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Abstract: Considering the requirements of medical implantable devices, it is pointed out that
biomaterials should play a more sophisticated, longer-term role in the customization and optimization
of the material–tissue interface in order to ensure the best long-term clinical outcomes. The aim
of this contribution was to assess the performance of silicon carbide–hydroxyapatite in various
simulated biological fluids (Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid
(SBF), and phosphate buffer solution (PBS)) through immersion assays for 21 days at 37 ± 0.5 ◦C and
to evaluate the electrochemical behavior. The coatings were prepared on Ti6Al4V alloy substrates by
magnetron sputtering method using two cathodes made of hydroxyapatite and silicon carbide (SiC).
After immersion assays the coating’s surface was analyzed in terms of morphology, chemical and
phase composition, and chemical bonds. According to the electrochemical behavior in the media
investigated at 37 ± 0.5 ◦C, SiC addition inhibits the dissolution of the hydroxyapatite in DMEM
acellular media. Furthermore, after adding SiC, the slow degradation of hydroxyapatite in PBS and
SBF media as well as biomineralization in DMEM were observed.

Keywords: SBF; DMEM; PBS; hydroxyapatite; silicon; magnetron sputtering

1. Introduction

Nowadays, great efforts are dedicated to the development of biomaterials with tunable properties.
One of the proposed solutions is the usage of calcium phosphate (CaP)-based coatings. Today’s
trends in medicine and bioengineering indicate that by using active biomaterials, a more prompt,
enhanced, and improved healing process will take place without eliciting any adverse immune rejection
reactions [1–4]. Due to its remarkable properties and similarity with the inorganic phase of the bone,
hydroxyapatite (HAp), the most known “member” of the CaP family, has been extensively used as
both a bulk bioactive ceramic and/or a coating in medical applications [5–9].

Considering the requirements of medical implantable devices, it is pointed out that the biomaterials
should play a more sophisticated, longer-term role in the customization and optimization of the
material–tissue interface in order to ensure the best long-term clinical outcomes [1–4,10].
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The biofunctionality and in vitro abilities of HAp can be adjusted by controlling its phase, structure,
composition, and morphology. One way to achieve this is by incorporating/adding different elements
such as F [11], Mg [12–17], Zn [12,17–21], Ag [16,19,22], Sr [13,17,23], and Si [24–29] into the HAp
structure, which is very flexible. A considerable number of scientific papers related to the substitution
of HAp with various elements can be found in the literature, indicating that this is an important path
in the biomaterial and medical fields. The doping/addition elements have been selected either due to
their properties or because they can be found in natural human bone in quantities ranging from wt.%
to ppm levels [30,31]. Regardless of the selection criteria, they exhibit a beneficial influence on the
overall abilities, characteristics, and properties of HAp.

In order to predict the biomaterials’ in vivo behavior, initial tests should be performed in vitro
by monitoring the formation of an apatite layer and/or the degradation of the biomaterial [32].
When talking about HAp degradation, the dissolution rate in the human body environment is
considered a key indicator, because HAp needs to be biologically resorbed by the body within a certain
period after implantation, leading to an enhanced osseointegration. Consequently, from the bioactivity
point of view, the substitution of hydroxyapatite with different elements could be the most suitable
solution for decreasing the dissolution rate of hydroxyapatite, giving enough time for the strong
anchorage of the implant [25].

In our previous papers [33–35], we aimed and succeeded to enhance the mechanical properties
of sputtered hydroxyapatite coatings by adding SiC into their structure without affecting their
osseointegration and bioactive characteristics. According to our studies, SiC addition improved
the hardness and elastic modulus of HAp coating, this being a positive effect for materials used in
biomedical applications. Also, we showed that SiC-added HAp coating has a superior electrochemical
behavior in artificial saliva, being a good solution for dental applications. Moreover, we showed that
Ag addition into HAp coating increases its antibacterial abilities without affecting its bioactivity or
biomineralization abilities [22].

