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Abstract: A novel self-healing calcium–phosphate–vanadium (Ca–P–V) composite coating on Mg
alloy was successfully fabricated through a chemical conversion method. The effects of the vanadium
concentration on the anticorrosion property of the substrate were also tested. The Ca–P–V coating
with the main composition of CaHPO4, Ca3(PO4)2, and Mg3(PO4)2, with some hydroxides of V(V)
dispersed into it has a similar morphology to the single vanadium coating. The corrosion behaviour
of the Ca–P–V coating was studied through the electrochemical tests and the scratch immersion test
in 3.5 wt % NaCl solution. The results showed that the Ca–P–V coated samples not only exhibit good
corrosion resistance property, but also show self-healing ability. The ions of Ca, P, and V released
from the coating can migrate in the corrosion solution and form a new compound layer on the
damaged zone.
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1. Introduction

To enhance the anticorrosion property of Mg alloys, many types of protective measures have
been applied, and one of the useful methods is to fabricate a chemical conversion coating on their
surfaces [1–5]. Compared with other methods including anodizing [6,7], electroplating [8,9], plasma
electrolytic oxidation [10,11], radio frequency (RF) magnetron sputtering [12,13], and laser surface
melting [14], the chemical conversion method is interesting owing to its low cost, easy control, and
efficiency [15]. Chromate conversion coating (CCC) is a traditional and representative coating on
Mg alloys, but Cr(VI) has high toxicity and can cause environmental pollution and damage [16,17].
Therefore, it is necessary to develop eco-friendly protective coating systems with high corrosion
resistance on magnesium alloys to replace CCCs.

Phosphate conversion coating on Mg alloys has been studied for many years, which is considered
to be an alternative to CCC [18]. Some divalent cations such as Ca2+, Zn2+ and Mn2+ are usually added
to the phosphating bath to further enhance the anticorrosion property of the phosphate conversion
coating. In our previous study, we developed an environment-friendly calcium phosphate conversion
coating on AZ91D alloy, and demonstrated an enhanced anticorrosion ability of the conversion
coating [19]. Zeng et al. prepared Zn phosphate coating and Zn–Ca composite coating on AZ31
alloy [20]. The results showed that the Zn–Ca coating was denser and exhibited better anticorrosion
ability than the single Zn coating [20]. Chen et al. deposited a double-layered coating including
Mg(OH)2 and (Mg/Mn)3(PO4)2 on AZ91D alloy, which shows better corrosion resistance than CCC
based on the result of the salt spray test [21]. Phosphate conversion coating has good corrosion
resistance as proved by the researchers, but it does not show a “self-healing” ability.
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Vanadate conversion coating has gained much attention owing to a self-healing property similar
to CCC. Hamdy et al. reported that a high concentration of vanadate solution (50 g/L) can protect the
substrate with a proven self-healing property [22]. They exhibited similar effects on the ZE41 alloy [23].
Li et al. have obtained the optimum operating conditions for a V coating on the substrate at 60 ◦C,
0.6 M NaVO3 solution [24]. They proved the self-healing capabilities of vanadate conversion coating
by electrochemical tests. To further enhance the anticorrosion ability of the vanadate based coating and
reduce the concentration of vanadate, some researchers have designed self-healing composite coatings
based on vanadium modified by other conversions. Jiang et al. prepared a Ce–V composite layer on
AZ31, which exhibits two layers with an amorphous structure and a significantly improved corrosion
resistance than CCC on AZ31 alloy [25]. Liu et al. prepared a V–Zr composite conversion coating on
Al alloy with a self-repairing ability [26].

Combining self-healing ability with improved corrosion resistance is a promising substitute
coating for CCC on magnesium alloys. In this study, we report for the first time a novel
calcium–phosphate–vanadium composite coating on AZ91D magnesium alloy by a facile chemical
conversion method. Compared with the pure Ca–P coating, the Ca–P–V composite coatings not only
have high corrosion resistance but also have self-healing ability due to the addition of vanadium.
The effect of metavanadate concentration on the anticorrosion property of the composite coating
was studied. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and
X-ray photoelectron spectroscopy (XPS) were applied to study the morphology and composition of
the composite coating. In particular, both electrochemical and scratch tests were used to prove the
self-healing behaviour of the prepared composite coating.

