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Abstract: Multi-track laser cladding is the primary technology used in industrial applications for
surface reinforcement and remanufacturing of broken parts. In this study, the influence of processing
parameters on multi-track laser cladding was investigated using a Taguchi orthogonal experimental
design. A multi-response grey relational analysis (GRA) was employed to identify laser cladding
processing parameters that simultaneously optimize the flatness ratio of the coating and the cladding
efficiency. The optimal parameters setting found by GRA were validated experimentally. Results
showed that the flatness ratio and cladding efficiency were closely correlated to the overlap rate and
laser power, where the overlap rate shows the most significant impact on the flatness ratio and the
laser power shows the most significant impact on cladding efficiency. Results from the validation
experiment were within one percent (0.97% error) of the predicted value. This demonstrates the
benefits of utilizing GRA in laser cladding process optimization. The methods presented in this paper
can be used to identify ideal processing parameters for multi-response multi-track laser cladding
processes or other industrial applications.

Keywords: laser cladding; orthogonal experimental design; grey relational analysis; multi-track
cladding

1. Introduction

Laser cladding is an advanced technology used for surface reinforcement and restoration. It creates
a condensed coating on the substrate surface, forming a metallurgical bond that improves the substrate
properties, such as wear resistance, corrosion resistance, and oxidation resistance [1–7]. Laser cladding
is a complex process, and the quality of the cladding coating is primarily affected by several parameters
including laser power, gas flow, and powder feeding rate [7]. A long-term goal for researchers is
to develop a system to predict and control the coating quality obtained by laser cladding through
the manipulation of different processing parameters. Over the years, various methods have been
developed to investigate and analyze these interrelations during the laser cladding process.

Nabhani et al. studied the influence of laser power, scanning rate, and powder feeding rate on
the clad height, clad width, penetration depth, wetting angle, and dilution in single-track cladding
of Ti-6Al-4V powder alloy deposited on Ti-6Al-4V substrate. The optimal processing parameter
combination was obtained by a linear regression analysis of each response [8]. Liu et al. investigated
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how laser power, pre-placed powder depth, and scanning speed affected the clad width, height, area,
and wetting angle using a full factorial design with single-track laser cladding. A mathematical model
was proposed to explain the relationship between processing parameters and the aforementioned
geometrical characteristics [9]. Kumar et al. researched the influence of laser power, scanning speed,
and aluminum nitride composition percentage on the clad width and micro-hardness. A mathematical
model was developed to relate the responses and processing parameters. Experimental results
indicated that clad width increased with the increasing scanning speed [10]. Bourahima et al. utilized
central composite design to study Ni-based powder laser cladding on a Cu–Ni–Al alloy substrate.
They evaluated the influence of the processing parameters (laser power, scanning speed, powder
feeding rate) on bonding quality and coating geometry (clad width and height). A mathematical
model was developed to explain these interrelationships. Results illustrated that coating geometry was
negatively correlated with scanning speed and bonding quality was improved with increased scanning
speed and decreased powder feeding rate [11]. A high accuracy predictive model was developed by
Alam et al. to explain how the clad characteristics (hardness, bead aspect ratio, and wetting angle)
were affected by the processing parameters (powder feed rate, laser power, focal length of lens, laser
speed, and contact tip to workpiece distance) [12].

Most of these studies were focusing on predicting the optimal processing parameters in single-track
laser cladding, which limits the cladding area to a narrow track. Although single track cladding is
useful in understanding properties that affect the cladding process, the ability to process a larger area is
needed for actual industrial application such as restoration or remanufacturing. For these applications,
multi-track cladding is necessary. In multi-track cladding, individual tracks are laid adjacent to one
another covering the surface of a component with clads. This process forms an irregular surface with
a high region in the center of each track and a lower region between track centers. The goal of this
research is to understand the processing parameters that control surface irregularity and to finding
processing parameters that produce a cladded surface with minimal irregularity while maintaining
cladding efficiency, a crucial requirement for industrial application.

2. Materials and Methods

AISI/SAE 1045 steel was selected as the substrate with a size of 40 mm × 20 mm × 5 mm. The laser
beam diameter was set to 3 mm during the cladding process. The cladding powder was high-speed
steel powder (W6Mo5Cr4V2) produced by Chengdu Huayin Powder Technology CO., LTD (Chengdu,
China) with a particle size ranging from 48 to 106 µm, which met the powder feed specifications in the
laser cladding system. The elemental composition of W6Mo5Cr4V2 high-speed steel powder is listed
in Table 1.