According to Mertz [36], silicon can be considered a key element, being indispensable for health,
while Carlisle [37] suggested that silicon not only has a structural role but also a metabolic role in hard
connective tissues. Moreover, it has been indicated that silicon is involved in bone formation through
the synthesis and/or stabilization of collagen. Its presence was found at the mineralization front of
growing bone [38], suggesting an involvement in early the calcification/mineralization of the bone
matrix. Thus, silicon was selected for addition into the HAp structure, because it is an essential trace
element found in small quantities in bones and other major organs, and its lack has been associated
with bone and joint diseases [39–43].

In the present study, we immersed Hap + SiC samples in different biological media such as
Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid (SBF), and phosphate buffer
solution (PBS) for 21 days at 37 ± 0.5 ◦C to analyze their effect and to observe if these coatings are also a
good choice for orthopedic applications. Because we want to highlight the use of the proposed coatings
as potential candidates for orthopedic applications as well, we selected the three media mentioned
above due to their similarity to the human environment and because they are frequently mentioned in
biocompatibility assays and electrochemical behavior. Moreover, by using three media that present
few similarities and major differences concerning their chemical compositions, a wider vision can
be obtained concerning the biomaterial’s behavior. Regardless of the available data, there is limited
information on the behavior of HAp + SiC coatings obtained by the magnetron sputtering method in
acellular media (DMEM, SBF, and PBS).

To highlight the electrochemical behavior of the coatings, electrochemical measurements at
37 ± 0.5 ◦C in all three media were performed. To the best of our knowledge, such study is not present
in the literature and it is our belief that this investigation will provide valuable information to the
scientific community. The influence of SiC addition has been previously investigated in terms of
physicochemical, mechanical, and in vitro biocompatibility assays (cell viability/cytotoxicity assays)
and a positive influence on the HAp structure and cell behavior was noted [33,34]. The present study
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intends to expand the research on HAp + SiC coatings and add some valuable results by performing
in vitro assays in different acellular media (DMEM, SBF, and PBS).

2. Materials and Methods

The coatings were prepared using an RF-magnetron sputtering method onto both Ti6Al4V alloy
and Si wafer substrates. For the deposition, two cathodes with a 1 inch diameter of hydroxyapatite
and SiC (99.9% purity, Kurt J. Lesker Co., Hastings, UK) were used. The Si wafer was used as a
substrate only for the phase compositions of HAp and the HAp with the addition of SiC. The following
deposition conditions were carried out: base pressure = 1.3 × 10−4 Pa; Ar pressure = 6.6 × 10−1 Pa;
RF power fed on both hydroxyapatite cathodes = 50 W; RF power fed on SiC cathode = 15 W; bias
voltage = −60 V; deposition temperature = 700 ◦C. These parameters were carefully chosen based on
our earlier results published in [33–35].

SiC-added hydroxyapatite coatings were tested in vitro in order to study their behavior in the
following simulated biological fluids: (1) DMEM prepared from DMEM powder (Sigma Aldrich,
Darmstadt, Germany); (2) SBF prepared according to Kokubo’s recipe [44]; and (3) PBS prepared by
using PBS tablets (Sigma Aldrich, Darmstadt, Germany). The pH for all three media was adjusted
to 7.4 by dropwise addition of 1 M HCl and 1 M NaOH for SBF and sodium bicarbonate for DMEM.
All three media used for these assays yield valuable information about the coating behavior in the
simulated biological system and their chemical compositions are presented in Table 1. The immersion
assays were performed according to ISO/FDIS 23317:2007 [45].

Table 1. Chemical composition of acellular media simulated body fluid (SBF), Dulbecco’s modified
Eagle’s medium (DMEM), and phosphate buffer solution (PBS) in comparison with human blood plasma.