2. Materials and Methods

2.1. Materials and Surface Preparation

As-cast AZ91D magnesium alloy (Hongqi Metal Materials, Yantai, China) with a chemical
composition of 90.31 wt % Mg, 8.77 wt % Al, 0.74 wt % Zn and 0.18 wt % Mn as used as the substrate
material. The alloy samples with a size of 12 mm × 12 mm × 12 mm were mechanically ground with
SiC sandpaper up to 2000 grit, ultrasonically cleaned in acetone for 5 min, rinsed with distilled water
and then dried in air.

2.2. Preparation of the Conversion Coating

The pre-treated AZ91D substrates were directly immersed in a solution of ammonium dihydrogen
phosphate (NH4H2PO4, 0.2 M), calcium nitrate (Ca(NO3)2, 0.1 M), sodium metavanadate (NaVO3,
0.04, 0.08 and 0.12 M) with a pH of 3 at 40 ◦C for 20 min. Finally, the samples were removed from the
solution, rinsed with distilled water, and dried in hot air.

2.3. Surface Characterization

The surface and cross-section morphologies of the as-prepared composite coating were observed by
a field emission-scanning electron microscopy (FE-SEM, JSM-6700F, JEOL, Akishima, Japan) equipped
with EDS (JSM-6700F, JEOL, Akishima, Japan). For cross-section observation, the coated sample was
firstly embedded in resin under certain pressure and temperature, and then mechanically ground with
SiC sandpaper up to 2000 grit. The chemical state of elements in the coating was analyzed by XPS
using a XSAM800 (Kratos, Manchester, UK) instrument with Al Kα radiation (1486.6 eV).

2.4. Electrochemical Measurements

Electrochemical measurements were used to evaluate the corrosion resistance of the uncoated
and Ca–P–V coated AZ91D samples in 3.5 wt % NaCl solution at room temperature. The samples
with an exposed surface area of 1.44 cm2 were moulded in epoxy resin for all the electrochemical tests.
A classic three-electrode system consisting of a sample as a working electrode, a saturated calomel
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electrode (SCE) as the reference electrode, and a platinum foil as the counter electrode was used in
this experiment. Polarization measurements were performed for samples previously immersed for
30 min at the open circuit potential (OCP) in 3.5 wt % NaCl solution. The scan rate was 0.80 mV/s with
a scan range of ±250 mV with reference to the OCP. Electrochemical impedance spectroscopy (EIS,
CS380 in COM3, Wuhan Corrtest Instruments Corp., Ltd., Wuhan, China) measurements were carried
out at OCP in the frequency range between 100 kHz–10 mHz using a 10 mV amplitude perturbation.
EIS data were analyzed by ZView software (version 3.0) to fit the experimental data and synthesize
the equivalent circuit. All electrochemical tests were normally duplicated three times to confirm
good reproducibility.

2.5. Scratch Immersion Test

The scratch immersion test was employed to testify the self-healing property of the Ca–P–V coated
samples. A scratch was cut on the surface of the coated samples by using a scalpel, and they were
immersed in 3.5 wt % NaCl solution for 1, 2 and 3 d. As a comparison, the same scratch immersion
test was also conducted on the uncoated AZ91D substrate. The surface morphologies and elements
composition of the scratch before and after immersion were observed by SEM-EDS analysis.

3. Results and Discussion

3.1. Effect of NaVO3 Concentration on the Corrosion Resistance of the Ca–P–V Composite Coating

To obtain the optimum concentration of NaVO3, EIS measurements of the specimens were used
in this study. Figure 1 presents the Nyquist plots for specimens coated with or without the Ca–P–V
composite coatings in 3.5 wt % NaCl solution. Compared with the uncoated sample, all the coated
samples show better anticorrosion property. By increasing the concentration of NaVO3, the capacitive
loop diameter at high frequency also increases, which is related to high corrosion resistance. Moreover,
the sample coated with 0.08 M NaVO3 shows the largest loop compared with other coated samples.
According to the EIS results, the 0.08 M NaVO3 was selected as the optimum concentration to prepare
the coated samples with Ca–P–V composite coatings.
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Figure 1. (a) Nyquist plots and (b) Bode plots for uncoated AZ91D substrate and Ca–P–V coated 
specimens at their open circuit with different NaVO3 concentrations in 3.5 wt % NaCl solution (the 
samples are not soaked in solution before tests). Symbols are experimental data and solid lines are 
fitting data. 