Table 1. Elemental composition (wt.%) of W6Mo5Cr4V2 high-speed steel powder.

C Si Mn Cr Mo V W Fe

0.8–0.9 0.15–0.4 0.2–0.45 3.8–4.4 4.5–5.5 1.75–2.2 5.5–6.75 Rest

The laser cladding system is shown in Figure 1, which includes a laser system (YLS-3000,
IPG, Burbach, Germany), laser cladding nozzle with 300 mm focal length (FDH0273, Lasermech,
Novi, MI, USA), industrial robot (M-710iC/50, FANUC, Yamanashi, Japan), water cooling system
(TFLW-4000WDR-01-3385, Sanhe Tongfei, Sanhe, China), powder feeding system (CR-PGF-D-2,
Songxing, Fuzhou, China), control system (PLC, Mitsubishi, Japan), and laser pulse control system
(SX14-012PULSE, IPG, Burbach, Germany). The material was protected by argon gas during the
cladding process.
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Geometric characteristics of the clad sample were measured with a KH-1300 3D microscope (Hirox 
Co Ltd., Tokyo, Japan). 
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experiment. Four factors were evaluated (laser power, scanning speed, gas flow, overlapping rate). 
A full factorial experiment would have required 44 = 256 different combinations since there were 4 
levels for each factor. By using a Taguchi orthogonal L16 (44) design, only 16 runs were needed, 
substantially reducing the number of runs over a full factorial experiment [13]. The Taguchi 
orthogonal array is a balanced design with each factor level weighted equally, so each factor can be 
evaluated independently. Table 2 shows the factors and their corresponding levels in the Taguchi 
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H is the maximal height of the clad layer; B represents the scanning speed (Figure 2).  

Figure 1. Laser cladding system.

Before cladding, the surface of the 1045 steel substrate was cleaned with acetone, rinsed with
alcohol, and dried. The cladding powder was dried in a vacuum dryer for 30 min at a temperature of
120 ◦C prior to use. After laser cladding, the sample was prepared for evaluation by cutting, setting,
grinding, and polishing. The sample was immersed in a 4% nitric acid and alcohol mixture for 30 s.
Geometric characteristics of the clad sample were measured with a KH-1300 3D microscope (Hirox Co
Ltd., Tokyo, Japan).

This study utilized Taguchi orthogonal methodology to design the multi-track laser cladding
experiment. Four factors were evaluated (laser power, scanning speed, gas flow, overlapping rate).
A full factorial experiment would have required 44 = 256 different combinations since there were
4 levels for each factor. By using a Taguchi orthogonal L16 (44) design, only 16 runs were needed,
substantially reducing the number of runs over a full factorial experiment [13]. The Taguchi orthogonal
array is a balanced design with each factor level weighted equally, so each factor can be evaluated
independently. Table 2 shows the factors and their corresponding levels in the Taguchi orthogonal
experimental design.

Table 2. Orthogonal experimental design.

Processing
Parameter

Notation Unit
Levels

1 2 3 4

Laser Power A kW 1.2 1.3 1.4 1.5
Scanning Speed B mm/s 5 6 7 8

Gas Flow C L/h 900 1000 1100 1200
Overlapping Rate D % 10 20 30 40

Important responses in this study are the flatness ratio (θ) and cladding efficiency (η). These
parameters are expressed by Equations (1) and (2), respectively [14].

θ =
Aclad

W ×H
(1)

η = Aclad × B (2)
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where Aclad is the cross-sectional area of clad on the substrate; W is the width of the total clad layer;
H is the maximal height of the clad layer; B represents the scanning speed (Figure 2).Coatings 2019, 9, x FOR PEER REVIEW 4 of 12 

 

 
Figure 2. Schematic cross-section diagram of multi-track clad. 

Calculating the signal–to–noise ratio (S/N) is a useful technique in data analysis for predicting 
optimized results [13,15,16]. S/N is a measure of the error between the actual response and the 
expected value [17,18]. Because S/N quantifies the quality of response based on the interaction 
between the noise and the signal, S/N is a measurement that can be used to identify controllable 
factors. Through analysis of the S/N, the aimed parameters can be obtained [19]. 