Chemical Composition
Human

Blood Plasma
Acellular Media

SBF DMEM [46,47] PBS

Ion
Concentration

(mM)

Na+ 142 142 154.5 137
K+ 5 5 5.4 2.7

Mg2+ 1.5 1.5 0.8 −

Ca2+ 2.5 2.5 1.8 −

Cl− 103 148.8 120.5 −

HCO3
− 27 4.2 44 −

HPO4
− 1 1 0.9 10

SO4
2− 0.5 − 0.8 −

Buffer TRIS and
1 M HCl No NaHCO3

pH 7.2–7.4 7.4 7.4 7.4

Amino Acids N/A No

0.084 g/L L-Arginine · HCl

No

0.042 g/L L-Histidine · HCl · H2O
0.105 g/L L-Isoleucine
0.105 g/L L-Leucine
0.146 g/L L-Lysine · HCl
0.03 g/L L-Methionine
0.066 g/L L-Phenylalanine
0.042 g/L L-Serine
0.095 g/L L-Threonine
0.016 g/L L-Tryptophan
0.10379 g/L L-Tyrosine, 2Na · 2H2O
0.094 g/L L-Valine
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Table 1. Cont.

Chemical Composition
Human

Blood Plasma
Acellular Media

SBF DMEM [46,47] PBS

Vitamins N/A No

0.004 g/L Choline Chloride

No

0.004 g/L Folic Acid
0.0072 g/L Myo-Inositol
0.004 g/L Niacinamide
0.004 g/L D-Pantothenic Acid · 1

2 Ca
0.004 g/L Pyridoxal · HC
0.0004 g/L Riboflavin
0.004 g/L Thiamine · HCl

Other Components N/A No
1.0 g/L D-Glucose

No0.0159 g/L Phenol Red · Na
0.11 g/L Pyruvic Acid · Na

After the in vitro immersion experiments, the following analyses were carried out (Figure 1):

• Elemental composition and morphology using a scanning electron microscope (SEM, Hitachi
TM3030Plus, Tokyo, Japan) equipped with energy dispersive spectrometry (EDS, Bruker);

• Mass evolution, which was monitored gravimetrically using an analytical balance (ALT 100-5AM,
Kern, Balingen, Germany) with an accuracy of 0.01 mg;

• Phase composition by grazing-incidence XRD (X-ray diffraction) using Cu Kα radiation (SmartLab,
Rigaku, Tokyo, Japan) from 10◦ to 80◦ with a step size of 0.02◦/min and an incident angle of 2◦;

• Chemical binding by Fourier transform infrared spectroscopy at a resolution of 4 cm−1, over
the frequency range of 500–4000 cm−1 using an FTIR-6300 spectrophotometer (Jasco, Tokyo,
Japan) with a universal Pike MIRacle attenuated total reflectance (ATR) sampling accessory
(Pike Technologies, Madison, WI, USA).
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mV vs. the open circuit potential (Eoc). 

Figure 1. Schematic illustration of the experimental setup and analysis.

The in vitro electrochemical behavior was achieved using a PARSTAT 4000 Potentiostat/Galvanostat
(Princeton Applied Research, Princeton, NJ, USA) coupled with a Low Current Interface (VersaSTAT
LC, Princeton Applied Research) to evaluate the behavior of HAp + SiC coatings in all three simulated
biological media (DMEM, SBF, and PBS). The tests were carried out in a typical three-electrode
electrochemical cell applying the following protocol:

• An area of 1 cm2 was exposed to the acellular media, placing the sample in the working electrode
(WE—a Teflon sample holder);

• A platinum electrode was used as the counter electrode (CE);
• A saturated calomel (SCE) as the reference electrode (RE).

All measurements were achieved according to the ASTM G5–94 standard (reapproved 2011) at a
scanning rate of 1 mV/s. The open circuit potential (OCP) was monitored for 1 h, starting right after the
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sample’s immersion in the electrolyte, and the potentiodynamic curves were recorded from ±250 mV
vs. the open circuit potential (Eoc).

For initial assessment of the potential bioactivity of a material, the apatite formation occurring
in vivo was reproduced in vitro in different acellular media [44,48–53].

3. Results and Discussions

3.1. SEM and EDS after Immersion in DMEM, SBF, and PBS

It is well documented that both biomineralization and biodegradation processes/phenomena
occur either simultaneously and/or in competition with each other due to chemical reactivity [54–56].
Thus, based on all of these, a bioactive surface will slightly dissolve in time, favoring the formation
of a new apatite layer and promoting the formation of chemical bonds directly on the hard
tissue [57–60]. Meanwhile, through biodegradation, regardless of the mechanism that leads to the
material removal/resorption, the tissue will grow directly in all the irregularities found on the surface
without it being necessary for the interface to interact directly with the material [25,54,61–67].