3.2. Morphology and Composition of the Ca–P–V Composite Coating 

SEM images of surface morphologies of the single vanadium coating, Ca–P as well as Ca–P–V 
composite coatings are presented in Figure 2. The Ca–P coating consists of a large number of plate-
shaped particles (Figure 2b). While the Ca–P–V composite coating exhibits a grid-like structure with 
a large number of micro-cracks (Figure 2c), which is similar to the single vanadium coating (Figure 2a). 
Figure 2d indicates that the composite coating has a thickness of about ~1 μm. The element 
composition of the composite coating was analyzed through EDS as shown in Figure 2e and shows 

Figure 1. (a) Nyquist plots and (b) Bode plots for uncoated AZ91D substrate and Ca–P–V coated
specimens at their open circuit with different NaVO3 concentrations in 3.5 wt % NaCl solution (the
samples are not soaked in solution before tests). Symbols are experimental data and solid lines are
fitting data.

3.2. Morphology and Composition of the Ca–P–V Composite Coating

SEM images of surface morphologies of the single vanadium coating, Ca–P as well as Ca–P–V
composite coatings are presented in Figure 2. The Ca–P coating consists of a large number of
plate-shaped particles (Figure 2b). While the Ca–P–V composite coating exhibits a grid-like structure
with a large number of micro-cracks (Figure 2c), which is similar to the single vanadium coating
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(Figure 2a). Figure 2d indicates that the composite coating has a thickness of about ~1 µm. The element
composition of the composite coating was analyzed through EDS as shown in Figure 2e and shows
that the coating consists of Mg, Al, Zn, O, Ca, P and V elements. Table 1 shows the contents of these
elements obtained from EDS analysis. The EDS results of the pure vanadium as well as the Ca–P
coating were also provided in Figure S1. The elements of Mg, Al, and Zn mainly come from the coating
as well as the AZ91D substrate. The coexistence of Ca, P, and V suggests that the three elements of Ca,
P, and V take part in the coating formation.
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Figure 2. SEM morphologies of (a) single vanadium coating without Ca–P; (b) Ca–P coating without
V and (c) Ca–P–V composite coating; (d) cross-sectional micrograph of Ca–P–V composite coating;
(e) EDS analysis of Ca–P–V composite coating.

Table 1. Contents of various elements obtained from EDS analysis of the Ca–P–V composite coating.

Elements Mg Al Zn O Ca P V

at. % 19.2 2.7 0.1 63.0 4.3 10.1 0.6
wt % 22.6 3.5 0.2 48.7 8.4 15.1 1.6

The XPS results of the composite Ca–P–V coating are shown in Figure 3. The XPS survey scanning
spectrum indicates the coexistence of Mg, Ca, O, P and V elements (Figure 3a), which is in agreement
with the EDS result. Fitting the high-resolution XPS peaks for Ca 2p, Mg 2p, P 2p and V 2p are presented
in Figure 3b–f, respectively. The peak of Ca 2p is composed of Ca 2p3/2 and Ca 2p1/2 peaks. The binding
energies of Ca 2p3/2 peaks at 347.75 and 346.85 eV can be attributed to CaHPO4·2H2O and Ca3(PO4)2,
respectively [27,28]. The Mg 2p in Figure 3c displays three peaks, corresponding to Mg3(PO4)2, MgO
and Mg(OH)2, respectively [21,27,28]. As shown in Figure 3d, the P 2p spectrum displays two peaks,
corresponding to PO4

