Supplementary Materials: Ultra-Long-Term Reliable Encapsulation Using an Atomic Layer Deposited HfO₂/Al₂O₃/HfO₂ Triple-Interlayer for Biomedical Implants

Changzheng Li¹, Maarten Cauwe^{1,*}, Yang Yang^{1,2}, David Schaubroeck¹, Lothar Mader¹ and Maaike Op de Beeck^{1,*}

- ¹ Centre for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 126, 9052 Gent, Belgium
- ² Pacific Northwest National Laboratory, Richland, WA 99352, USA
- * Correspondence: Maarten.Cauwe@imec.be (M.C.); Maaike.OpdeBeeck@imec.be (M.O.d.B.); Tel.: +32-9264-6601 (M.C.); +32-9264-5364 (M.O.d.B.)

Figure S1. EIS measurements comparison for PI/ALD-3/PI coating samples when the potentiostat updated with a low current module: (**a**) bode plot of impedance spectra against frequency; (**b**) bode plot of phase against frequency. The current resolution extends from 760 pA down to 76 fA.

Figure S2. Fitting results in bode plot for the barriers based on equivalent circuit model in Figure 6a: (**a**,**b**) Al₂O₃; (**c**,**d**) ALD-3; (**e**,**f**) PI/ALD-3/PI.

Figure S3. Fitting results for PI barrier based on equivalent circuit model in Figure 6a: (**a**) bode plot of impedance spectra against frequency; (**b**) bode plot of phase against frequency.

Figure S4. Fitting results for PI barrier based on equivalent circuit model in Figure 7: (**a**) bode plot of impedance spectra against frequency; (**b**) bode plot of phase against frequency.

Table S1. Fitted equivalent circuit model parameters of 20 nm ALD Al₂O₃ coating layer on copper.

Soaking Time (days)	Rpbs (Ohm/cm ²)	$Q_{ m b}$ (F s ⁿ⁻¹ /cm ²)	n	R _{pore} (Ohm/cm ²)	Error
0	12	2.3 × 10 ⁻⁷	1.00	7.7×10^{7}	2%
1	10	2.6 × 10 ⁻⁷	0.99	1.2×10^{7}	2%
2	12	3.3×10^{-7}	0.98	1.8×10^{6}	4%
3	9	6.5×10^{-7}	0.91	1.8×10^{5}	9%
4	8	1.4×10^{-5}	0.72	1.8×10^{3}	15%

Table S2. Fitted equivalent circuit model parameters of ALD ALD-3 coating layer on copper

Soaking Time (days)	Rpbs (Ohm/cm ²)	$Q_{ m b}$ (F s ⁿ⁻¹ /cm ²)	п	R _{pore} (Ohm/cm ²)	Error
0	5	2.1 × 10-7	1.00	2.9×10^{7}	2%
10	12	2.2 × 10 ⁻⁷	1.00	1.7×10^{7}	3%
20	8	2.2 × 10 ⁻⁷	1.00	4.2×10^{6}	4%
29	9	2.1 × 10 ⁻⁷	1.00	5.8×10^{6}	4%
40	11	2.4×10^{-7}	0.98	5.5×10^{5}	4%
62	9	2.6 × 10 ⁻⁷	0.97	3.6×10^{5}	5%
95	7	3.3 × 10 ⁻⁷	0.95	3.5×10^{5}	5%
125	8	4.0×10^{-7}	0.93	1.2×10^{5}	12%
147	6	4.9×10^{-7}	0.92	7.9×10^{4}	18%

Soaking Time (days)	R _{PBS} (Ohm/cm²)	<i>С</i> ь (F/ст²)	R _{pore} (Ohm/cm²)	Cdl (F/cm ²)	R _{ct} (Ohm/cm²)	W (Ohm s ^{-1/2} /cm ²)	Error
0	5	5.7×10^{-10}	7.3×10^{8}	-	-	_	9%
23	5	5.8×10^{-10}	1.2×10^{6}	7.0×10^{-10}	2.5×10^{9}	_	8%
62	19	5.9×10^{-10}	1.1×10^4	7.0×10^{-10}	3.3×10^{9}	_	6%
115	11	5.7×10^{-10}	4.7×10^4	7.2×10^{-10}	2.8×10^{9}	_	5%
168	22	5.9×10^{-10}	5.2×10^{3}	7.2×10^{-10}	4.3×10^{9}	_	8%
219	21	6.0×10^{-10}	5.4×10^3	7.1×10^{-10}	2.4×10^{9}	_	6%
265	21	6.1×10^{-10}	3.1×10^{3}	7.6×10^{-10}	2.5×10^{9}	_	4%
281	17	6.2×10^{-10}	2.7×10^{3}	7.5×10^{-10}	8.7×10^{5}	2.3×10^{5}	3%
321	24	6.3×10^{-10}	2.4×10^{3}	7.7×10^{-10}	2.4×10^{5}	2.3×10^{5}	6%
392	27	6.5×10^{-10}	2.2×10^{3}	7.7×10^{-10}	2.0×10^{5}	1.7×10^5	5%
477	20	6.4×10^{-10}	2.4×10^{3}	8.0×10^{-10}	2.5×10^{5}	1.9×10^5	4%

Table S3. Fitted equivalent circuit model parameters of PI coating layer on copper

Table S4. Fitted equivalent circuit model parameters of PI/ALD-3/PI coating layer on copper^a.

Soaking Time (days)	R _{PBS} (Ohm/cm ²)	<i>C</i> ь (F/ст ²)	R _{pore} (Ohm/cm ²)	Error
0	6	2.8 × 10 ⁻¹⁰	9.3×10^{8}	30%
56	8	2.7×10^{-10}	4.3×10^{8}	28%
115	5	2.7×10^{-10}	9.2×10^{8}	22%
155	7	2.7×10^{-10}	4.5×10^{8}	28%
192	6	2.6×10^{-10}	5.5×10^{8}	25%
281	5	2.6×10^{-10}	5.2×10^{8}	20%
366	7	2.8×10^{-10}	4.0×10^{8}	32%
477	14	2.6×10^{-10}	2.9×10^{8}	21%
681	13	2.7×10^{-10}	3.3×10^{8}	23%
776	10	2.7×10^{-10}	4.5×10^{8}	21%
868	15	3.0×10^{-10}	4.0×10^{8}	31%
973	12	2.6×10^{-10}	2.4×10^{10}	4%
1028	11	2.6×10^{-10}	7.5×10^{9}	5%

^a The fitting error for the data fits of PI/ALD-3/PI is relative high during the first 868 test days because the impedance value is out of detection limits of the potentiostat. The error drops down to 5% at the last two measurements (the last two shaded rows) since the "low current module" installed to increase detection limits of the potentiostat.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).