Converting the experimental results to their corresponding S/N is an effective process to 
simultaneously improve the flatness ratio and cladding efficiency [17,18]. A larger S/N value indicates 
a better quality of flatness ratio and cladding efficiency. Equation (3) is used to conduct the S/N 
conversion for flatness ratio and cladding efficiency, 𝑆𝑁 = −10 log 1𝑛 1𝑌  (3) 

where n is the number of replicates in the experiment; Yi is the experimental result [16,20]. After the 
S/N conversion of flatness ratio and cladding efficiency, analysis of variance (ANOVA) was used to 
investigate the relation between processing parameters and responses. The significance level, α was 
set at 0.05. 

3. Results and Discussion  

Table 3 shows the 16 runs from the Taguchi orthogonal experimental design, with their 
corresponding processing parameter settings. The response of the flatness ratio (θ) and cladding 
efficiency (η) in this study is also shown in Table 3, as well as their corresponding signal–to–noise 
ratio conversion. 

Table 3. Parameter settings in orthogonal experimental design, responses, and corresponding signal–
to–noise (S/N) conversion of each run. 

Run 
A 

(kW) 
B 

(mm/s) 
C  

(L/h) 
D  

(%) 
Parameter 

Combination 

θ: 
Flatness 

Ratio 

η: Cladding 
Efficiency 

(mm3/s) 

S/N 

θ η 

1 1.2 5 900 10 A1B1C1D1 0.892 192.052 −0.99270  45.66840 
2 1.2 6 1000 20 A1B2C2D2 0.912 175.705 −0.80010 44.89570 
3 1.2 7 1100 30 A1B3C3D3 0.682 153.434 −3.32431 43.71840 
4 1.2 8 1200 40 A1B4C4D4 0.562 147.635 −5.00527 43.38380 
5 1.3 5 1100 40 A2B1C3D4 0.603 213.336 −4.39365 46.58130 
6 1.3 6 1200 30 A2B2C4D3 0.704 221.583 −3.04855 46.91070 
7 1.3 7 900 20 A2B3C1D2 0.886 216.448 −1.05133 46.70710 
8 1.3 8 1000 10 A2B4C2D1 0.864 238.899 −1.26973 47.56430 
9 1.4 5 1200 20 A3B1C4D2 0.881 262.787 −1.10048 48.39210 

10 1.4 6 1100 10 A3B2C3D1 0.806 281.659 −1.87330 48.99450 
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Figure 2. Schematic cross-section diagram of multi-track clad.

Calculating the signal–to–noise ratio (S/N) is a useful technique in data analysis for predicting
optimized results [13,15,16]. S/N is a measure of the error between the actual response and the expected
value [17,18]. Because S/N quantifies the quality of response based on the interaction between the
noise and the signal, S/N is a measurement that can be used to identify controllable factors. Through
analysis of the S/N, the aimed parameters can be obtained [19].

Converting the experimental results to their corresponding S/N is an effective process to
simultaneously improve the flatness ratio and cladding efficiency [17,18]. A larger S/N value indicates
a better quality of flatness ratio and cladding efficiency. Equation (3) is used to conduct the S/N
conversion for flatness ratio and cladding efficiency,

S
N

= −10 log

1
n

n∑
i=1

1
Y2

i

 (3)

where n is the number of replicates in the experiment; Yi is the experimental result [16,20]. After the
S/N conversion of flatness ratio and cladding efficiency, analysis of variance (ANOVA) was used to
investigate the relation between processing parameters and responses. The significance level, αwas
set at 0.05.

3. Results and Discussion

Table 3 shows the 16 runs from the Taguchi orthogonal experimental design, with their
corresponding processing parameter settings. The response of the flatness ratio (θ) and cladding
efficiency (η) in this study is also shown in Table 3, as well as their corresponding signal–to–noise
ratio conversion.
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Table 3. Parameter settings in orthogonal experimental design, responses, and corresponding
signal–to–noise (S/N) conversion of each run.