3− and HPO4
2− [28], which is in agreement with the result of Ca 2p. In Figure 3e,

the binding energy of V 2p3/2 is 517.5 eV indicating V(V), but the O 1s X-ray satellite peak has a serious
impact on it [29–31]. Figure 3f shows the XPS spectrum of O 1s, which consists of two peaks. The
binding energies at 530.56 and 531.60 eV can be attributed to V–O and V–OH, respectively [24,25].
Moreover, the peak at 531.60 eV has much more intensity, proving that V–OH (hydroxides) might be
the main compound. In summary, the Ca–P–V composite coating mainly consists of CaHPO4·2H2O,
Ca3(PO4)2, Mg3(PO4)2 and hydroxides of V(V).
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Figure 3. XPS patterns of the Ca–P–V composite coating: (a) The survey spectrum; (b) high-resolution 
spectrum of Ca 2p; (c) high-resolution spectrum of Mg 2p; (d) high-resolution spectrum of P 2p; (e) 
high-resolution spectrum of V 2p; (f) high-resolution spectrum of O 1s. 
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According to the above results, a formation mechanism of the composite Ca–P–V coating is 
schematically depicted in Figure 4. It is known that the valence state of V in the solution depends on 
the solution pH value and the concentration of V. In this study, the concentration of V is 0.08 M and 
the pH of the conversion solution is 3, the colour of the conversion solution is red (Figure S2), 
indicating that vanadium exists in a form of VO2+ [25,32]. Low corrosion potential of α-Mg promoted 
the formation of Mg2+ (Equation (1)); hydrogen was given off from the β-Al17Mg12 (Equation (2)), 
which has a higher potential (Figure 4a).  

Mg → Mg2+ + 2e− (1)

2H+ + 2e- → H2↑ (2)

Figure 3. XPS patterns of the Ca–P–V composite coating: (a) The survey spectrum; (b) high-resolution
spectrum of Ca 2p; (c) high-resolution spectrum of Mg 2p; (d) high-resolution spectrum of P 2p;
(e) high-resolution spectrum of V 2p; (f) high-resolution spectrum of O 1s.

3.3. Formation Mechanism of the Ca–P–V Composite Coating

According to the above results, a formation mechanism of the composite Ca–P–V coating is
schematically depicted in Figure 4. It is known that the valence state of V in the solution depends
on the solution pH value and the concentration of V. In this study, the concentration of V is 0.08 M
and the pH of the conversion solution is 3, the colour of the conversion solution is red (Figure S2),
indicating that vanadium exists in a form of VO2+ [25,32]. Low corrosion potential of α-Mg promoted
the formation of Mg2+ (Equation (1)); hydrogen was given off from the β-Al17Mg12 (Equation (2)),
which has a higher potential (Figure 4a).

Mg→Mg2+ + 2e− (1)

2H+ + 2e−→ H2↑ (2)
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The above reactions raise the pH of the solution adjacent to the metal surface (from 3 to
7–8) [1,2,33,34], which makes H2PO4

− being transferred into HPO4
2− and PO4

3− according to the
following reactions [33]:

H2PO4
− + OH−→ HPO4

2− + H2O (3)

HPO4
2− + OH−→ PO4

3− + H2O (4)

As a result, the generated HPO4
2− and PO4

3− may react with the Ca2+ and Mg2+ in the solution
to form insoluble CaHPO4·2H2O, Ca3(PO4)2 and Mg3(PO4)2 precipitates on the substrate surface
according to the following reactions [35,36]:

Ca2+ + HPO4
2− + 2H2O→ CaHPO4·2H2O (5)

3Ca2+ + 2PO4
3−
→ Ca3(PO4)2 (6)

3Mg2+ + 2PO4
3−
→Mg3(PO4)2 (7)

MgHPO4 is not involved in the conversion coating, because it is slightly soluble in aqueous
solution [27]. The values of the thermodynamic function H0 for Mg3(PO4)2 and Mg(OH)2 are −3780.66
and −924.16 kJ/mol, respectively [16,27,35]. Thus, Mg2+ preferentially reacts with PO4

3− to form
Mg3(PO4)2 rather than Mg(OH)2. The composition of the products of the reactions (5)–(7) can be
proved by the XPS results. Meanwhile, the increase of the solution pH also triggers the formation of
VO(OH)3 through hydrolysis of VO2+ [26,32,37]:

VO2
+ + 2H2O→ VO(OH)3 + H+ (8)

Figure S2 shows that after chemical conversion treatment the colour of the solution is still red,
indicating the form of V(V). Therefore, the final structure of the Ca–P–V coating is a grid-like film
composed of CaHPO4·2H2O, Ca3(PO4)2 and Mg3(PO4)2 with some hydroxides of V(V) dispersed into
the film (Figure 4c).
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3.4. Anticorrosion Property of the Ca–P–V Coated Samples

To study the anticorrosion property of the samples, both the potentiodynamic polarization
measurements and EIS analysis were carried out on different specimens in 3.5 wt % NaCl solution.
Furthermore, to study the self-healing behaviour of the specimens, the Ca–P–V composite coatings
were soaked in 3.5 wt % NaCl solution for different times before electrochemical tests. The Ca–P–V
coated sample (0 d) indicates the sample is not soaked in solution before tests.