SEM images of each sample after its exposure in DMEM, SBF, and PBS can be observed in Figure 2.
In order to show details of the mechanism of biomineralization/degradation, the EDS results are also
presented in Figure 2.
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Note that the coatings before biomineralization tests exhibited a Ca/P ratio of about 1.67 ± 0.02.
The SEM images of surfaces before biomineralization are published in [34]. Thorough characterization
of the HAp and SiC-doped HAp coatings in terms of phase composition, topography and surface texture,
adhesion between the coating and substrate, chemical bonds, and mechanical properties (hardness and
elastic modulus) can be found in previous publications [33–35]. Due to the dissolution/precipitation
mechanism that occurs at the interface between HAp + SiC and the testing media, the Ca/P ratio of the
HAp + SiC coating after immersion presented modifications which sustained the degradation and/or
led to biomineralization.

According to the SEM images, the coated surfaces immersed in PBS suffered a degradation process
that was initiated at the beginning of the tested 21 days. It is necessary to specify that in the literature
the apatite formation mechanism starts with the partial dissolution of calcium ions from HAp, which
then react with phosphate ions in PBS to form apatite [68,69].

This result is also confirmed by the EDS analysis, which showed that the Ca/P ratio decreased by
increasing the immersion time. From this it can be assumed that the dissolution process is predominant
and not balanced by the apatite precipitation. It is worth mentioning that PBS is a balanced salt solution
commonly used in biological research due to its resemblance to human extracellular fluid, and it has
also been used in degradation studies [70–73].

In SBF media, the developed layer also presented signs indicating partial degradation. For SBF
acellular media, the EDS results indicated a Ca/P ratio above 2, suggesting the formation of a layer
consisting of Ca-enriched hydroxyapatite. The SEM and EDS results of the coatings immersed in
DMEM clearly showed the formation of new apatite phases, which increased with increasing the
immersion time. Moreover, the chemical composition of the media influenced the HAp + SiC behavior.
This was more visible for DMEM which, besides its similar ion concentrations with SBF, contains amino
acids, vitamins, and other components that favor the precipitation of new apatite phases. However,
further studies need to be performed in order to provide a wider perspective.

In the light of the aforementioned observations, it can be assumed that the HAp + SiC coatings
presented some areas that are susceptible to the dissolution process, leading to their degradation, while
other areas remained stable, as it can be seen in Figure 2.

In PBS, the coatings started their degradation from the first day of immersion, initially presenting
signs of cracks followed by areas of delamination from the substrate surface. Starting on day 14, larger
areas without coating could be observed, indicating that the coating was more or less dissolved by the
media. Overall it can be said that the coatings were more affected by the PBS and SBF solutions than
by DMEM.

3.2. Mass Evolution in DMEM, SBF, and PBS

The mass evolution of the coatings immersed in DMEM, SBF, and PBS over 1, 3, 7, 14, and 21 days
is presented in Figure 3. It is generally known that the newly formed apatite layer is accepted as a
hallmark of the bioactive materials and it is assumed to enable the quick formation of a mechanically
stable and functional interface at the biomaterial–tissue level.

