of PPS after activation. As
shown in Figure 4a, the PPS surface was very dense, without pores and cavities. However,
it is clear from Figure 4b,c that activation by acid or base caused a surface modification of
PPS, leading to a rough and partly porous surface. Subsequently, the reaction of the PANI
chain in the existence of PPSH resulted in a highly porous surface (Figure 4d); the higher
pore transformation of PPSH led to better interaction with the polymer matrix and PPSH,
resulting in the formation of significant spaces and pores on the surface.
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3.2. Adsorption Assessments
3.2.1. Influence of pH

The pH is one of the most important factors affecting the surface charge and deter-
mining the elimination efficiency of the adsorbent, as the pH affects several parameters in
the removal process, including the distribution of organic ions, the surface charges of the
adsorbents, and dissociation ratio of the functional groups located on the active surface sites
of the adsorbent. Interestingly, the pH value showed distinct behavior for both ionic and
cationic dyes. In the case of cationic dyes, the percentage of organic pollutant elimination
decreased at low pH, which was due to the excess of H+ ions competing with the organic
pollutant structure for the active surface sites. In contrast, for ionic dye, the adsorbent
adsorbed negatively charged ionic dye at the low pH, corresponding to the positively
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charged surface [47]. Congo red is an ionic organic pollutant that is utilized as an acid/base
detector. While the pH of Congo red (CR) solution is less than pH 4.71, its color converts to
dark blue [48]. The removal process was investigated under different pH solutions in the
pH range from 2 to 12. The impact of the pH solution on the ratio of the adsorbed CR dye
is shown in Figure 5a. It can be seen that the removal capacity of the PANI@PPSH hybrid
adsorbent for CR increased when the pH was raised to 6.5. The subsequent increase in pH
resulted in a decrease in the removal capacity of the adsorbents compared to CR. This is
because the (π–π)-electron acceptor/donor interactions and H–bonding between adsorbent
and dye were low when the pH of the solution was higher than the pKa of the CR dye [48].
Moreover, the removal capacity of CR by PPSH and PPSOH decreased with increasing pH,
and the better adsorption capacity occurred proximate of pH 2.0, with obvious differences.
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3.2.2. Contact Time Study

The influence of contact time on the elimination of CR dye by the three adsorbents
prepared is depicted in Figure 5b. The initial concentrations of CR were 20 mg·L−1 at pH
6.5 and at ambient temperature. It was observed that the removal capacity of PANI@PPSH
for CR dye increased rapidly when the contact time was increased between 0 and 50 min,
which was related to the large surface area and large number of unoccupied adsorption sites
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of this nanoadsorbent. The adsorption ratio became slower after 50 min, mainly due to the
low dye concentration leading to a weaker elimination driving force in elimination, while
the number active surface sites of nanoadsorbent also decreased. The removal capacity
reached equilibrium after 60 min, and the elimination efficiency was 91.14%. Moreover,
for the PPSH sample, the percentage of absorption required for CR to reach equilibrium
decreased to 53.28%. This proved that the absorption of CR is related to the specific surface
area, indicating the importance of the polymer matrix on the PPSH surface in accelerating
the diffusion of the CR structure into the pores. In contrast, the PPSH required more than
70 min to adsorb only 51.66% of CR, while the PPSOH (50.06%) exhibited a somewhat
repulsive interaction toward surface saturation at the end of the elimination process.

3.2.3. Adsorption Kinetics

Adsorption kinetics were explained and evaluated by using pseudo-first-order (PFO),
pseudo-second-order (PSO), and intraparticle diffusion (the Weber–Morris) models.

The PFO kinetic describes the removal occurring between solid–liquid systems de-
pending upon the removal capability of adsorbents [49]. The linear formula for PSO kinetic
is equated as follows [50]:

log(Qe − Qt) = logQe −
k1

2.303
t (3)

where Qe and Qt are the equilibrium concentration and concentration at time t of CR
(mg·g−1), respectively, and k1 (min−1) is the PFO rate constant. The PFO linear fitting plot
of log(Qeq − Qi) versus t presents a poor correlation coefficient (Table 2), showing that the
removal process did not follow the PFO kinetic model.

The PSO kinetic equation depicts a chemisorption phenomenon from solution [43],
and it is obtained via the following formula [51]:

t
Qt

=
1

k2Q2
e
+

1
Q e

t (4)

where k2 (g·mg−1·min−1) is the PSO rate constant, Qe and Qt (mg·g−1) are the adsorp-
tion capacity at equilibrium and at time t, respectively, and k2Qe2 (g·mg−1·min) represents
the initial adsorption rate.