Figure 5 shows the polarization curves of the uncoated and Ca–P–V coated samples after being
immersed for different times (0, 1, 2, and 3 d). The corrosion parameters of the samples derived from
Figure 5 are shown in Table 2, where Ecorr and Icorr are corrosion potential and corrosion current
density, respectively. Comparing with the uncoated AZ91D substrate, the Ca–P–V coated sample (0 d)
has a lower Ecorr. But the Ecorr values of the composite coating increased gradually with increasing
immersion time, suggesting that the initial pitting corrosion can be suppressed by further immersion in
solution. Compared to the uncoated AZ91D, the Icorr of the coated samples is dropped by two orders
of magnitude, which indicates the anticorrosion ability is greatly improved due to the conversion
coating. Notably, the Icorr of the coated samples decreases from 1.39 × 10−6 to 3.84 × 10−7 A/cm2

with the extended immersion time from 1–3 d, which demonstrates a remarkably restrained corrosion
process. It is obvious that the Ca–P–V coated sample after being immersed for 3 d exhibits the best
corrosion resistance and a self-healing behaviour.
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Figure 5. The polarization curves of the uncoated AZ91D substrate and the Ca–P–V coated samples in
3.5 wt % NaCl solution after immersion for different days before tests.

Table 2. Corrosion parameters of the AZ91D substrate and various conversion coatings derived from
Figure 5. βa and βc are the cathodic and anodic Tafel slopes.

Samples Ecorr (V/SCE) βa(mV/dec) βc (mV/dec) Icorr (A/cm2)

0 d −1.59 ± 0.02 84.3 −71.7 9.1 × 10−6

1 d −1.53 ± 0.03 88.1 −69.1 1.39 × 10−6

2 d −1.48 ± 0.01 98.1 −64.0 1.04 × 10−6

3 d −1.45 ± 0.02 95.7 −65.1 3.84 × 10−7

AZ91D −1.55 ± 0.01 42.3 −462.8 1.56 × 10−4

Figure S3 shows the OCP data of the uncoated AZ91D as well as the Ca–P–V coated samples (0 d)
in 3.5 wt % NaCl solution. For the uncoated AZ91D substrate, the OCP decreases to a steady value of
−1.585 V (vs. SCE) with less fluctuation in about 15 min. The initial OCP of the coated sample (0 d) is
relatively negative, which may due to some defects such as micro-cracks (as shown in Figure 2c) in
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the coating that results in the substrate to be exposed to electrolyte. However, the OCP of the coated
sample (0 d) after 10 min increases gradually with time and finally reaches a relative constant value of
about −1.684 V (vs. SCE) after 40 min of soaking. The Nyquist plots for uncoated AZ91D substrate
and Ca–P–V coated samples after being soaked in 3.5 wt % NaCl solution for 0, 1, 2 and 3 d at OCP are
shown in Figure S4 and Figure 6, respectively. The plot of the uncoated AZ91D substrate consists of two
loops. The inductive loop in the low frequency may result from the relaxation of the absorbed species,
indicating the occurrence of pitting corrosion [38,39]. Moreover, the diameter of the capacitive loop has
a trend of first increases and decreases with the extension of soaking time (Figure S4). This is because
the protective effect of corrosion products on the substrate is weak and will gradually lose its protective
effect with the increase of immersion time. The Ca–P–V composite coating after immersion for different
days show capacitive loops at high frequencies with weak inductive loops at the low frequencies.
The corresponding equivalent circuit models used to fit the EIS data of the uncoated AZ91D and the
Ca–P–V coated sample (3 d) were inserted in Figure 6. The capacitive loops at high frequencies of the
coated samples can be referred to the good barrier properties of the Ca–P–V composite coating [40],
and the weakening of the inductive loops also indicates the better performance of the coating with
improved pitting corrosion resistance. Moreover, the capacitive loop diameter increases gradually with
the increase of immersion time, which suggests an improved corrosion resistance. These confirm that
the anticorrosion ability of the composite coating does not reduce but is increased with the extension
of immersion time.
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Figure 6. EIS plots for uncoated AZ91D substrate and Ca–P–V coated samples at their open circuit
potential after immersion for different days in 3.5 wt % NaCl solution. (a) Nyquist plots; (b) Bode plots
of |Z| vs. frequency; (c) Bode plots of Phase angle vs. frequency. (Symbols are experimental data and
solid lines are fitting data. The subfigures in (a) are the equivalent circuit models of (1) the uncoated
AZ91D substrate and (2) the Ca–P–V coated samples after immersion for 3 d.)
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3.5. Self-Healing Behaviour of the Scratched Ca–P–V Coated Specimens