For the coatings immersed in SBF and PBS, the lost mass increased with increasing the immersion
time, signifying that the coatings were degraded in these two media. Regarding the coatings immersed
in DMEM, the mass increased with the immersion time, demonstrating good mineralization abilities.
This effect was more obvious after 21 days of immersion. With respect to the acellular media used in
this study, it can be said that DMEM presents not only different types of salts but also vitamins, proteins,
and other nutrients, while SBF and PBS acellular media present some similarities in terms of their
chemical compositions. Nevertheless, Porter et al. [74] hypothesized that the different behavior of HAp
+ SiC could also be associated with the number and types of structural defects present in the coatings.
They suggested that a higher number of defects could lead to an increased solubility and, consequently,
a more elevated bone apposition rate, following a process of dissolution/precipitation [31].
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All things considered, it is possible that due to the preparation method, the developed coatings
may have presented some compactness defects, thus influencing the films’ behavior in the acellular
media. All together, these results suggest that in the presence of proteins, a higher interaction at the
HAp + SiC and acellular media level is observed, thus limiting the coating degradation. According to a
study by Schwarz, Si can bind to connective tissue and its components, specifically glycosaminoglycans,
polysaccharides, and mucopolysaccharides [75], although the mechanism by which this occurs is
yet to be elucidated. Moreover, Hench et al. [76] suggested that such materials have been shown to
present higher bonding abilities to bone compared to their counterparts without Si by the spontaneous
formation of a biologically active apatite-like layer on their surface.

3.3. XRD after Immersion in DMEM, SBF, and PBS

Figure 4 presents the XRD diffractograms of HAp + SiC compared to HAp before their immersion
in the testing media. As can be seen, the characteristic peaks according to ICDD#09-0432 standard
are present in the HAp structure and no other secondary phase was detected. It can be observed that
the HAp XRD pattern is distorted. This finding is probably due to the Si peak from the substrate
(Si-ICDD#04-002-0118 standard). In the XRD pattern of undoped HAp, there is a peak located around
10.8◦ with high intensity which can also be attributed to the brushite phase. It is well known that
the acquisition of an XRD diffractogram often favors preferential crystal orientations, especially the
phases with highly anisotropic morphologies such as brushite. In most cases, experimental XRD peaks
may be significantly different compared to calculated ones, by variation in peak intensities. Drouet
demonstrated that the (020) experimental peak becomes more intense than expected for randomly
oriented crystals for brushite [77]. He also reported that these modifications will separate brushite from
the apatite compounds. Based on this published conclusion, we believe that it is possible that other
CaP phases such as brushite may form around 10.8◦. To sustain this state, a more complex analysis
should be conducted, which is a further aim of our research.
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substrate is an Si wafer; Si identification is based on the ICDD#04-002-0118 standard).

With the addition of SiC, the XRD diffractogram changed its pattern and not all HAp peaks were
detected, a fact which suggests that the coating tends towards amorphization due to the increase of
nucleation, which leads to the reduction of grain size. Overall, SiC addition reduced the crystallinity
of HAp and one peak characteristic for SiC and HAp was detected by XRD analysis. Moreover, it is
clear that with SiC addition, the HAp peak observed in the HAp + SiC coatings shifted towards lower
angles. This indicates that some structural changes, such as HAp elemental cell deformation, occurred.
These findings are in good correlation with the findings of other researchers [78,79].

XRD diffraction patterns of the coated surfaces after immersion in DMEM, SBF, and PBS are
presented in Figure 5. For the samples tested in DMEM, a broad line at the beginning can be observed,
which could be a sign of an amorphous phase formation. Moreover, the line located at 63.6◦, attributed
to hydroxyapatite, is diminished with increasing the immersion time, suggesting a controlled release.

For samples immersed in SBF, the lines of hydroxyapatite overlap those of the bare substrate,
making it difficult to state the presence or absence of apatite phases. After 3 days of immersion, some
peaks found at 10.7◦, 21.5◦, 31.7◦, 45.3◦, and 56.6◦ are visible, and were attributed to the HAp phase.
These peaks present diminished intensities after 7 days of immersion, indicating the degradation of
the coating (supported by the mass loss presented in Figure 3), which thus favors the growth of new
bone tissue.

No discussion about other peaks was performed because all of these can be attributed to both
the substrate and hydroxyapatite. Regardless of the immersion time, the XRD lines of the coatings
immersed in PBS are all similar, indicating that in this case the XRD is not an adequate method for
recoding the changes undergone by the coatings after immersion.

Thus, the surfaces were analyzed by the FTIR technique, which is more sensitive than XRD for
confirming the new apatite phases formed after immersion in all media.
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Figure 5. XRD diffraction patterns of coated surfaces after immersion in DMEM, SBF, and PBS (Ti6Al4V
alloy is the substrate).