In order to identify more the kinetic mechanism of the adsorption process, intraparticle
diffusion (the Weber–Morris) type was used to simulate the adsorption kinetics of CR on
adsorbents as follows:

Qt = kit0.5 + C (5)

where Qt is the adsorbed amount at time t (mg·g−1), C is the maximum adsorption amount,
and ki is the intraparticle diffusion rate constant (g·mg−1·min−1).

The PSO model fit the acquired data better that the PFO formula. Thus, the FSO
equation was more efficient in defining the kinetics of the selected CR on these adsorbents
and proved that the adsorption was chemisorption. The high correlation coefficients and
adsorption rate of CR are given in Table 2. Moreover, the calculated value of Qeq.Cal
obtained from the PSO form was close to the empirical values of Qeq.Exp. On the other hand,
the intraparticle diffusion model had a lower R2 than the other two models. Moreover, the
C < 0 was reported in previous removal studies and illustrated that external film diffusion
limits the elimination rate in addition to intraparticle diffusion [52]. Therefore, the negative
values of C can be interpreted as an external intraparticle diffusion resistance leading to the
time delay in CR removal.
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Table 2. PFO, PSO, and intraparticle diffusion sorption rate constants and Qeq value for the elimina-
tion of CR on adsorbent samples at 298 K, pH: 6.5, and C0: 20 mg·L−1.

Models Constants PPSH PPSOH PANI@PPSH

PFO
k1 (min−1) 0.039 0.028 0.015

Qeq.Cal (/mg·g−1) 10.06 10.67 3.87

R2 0.83 0.84 0.75

PSO
k2.ads (g·mg−1·min−1) 0.0160 0.0149 0.0103

Qeq.Cal (mg·g−1) 9.71 8.18 17.88

R2 0.99 0.98 0.99

Intraparticle
diffusion

ki (g·mg−1·min−1) 0.227 0.225 0.121

C (mg·g−1) −1.72 −2.49 −2.52

R2 0.81 0.82 0.66

3.3. Adsorption Isotherms

Modeling the adsorption process is the key to revealing the adsorption mechanism.
As illustrated in Figure 5c, the maximum adsorption capacity was explored and its adsorp-
tion behavior was determined through examining the isotherm adsorption models of CR
onto adsorbents. The Freundlich, Langmuir, and Temkin models were selected to fit the
empirical data.

The Langmuir model exhibited the adsorbents’ surface to be uniform, consisting of
fixed numbers of adsorption sites. Additionally, the removal was monolayer. The linear
law is demonstrated as follows [53]:

Ceq

Qeq
=

1
KlCm

+
Ceq

Qm
(6)

where Qeq (mg·g−1), Ceq (mg·L−1), and Qm (mg·g−1) represent the amount adsorbed,
the equilibrium concentration of the adsorbate, and the monolayer adsorption capacity,
respectively; Kl (L·mg−1) represents the Langmuir constant.

Both multilayer (physisorption) and monolayer (chemisorption) can be measured
using the Freundlich model. This form is depending on the heterogeneous equilibrium on
adsorbents’ surface. The Freundlich formula is presented as follows [50]:

lnQeq = lnKf +
1
n

lnCeq (7)

where Kf (mg-1/n·L/n·g-1) represents the Freundlich constant and 1
n symbolizes the Fre-

undlich factor.
The Temkin model assumes a uniform distribution of binding energy up to a certain

better level. It is based on the assumption that the heat of adsorption will not remain
constant. It is expressed by Equations (8) and (9) [52]:

Qeq = BlnAT + BlnCeq (8)

B =
RT
bT

(9)

where bT is the Temkin constant, AT (L·g−1) is the binding constant, R (8.314 J·mol−1·K−1)
is the universal gas constant, B (J·mol−1) is the constant related to the heat of sorption, and
T (K) is Temperature.

The adsorption isotherms of the three adsorbents prepared are displayed in Figure 5c.
The experimental values were successfully fitted to the Freundlich isotherm; this confirmed
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the multilayer surface coverage [39]. The Freundlich isotherm parameters depicted max-
imum percentage removal efficiencies of 91.13%, 53.28%, and 50.06% for PANI@PPSH,
PPSH, and PPSOH, respectively, and a like affinity to CR binding (Table 3). The formation
of PPSH on the PANI matrix greatly increased the elimination capacity. This behavior was
due to the large specific area provided by the polymer chain (such as aromatic units, amine,
and imine functions) that produces novel active sites where CR could bind by electrostatics
or π–π interactions [39,54]. Conversely, in the absence of PANI on the PPSH surface, the
elimination capacity decreased because PPSH sites became saturated quickly due to the
diminutive pores, and the effluent was not being treated completely [53]. In this way, a
higher elimination capacity was obtained for the PANI@PPSH because of the formation of
more active binding sites. This higher elimination was reflected in the adsorption efficacy
since capacity higher than 17.14 mg·g−1 was obtained at weak concentrations and an adsor-
bent dosage of 20 mg·L−1. Moreover, values of correlation coefficient (R2) found using the
linear transformation of the Temkin model were comparable to the Freundlich isotherm.
The variation of adsorption energy, bT, was positive for all the studied adsorbents, implying
that the adsorption of CR by this material is an exothermic reaction.