SEM morphologies of the scratched Ca–P–V coated samples after being immersed in 3.5 wt %
NaCl solution are shown in Figure 7. Figure 7a shows that the new scratch is smooth and the edge of
the scratch is sharp. After 1 d immersion, some newly formed precipitates appear on the bottom of the
scratch (Figure 7b). With the prolongation of soaking time, the precipitates increase and gradually fill
the scratch, and the edge of the scratch becomes indistinct. After being immersed for 3 d (Figure 7d),
the scratch becomes relatively flat and is fully and closely covered by spherical particles. Furthermore,
Figure 7e shows that the spherical particles have a flower-like morphology with many nanoplates
interspersed with each other. Except for the flower-like precipitates, there are some other precipitates
covered on them as indicated by the square in Figure 7e. The flower-like morphology of the newly
formed spherical particles is similar to that reported about the self-healing behaviour of single V coating
by other researchers [22–24]. Consequently, the scratch was covered by more and more spherical
particles and was sealed in this way to prevent further contact with the corrosion solution (Figure S5).
These results are consistent with the EIS result, proving the self-healing property of the coating.

Coatings 2019, 9, x FOR PEER REVIEW 9 of 13 

 

the scratch (Figure 7b). With the prolongation of soaking time, the precipitates increase and gradually 
fill the scratch, and the edge of the scratch becomes indistinct. After being immersed for 3 d (Figure 7d), 
the scratch becomes relatively flat and is fully and closely covered by spherical particles. 
Furthermore, Figure 7e shows that the spherical particles have a flower-like morphology with many 
nanoplates interspersed with each other. Except for the flower-like precipitates, there are some other 
precipitates covered on them as indicated by the square in Figure 7e. The flower-like morphology of 
the newly formed spherical particles is similar to that reported about the self-healing behaviour of 
single V coating by other researchers [22–24]. Consequently, the scratch was covered by more and 
more spherical particles and was sealed in this way to prevent further contact with the corrosion 
solution (Figure S5). These results are consistent with the EIS result, proving the self-healing property 
of the coating. 

 
(a) (b) (c) 

  
(d) (e) 

Figure 7. SEM morphologies of the scratched Ca–P–V coatings in 3.5 wt % NaCl solution for different 
days: (a) 0 d; (b) 1 d; (c) 2 d; (d) 3 d; (e) 3 d. 

To study the self-healing mechanism of the Ca–P–V composite coating, the EDS analysis at the 
scratch of the Ca–P–V coated sample before and after immersion was conducted as shown in Figure 
8a,b. As a comparison, the SEM-EDS analysis of the uncoated AZ91D with a scratch after immersion 
in 3.5 wt % NaCl solution for 2 d was also conducted (Figure 8c). The scratch of the Ca–P–V coated 
sample before immersion mainly consists of Mg, Al and Zn (Figure 8a), which is the same 
composition as the AZ91D substrate. After being corroded for 2 d, the newly formed compound 
contains Ca, P, O and V elements, except for the Mg and Al elements mainly from the substrate 
(Figure 8b), implying the formation of calcium phosphate and/or hydrogen phosphate, magnesium 
phosphate and vanadium oxides and/or hydroxides. Figure 8c shows that some loose corrosion 
products are gathered around the scratch of the uncoated sample and the corresponding EDS analysis 
indicates that the corrosion products are composed of Mg and O, which is different from the products 
formed on the scratched Ca–P–V coated sample as shown in Figure 8b. Therefore, it can be concluded 
that the products appeared on the scratched Ca–P–V coating after immersion are newly formed 
compounds rather than corrosion products, suggesting that Ca, P as well as V elements can migrate 
from the surrounding layer to the scratched zone and form some new compounds. The self-healing 
ability of the Ca–P–V composite coating is beneficial for AZ91D alloy because it can prevent further 
corrosion through repairing scratches or cracks. 