3.4. FTIR after Immersion in DMEM, SBF, and PBS

Figure 6 presents the FTIR spectra for HAp and HAp + SiC coatings before immersion in DMEM,
SBF, or PBS. The typical bands for HAp were observed—1087, 1034, and 962 cm−1—assigned to
the presence of the P–O functional group. As it can be observed, the IR bands became wider and
shifted towards lower wavenumbers after the addition of SiC into the HAp structure. Moreover, no
specific absorption bands located between 770 and 680 cm−1 [34,80], corresponding to SiC stretching
bonds, were revealed by FTIR analysis. Thus, it can be assumed that the addition of SiC led to
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some modifications in the HAp structure; some additional bands at 928 and 906 cm−1 were observed.
According to the literature, these bands can be attributed to PO4

4− or SiO4
4− vibrational modes, because

both chemical groups share similarly spaced vibrational modes due to the similarities of PO4
4− and

SiO4
4− tetrahedral molecular units [81].
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The band intensity corresponding to 962 cm−1 in HAp was less evident for the HAp + SiC coating.
This finding can be explained by the broad band located around 930 cm−1, which also includes the line
from 962 cm−1.

FTIR spectra of the coated surfaces after immersion in DMEM, SBF, or PBS are presented in Figure 7.
The FTIR spectra provided lines similar to each other, which can be attributed to hydroxyapatite.
Hydroxyl stretch, with its typical bands located between 3500 and 3200 cm−1 [82,83], can be observed
just for the coatings immersed in SBF. These peaks are visible for the surfaces immersed for 3 and
14 days with a lower intensity and are completely invisible for the samples immersed for 1, 7, and
21 days. For the samples immersed in SBF for 3 and 7 days, a much diminished peak attributed to
hydroxyl can be observed, indicating that some phosphates groups were still present on the surface.Coatings 2019, 9, x FOR PEER REVIEW  11 of 17 
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No hydroxyl bands were seen for the coatings immersed in DMEM or PBS, regardless of the
immersion time. This finding is probably due to the addition of Si into the HAp structure, which led to
a reduction of hydroxyl peaks due to the extra negative charge of the silicate group, compensated by
the loss of OH−. Nakata et al. suggested that this charge is a consequence of the bonding change and
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symmetry of the phosphate groups which takes place due to Si addition [84]. Carbonate bands can be
usually found around 873 cm−1 (ν2) and in the region of 1650 to 1300 cm−1 (ν3) [83,85–87].

The samples immersed in all solutions exhibit more or less visible carbonate bands. For the
coatings immersed in SBF or PBS, these bands have a lower intensity, while for DMEM they are more
intense. This finding is probably due to the competition between the phosphate and carbonate ions.

Phosphate has bands at 1190−976 (ν3) cm−1, 961 (ν1) cm−1, 469 (ν2) cm−1, and 660−520
(ν4) cm−1 [83,86,88]. Considering our results, two weak peaks at 798 and 960 cm−1 can be found and
one stronger peak at 1040 cm−1 for the coatings immersed in SBF. The intensity of the band found at
1040 cm−1 increases with the immersion time, indicating the formation of a new phosphate phase.
For the coatings immersed in DMEM, a strong peak at 1031 cm−1 is observed, which is almost similar
for each immersion time. For the coatings tested in PBS, the bands of phosphate appear after 3 days of
immersion and grow higher after 14 days, indicating the formation of new phases. This result could be
indicative of the good mineralization abilities of the coated surfaces. The FTIR spectra for the coatings
immersed in PBS are noisier due to the roughness of the newly formed CaP phases.

The FTIR spectra indicate that there are some differences between the samples immersed in the
investigated solutions. The most obvious change is the significant decrease of the hydroxyl peak.
The hydroxyl peaks are absent in the case of the coatings immersed in DMEM and PBS. The intensity
of peaks observed in the spectra of samples immersed in PBS is lower, indicating that the phase found
on this surface has a low crystallinity degree.