Table 3. Langmuir, Freundlich, and Temkin isotherms’ data for CR removal by samples at 298 K and
pH: 6.5.

Adsorbents Constants PPSH PPSOH PANI@PPSH

Langmuir

Qm (mg·g−1) 21.83 13.57 27.10
KL (L·mg−1) 0.051 0.104 0.076

RL 0.474 0.415 0.327
R2 0.726 0.864 0.826

Freundlich
KF (mg1−1/nL1/ng−1) 0.925 1.290 1.716

n 1.30 1.65 1.43
R2 0.977 0.917 0.930

Temkin

B 2.997 5.043 4.103
AT (L·g−1) 1.589 0.806 11.17

bT (J·mol−1) 826.57 491.24 603.79
R2 0.906 0.994 0.914

Figure 5d presents the comparison of elimination capacity of a hybrid adsorbent
with PPSH and PPSOH. It was remarked that the CR adsorption capacity of PPSH was
1.7 times lower than that of the hybrid adsorbent, whereas PPSOH provided only 50.06%
elimination capacity. These capacities were much lower than PANI@PPSH. The results
confirmed that the existence of the PANI matrix in the hybrid adsorbent played a major
role in CR elimination.

Polymers induced the generation of adsorption active sites for CR, which in turn
increased removal capacity. On the other hand, a comparison of relative adsorption using
different adsorbent materials based on the literature is summarized in Table 4 [55–71].

Table 4. Adsorption efficiencies (%) of Congo Red (CR) dye on several adsorbents.

Adsorbents Adsorption
Efficiency pH C0 of CR

(mg·L−1) Ref.

Sawdust 31.2 7.0 20 [55]

Jujuba seeds 55.56 2.0 25 [56]

Activated red mud 7.08 7.0 // [57]

Rubber seeds 9.82 6.0 // [58]

Cashew nutshell 5.14 2.0 // [59]

Pineapple plant stem 11.97 4.0 50 [60]
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Table 4. Cont.

Adsorbents Adsorption
Efficiency pH C0 of CR

(mg·L−1) Ref.

Raw pinecone 10.28 5.8 // [61]

Kenaf Self-activation 14.16 6.95 1000 [62]

Biochar 11.00 7.5 1000 [63]

FS@CS-PAA 19.72 5.0 50 [64]

TiO2–NPs–ACWR 17.00 4.3 10 [65]

Apricot stone 23.42 13 100 [66]

Clay–biochar composite 11.9 5.7 20 [67]

Pine bark-derived char 3.92 7.0 5 [68]

Activated carbon (Coir pith) 6.72 6.3 40 [69]

Chitosan/Montmorillonite 12.70 3.0 200 [70]

Bengal gram fruit shell (SP) 22.22 6.95 50 [71]

PANI@PPSH 17.14 6.5 20 This work

3.4. Adsorption Thermodynamics

The entropy change (∆S) and enthalpy content change (∆H) were determined by the
van’t Hoff law:

Ln
(Qeq

Ceq

)
= −∆H

RT
+

∆S
R

(10)

The Gibbs free energy (∆G) can be measured via the following law:

∆G = ∆H − T∆S (11)

where R (8.314 J·mol−1·K−1) represents the general gas constant and T (K) represents the
absolute temperature.

Because of the influence of temperature on the CR removal by adsorbents, the ther-
modynamic data of PPSH, PPSOH, and PANI@PPSH were investigated at distinct tem-
peratures (Figure 6a). The ∆S and ∆H values were calculated using the slope and in-
tercept according to the van’t Hoff equation [72]. For PANI@PPSH and PPSH, the ∆G
was negative (Table 5), suggesting that the process was workable and adsorption was
spontaneous thermodynamically, while the positive ∆G values of PPSOH proved that it
was thermodynamically unfavorable for efficient elimination, with like results reported in
the literature [73]. At the same time, the positive value of ∆H proved that the interaction
between the CR dye and adsorbents was exothermic processes [74]. Besides, the adsorption
process might be chemical or physical. Participating force links in the physical removal
operation were feeble. Thus, the heat of elimination generally was less than 21 kJ·mol−1. In
physical elimination, involved force links are less powerful than chemical removal and the
heat of elimination in chemical adsorption is such that the heat of the chemical reaction
is around 21 to 42 kJ·mol−1 [75]. In this way, the achieved ∆H value (20.75 kJ·mol−1) and
the elimination of CR by PANI@PPSH adsorbent was physical adsorption. The positive ∆S
value indicated that the density of the system increased with the adsorption of CR on the
adsorbent samples.
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Table 5. Thermodynamic data for CR adsorption by the three adsorbents prepared.