Figure 7. SEM morphologies of the scratched Ca–P–V coatings in 3.5 wt % NaCl solution for different
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To study the self-healing mechanism of the Ca–P–V composite coating, the EDS analysis at the
scratch of the Ca–P–V coated sample before and after immersion was conducted as shown in Figure 8a,b.
As a comparison, the SEM-EDS analysis of the uncoated AZ91D with a scratch after immersion in
3.5 wt % NaCl solution for 2 d was also conducted (Figure 8c). The scratch of the Ca–P–V coated
sample before immersion mainly consists of Mg, Al and Zn (Figure 8a), which is the same composition
as the AZ91D substrate. After being corroded for 2 d, the newly formed compound contains Ca, P, O
and V elements, except for the Mg and Al elements mainly from the substrate (Figure 8b), implying the
formation of calcium phosphate and/or hydrogen phosphate, magnesium phosphate and vanadium
oxides and/or hydroxides. Figure 8c shows that some loose corrosion products are gathered around
the scratch of the uncoated sample and the corresponding EDS analysis indicates that the corrosion
products are composed of Mg and O, which is different from the products formed on the scratched
Ca–P–V coated sample as shown in Figure 8b. Therefore, it can be concluded that the products
appeared on the scratched Ca–P–V coating after immersion are newly formed compounds rather than
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corrosion products, suggesting that Ca, P as well as V elements can migrate from the surrounding
layer to the scratched zone and form some new compounds. The self-healing ability of the Ca–P–V
composite coating is beneficial for AZ91D alloy because it can prevent further corrosion through
repairing scratches or cracks.
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Figure 8. SEM-EDS results of the scratched samples: (a) Ca–P–V coating before immersion; (b)
Ca–P–V coating after immersion for 2 d; (c) the uncoated AZ91D after immersion for 2 d in 3.5 wt %
NaCl solution.

4. Conclusions

In this study, a new self-healing Ca–P–V conversion coating on AZ91D alloy was designed as
a chromate replacement. The Ca–P–V composite coating exhibits a grid-like structure and mainly
consists of CaHPO4, Ca3(PO4)2 and Mg3(PO4)2 with some hydroxides of V(V) dispersed into the
coating. The electrochemical tests demonstrate that the anticorrosion property of the Ca–P–V coated
substrate is enhanced obviously. Moreover, the Ca–P–V composite coating exhibits good self-healing
ability according to the scratch immersion and electrochemical tests. Both Ca, P, and V play important
roles in the self-healing process of the coating in this study. The composite Ca–P–V coating with
enhanced anticorrosion performance and self-healing property may have great potential for use as a
replacement for chromate conversion coating.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/9/6/379/s1,
Figure S1: SEM images and EDS analysis of (a) pure V coating and (b) Ca–P coating, Figure S2: photos of the
different solutions: (a) the NaVO3 solution; (b) the conversion solution after adjusting pH to 3.0; (c) the conversion
solution after removing the AZ91D samples, Figure S3: open circuit potential curves of the uncoated AZ91D
substrate and the substrate coated with Ca–P–V composite coating in 3.5 wt % NaCl solution as a function of time.
The Ca–P–V coated sample (0 d) indicates the sample is not immersed in 3.5 wt % NaCl solution before OCP
test, Figure S4: Nyquist plots for uncoated AZ91D substrate after immersion for different days in 3.5 wt % NaCl
solution, Figure S5: SEM images of the Ca–P–V coating after immersion in 3.5 wt % NaCl solution for (a) 3 d and
(b) 5 d.
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