On the other hand, the presence of the CO3
2− group indicates an apatite-based structure slightly

deficient in Ca [86,89]. For the samples tested in PBS and DMEM, a peak located at 880 cm−1 is
evident, which according to the literature can be assigned to the formation of a non-stoichiometric
hydroxyapatite structure [86,89]. Moreover, this peak can be also attributed to the carbonate phase.
The bands ranging from 1400 to 1500 cm−1, as well as those at 880 cm−1, demonstrate the substitution
of phosphate groups with carbonate groups in the hydroxyapatite matrix [89–92].

3.5. In Vitro Electrochemical Performance of SiC–HAp Coatings in DMEM, SBF, and PBS

Tafel plots of the investigated coatings in DMEM, SBF, and PBS solutions are presented in Figure 8.
From the Tafel plots, the electrochemical parameters were calculated and are presented in Table 2.
It can be seen that the coatings had a better electrochemical behavior in DMEM, as compared with PBS
and SBF. The coatings exhibited an almost similar evolution in PBS and SBF media.
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Taking into consideration the values presented in Table 2, it can be concluded that:

• Coated samples tested in DMEM have a more electropositive value of corrosion potential (Ecorr),
indicating a better electrochemical behavior, while in PBS and SBF the values are similar;
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• The lowest value of the corrosion current density (icorr) was recorded for coated samples tested in
DMEM, followed by those in SBF and then those in PBS;

• The polarization resistance (Rp) is higher for coated samples tested in DMEM, followed by those
in PBS and those in SBF.

Table 2. Electrochemical parameters calculated based on Tafel extrapolation.

Electrolyte Ecorr (mV) icorr (nA/cm2) Rp (kΩ·cm2)

DMEM −126 1.90 54,652.6
SBF −453 89.73 474.4
PBS −454 108.02 364.9

The electrochemical tests showed that the Ti6Al4V coated with SiC–HAp had a better behavior in
DMEM but was affected by SBF and PBS, being less resistant in PBS. After electrochemical experiments
the surface morphology and chemical composition were investigated by SEM and EDS, and the
obtained images and elements distribution are presented in Figure 9.
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Figure 9. SEM images, element distribution, and Ca/P ratio of the HAp + SiC coatings after in vitro
electrochemical measurements in DMEM, SBF, and PBS.

As it can be seen, the coatings were visibly degraded in PBS when compared to DMEM and SBF.
Nevertheless, the sample in PBS media registered the lowest Ca/P ratio with a value of 1.27 when
compared to that in SBF media (ratio of 1.43) and DMEM (ratio of 1.72). SEM images also revealed that
PBS favors the appearance and propagation of cracks in the HAp + SiC coating, a phenomenon that
was not visible for the coatings immersed in SBF and DMEM.

4. Conclusions

Coatings prepared by the addition of SiC into hydroxyapatite by magnetron sputtering
were prepared for the present study. This study showed that the addition of SiC into HAp
provides new aspects of biological processes involved in the osseointegration capabilities of these
bioceramic-based coatings.

The performed in vitro assays led to the following conclusions:

• The in vitro electrochemical measurements highlighted that the Ti6Al4V coated with HAp + SiC
films had a better electrochemical behavior in DMEM as compared with PBS and SBF, which
present a higher Cl− content as compared with DMEM;
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• The immersion assays performed for 21 days showed that in SBF and PBS media, the HAp +

SiC films presented signs of degradation and the reported data were comparable (mass loss of
~0.13 mg on day 21), while in DMEM the coatings demonstrated good mineralization abilities
(a gained mass of ~0.53 mg on day 21);

• The XRD patterns achieved on the HAp + SiC coatings after their immersion pointed out the
appearance of peaks characteristic to a newly formed apatite-based phase, but which either
disappear or overlap the substrate over the immersion period;

• FTIR analysis performed on the HAp + SiC coatings showed differences in the spectra shape with
respect to the immersion testing media, and characteristic phosphate bands were registered in all
three media.

All three media used for these assays yield valuable information about the future behavior of
the proposed implantable biomaterial in biological systems and, based on the results presented in
this paper, which correlated with the results obtained in previous papers, the proposed coatings were
found to be potential materials suitable for use in medical applications.
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