Run
A

(kW)
B

(mm/s)
C

(L/h)
D

(%)
Parameter

Combination
θ: Flatness

Ratio
η: Cladding

Efficiency (mm3/s)
S/N

θ η

1 1.2 5 900 10 A1B1C1D1 0.892 192.052 −0.99270 45.66840
2 1.2 6 1000 20 A1B2C2D2 0.912 175.705 −0.80010 44.89570
3 1.2 7 1100 30 A1B3C3D3 0.682 153.434 −3.32431 43.71840
4 1.2 8 1200 40 A1B4C4D4 0.562 147.635 −5.00527 43.38380
5 1.3 5 1100 40 A2B1C3D4 0.603 213.336 −4.39365 46.58130
6 1.3 6 1200 30 A2B2C4D3 0.704 221.583 −3.04855 46.91070
7 1.3 7 900 20 A2B3C1D2 0.886 216.448 −1.05133 46.70710
8 1.3 8 1000 10 A2B4C2D1 0.864 238.899 −1.26973 47.56430
9 1.4 5 1200 20 A3B1C4D2 0.881 262.787 −1.10048 48.39210

10 1.4 6 1100 10 A3B2C3D1 0.806 281.659 −1.87330 48.99450
11 1.4 7 1000 40 A3B3C2D4 0.518 247.254 −5.71340 47.86290
12 1.4 8 900 30 A3B4C1D3 0.566 222.415 −4.94367 46.94330
13 1.5 5 1000 30 A4B1C2D3 0.541 295.395 −5.33605 49.40820
14 1.5 6 900 40 A4B2C1D4 0.487 279.107 −6.24942 48.91540
15 1.5 7 1200 10 A4B3C4D1 0.732 282.874 −2.70978 49.03190
16 1.5 8 1100 20 A4B4C3D2 0.783 267.139 −2.12476 48.53470

3.1. Analysis of Flatness Ratio

Out of the 16 runs, the best result for flatness ratio occurred in the second run, whose processing
parameter setting was A1B2C2D2 (1.2 kW laser power; 6 mm/s scanning speed; 1000 L/h gas flow;
20% overlapping rate). Table 4 shows the ANOVA analysis result of the flatness ratio S/N data in
Table 3. As indicated by the p-value, laser power (A) and overlapping rate (D) had a significant impact
on the flatness ratio, while scanning speed (B) and gas flow (C) were not statistically significant.

Table 4. ANOVA on S/N of flatness ratio.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value Prob > F

A 7.45 3 2.48 21.27 0.0159
B 0.38 3 0.13 1.10 0.4703
C 0.49 3 0.16 1.39 0.3969
D 45.71 3 15.24 130.56 0.0011

Residual 0.35 3 0.12 – –
Cor Total 54.38 15 – – –

Figure 3 illustrates the main effects plot for S/N of θ. This plot was generated by plotting the
means for each value of each categorical variable using Minitab software (17.1.0.0). Solid lines connect
each mean value within each category and the dashed reference line indicates the overall mean.
The main effect for each categorical variable is evaluated by comparing the solid plotted line to the
dashed reference line. A horizontal solid line indicates that there is no main effect for this parameter.
Otherwise, a main effect for the parameter exists. A steeper slope denotes that the parameter has a
stronger influence on the results.
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Figure 3. Main effects plot for the S/N analysis of flatness ratio.

Figure 3 shows that the overlapping rate has the most significant influence on the flatness ratio,
which is consistent with the results in Table 4. The best flatness ratio occurred at an overlapping rate of
20%. The flatness ratio was lower at an overlapping rate of 10%. This was because the shared area
between overlapping tracks was smaller, causing a greater height difference than at a 20% overlapping
rate. With overlapping rates higher than 20%, there was a buildup of cladding material in the area
between the adjacent tracks, a phenomenon known as “slope cladding”. This also caused the flatness
ratio to decrease. Similar results were observed for the laser power. The flatness ratio displayed
a small increase then decrease with increasing laser power. Since the laser power determined the
amount of energy received by the molten pool during laser cladding, a relatively low laser power
limited the energy absorbed by the molten pool, leading to insufficient melting of the cladding powder.
This resulted in a narrower cladding track on the substrate. As laser power increased, the convection
effect in the molten pool increased, which increased the width of the total clad layer, resulting in an
increase in the flatness ratio. A further increase in the laser power resulted in lower flatness ratios.
This effect can be explained by Equation (1). Increasing laser power flattened the molten pool and
increased the width at a faster rate than the total clad area was increased [21].

The main effects plot shows scanning speed and gas flow to be close to the reference dash line
indicating that their impact on the flatness ratio is not significant. These results are consistent with the
data presented in the ANOVA analysis in Table 4. Based on these results, when only the flatness ratio
was considered, the best processing parameters were a 1.3 kW laser power and 20% overlapping rate.

