
Supplementary Materials: First Principles Study of Gas Molecules Adsorption on Monolayered β-SnSe

Tianhan Liu¹, Hongbo Qin^{1,*}, Daoguo Yang¹ and Guoqi Zhang^{1,2}

- ¹ School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; 1801302029@mails.guet.edu.cn (T.L.); d.g.yang@guet.edu.cn (D.Y.); g.q.zhang@tudelft.nl (G.Z.)
- ² EEMCS Faculty, Delft University of Technology, 2628 Delft, The Netherlands
- * Correspondence: qinhb@guet.edu.cn; Tel.: +86-773-2290108

Received: 30 April 2019; Accepted: 13 June 2019; Published: 17 June 2019

Figure S1. Total potential energy of pristine monolayer SnSe at 300 K within 5 ps during the first-principles molecular dynamics (MD) simulation.

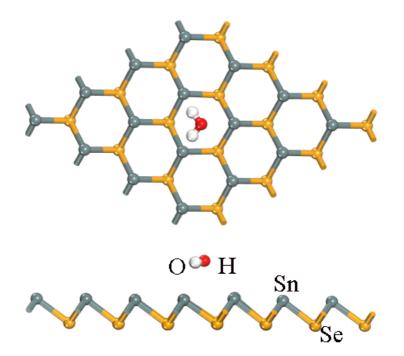
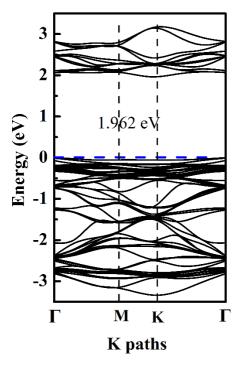
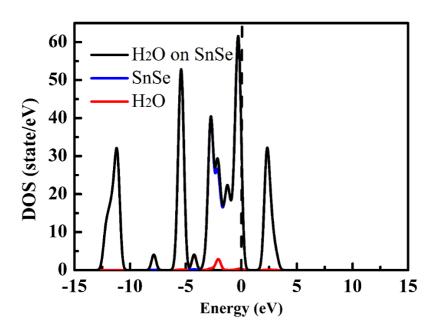




Figure S2. The most stable site of structural optimizations for H₂O on β -SnSe layer is presented.

Figure S3. Band structure of the monolayered β -SnSe with the H₂O molecules.

Figure S4. Total DOSs of the H₂O on SnSe (black curve), the projected DOS of SnSe (red curve), and the adsorbate molecules (blue curve) for H₂O on SnSe monolayer. The *E*^{*t*} is set to zero, as illustrated by black dotted line.

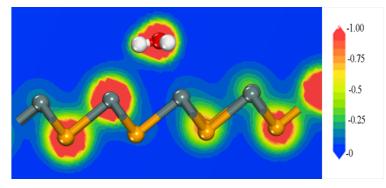


Figure S5. The slice of charge densities for the β -SnSe monolayer with the H₂O molecule. The value of electron densities ranges between 0 and 1.00 e/Å³.