Adsorbents T (K) ∆G (kJ·mol−1) ∆H (kJ·mol−1) ∆S (kJ·mol−1)

PPSH

298 −0.30

23.54 0.080
308 −1.10

318 −1.90

328 −2.70

PPSOH

298 1.012

10.25 0.031
308 0.702

318 0.392

328 0.082

PANI@PPSH

298 −4.878

20.75 0.086
308 −5.738

318 −6.598

328 −7.458

3.5. Adsorption Mechanism

The mechanism of dye removal through the adsorbents in aqueous solution can
be influenced by many factors, including the surface area of adsorbents, the textural
properties, and the nature of the interaction between the adsorbents and the dyes, such
as π—π stacking, hydrogen bonding, electrostatic attractions, ion exchange, coordination,
and acid/base interaction [76]. Moreover, based on the above analyses of the isothermal
and kinetic models, physisorption (multilayer) and chemisorption (monolayer) adsorption
probably dominate the adsorption process on a uniform surface. Furthermore, the existence
of the PANI chain on the PPSH surface caused the surface to be negatively charged, which
played an important role in these elimination processes. The adsorption mechanisms can
be illustrated in two formats. Physisorption can be realized on the PANI structure surface
or/and into PPSH porosity, or chemisorption by interaction between CR dye and PANI
backbone. In addition, there is a possibility of hydrogen bonding between amine functions
of polymer and nitrogen existing in the CR structure. Furthermore, the existence of benzene
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and quinone units with a delocalized π-conjugated structure and electrochemically active
sites in the polymer chain creates an additional factor into the PPSH surface and ameliorates
the favorable adsorption of CR dye. Accordingly, the IR spectrum for PANI@PPSH was
obtained after CR adsorption (Figure 1b), indicating the effect of CR adsorption by different
functional groups (the changes in the wavenumber, reduction, and disappearance of the
bands were evident according to the IR spectrum peaks). These results are consistent with
the studies of Chan et al. [60], which suggested a formation of a binding of CR to different
functional groups on the surface of the adsorbent.

3.6. Stability and Recyclability of Adsorbents

The regenerability of the material is an important parameter to evaluate whether the
adsorbent can be used in practice. The response surface optimized conditions of pH 6.5 and
1 g/L of 20 mg·L−1 CR concentration, followed by elution with C2H5OH, H3PO4 (1 M), and
finally by distilled water. Five consecutive adsorption/desorption tests were performed to
evaluate the reusability of the adsorbent samples. The elimination rates obtained are shown
in Figure 6b. After five experiments, PANI@PPSH still showed a good regeneration rate
and the removal rate at a high 80%, whereas the adsorption capacity of PPSH and PPSOH
decreased to 2.43% and 1.28% after five cycles, respectively. This showed that desorption
in the acid solution helped to restore the pristine structure of PANI (Emeraldine salt),
which was the main compound in the hybrid adsorbent [77]. In the existence of acid, the
amine nitrogen atoms of CR tend to evolve a positive charge. In contrast, the electrostatic
attractive forces between the CR dye and the hybrid adsorbent can be weakened, leading
to desorption of CR from PANI@PPSH.

4. Conclusions

A novel, activated carbon (PPSH and PPSOH) was prepared by chemical activation
of PPS with phosphoric acid and sodium hydroxide. PANI chains were grown on the
surface of the PPSH support by in situ polymerization to significantly improve the CR
removal capacity. The characterization of the obtained adsorbents was performed by XRD,
XPS, FTIR, SEM, TGA, and N2 adsorption/desorption isotherms. Using PANI@PPSH as
adsorbent, the maximum adsorption capacity for CR dye reached 17.14 mg·g−1, and the
obtained results proved that the PSO model fit the experimental values well. Moreover, the
Freundlich and Temkin isotherm models were found to be much better than the Langmuir
isotherm model in describing the removal behavior of the dye by the hybrid adsorbent,
indicating that the active sites were saturated and a chemical adsorption mechanism was
present. Significantly, the hybrid adsorbent exhibited the highest adsorption capacity
(80.15%) after five cycles of the adsorption/desorption process. These results indicate that,
in general, the PANI matrix can be better used for elimination when it is distributed on the
surface of suitable support materials. In addition, thermodynamic studies indicate that the
adsorption process is exothermic and spontaneous.
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