3.2. Analysis of Cladding Efficiency

The best result of cladding efficiency was achieved in the 13th run, whose processing parameter
setting was A4B1C2D3 (1.5 kW laser power; 5 mm/s scanning speed; 1000 L/h gas flow; 30% overlapping
rate). An ANOVA analysis of the cladding efficiency S/N data in Table 3 is shown in Table 5. Laser
power (A) and overlapping rate (D) had significant impact on the cladding efficiency, with p-values
being 0.0009 and 0.0443, respectively. Scanning speed (B) and gas flow (C) were not statistically
significant at the predetermined value of α equal to 0.05. Although not significant in this experiment,
the scanning speed showed a trend toward significance (p = 0.0664) and should be investigated further.
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Table 5. ANOVA on S/N of cladding efficiency.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value Prob > F

A 46.53 3 15.51 146.09 0.0009
B 2.38 3 0.79 7.47 0.0664
C 0.65 3 0.22 2.03 0.2876
D 3.24 3 1.08 10.16 0.0443

Residual 0.32 3 0.11 – –
Cor Total 53.11 15 – – –

The main effects plot (Figure 4) showed that laser power had the most significant influence on
cladding efficiency. Cladding efficiency increased dramatically with increasing laser power. Since
laser power controlled the energy absorbed during the cladding process, higher laser power resulted
in more energy being absorbed by the cladding powder. These higher energy levels increased the
width of the cladding track and the cross-sectional area of clad (Aclad) [21]. As expected, increasing the
overlapping rate decreased cladding efficiency. During multi-track laser cladding, a larger overlapping
rate requires more passes to cover the same cladding area, thus reducing cladding efficiency.
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According to Equation (2), the cladding efficiency is directly proportional to the scanning speed,
however, experimental results show the cladding efficiency to decrease with scanning speed. The reason
for this behavior is that a faster scanning speed shortened the laser energy exposure duration on the
cladding powder and the molten pool. This decrease in energy resulted in a smaller area of clad
because the powder did not receive sufficient laser energy to melt during the cladding process [22,23].
From these data, the best processing parameters were a laser power of 1.5 kW, a 5 mm/s scanning
speed, and a 10% overlapping rate when only cladding efficiency was considered.

3.3. Multi-Response Grey Relational Analysis

The goal of this study was to simultaneously achieve both a high flatness ratio and suitable
cladding efficiency. Since the best result of the flatness ratio and cladding efficiency occurred on
different runs (i.e., different processing parameter settings), additional investigation is needed to
achieve a multi-response optimization. To determine the optimal processing parameters while taking
both flatness ratio and cladding efficiency into consideration, this paper applied grey relational analysis
to achieve multi-response optimization [17]. Grey relational analysis was conceived by Julong Deng in
the 1980s. This theory effectively combines multiple objectives into a “single” objective, thus solving
the complex multi-response question. Grey relational analysis provides an effective way to optimize
multiple parameters to attain the optimal solution that satisfies multiple objectives [24,25].
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There are three steps to complete the grey relational analysis [19,26–28]. The first step is to
normalize the data. This process accounts for the differences in units and the range of the original data.
Normalized data is expressed as a value between 0 and 1. In this study, Equation (4) was selected to
conduct normalization,

Xi(k) =
Yi(k) −minYi(k)

maxYi(k) −minYi(k)
(4)

where k is the kth response (k = 1,2) for the two responses in this paper; i is the ith experimental data
(i = 1, 2, 3, . . . , 16); Xi(k) is the response data after normalization; Yi(k) stands for the original response
data; minYi(k) and maxYi(k) represent the minimum and maximum value of Yi(k). The second step is
to calculate the grey relational coefficient for each response using Equation (5).

GRCi(k) =
∆min +ψ∆max

∆i(k) +ψ∆max
(5)

where GRCi(k) is the grey relational coefficient (GRC) of the kth response in the ith run; ∆i(k) represents
the deviation between the normalized value and the reference sequence {X0} = {1, 1}. The deviation is
obtained through ∆i(k) =

∣∣∣X0(k) −Xi(k)
∣∣∣; ∆min and ∆max denote the minimum and maximum value

of ∆i(k); ψ is the distinguishing coefficient with ψ ∈ [0, 1]. Normally 0.5 is selected for ψ since it
gives a moderate distinguishing effect and stability [29]. After normalization of the original data
for the flatness ratio and cladding efficiency, the result after grey relational generation (X) and their
corresponding deviation (∆) are shown in Table 6. The last step is to perform the grey relational
calculation on multi-responses using Equation (6),

GRGi =
1
n

n∑
k=1

GRCi(k) (6)

where GRGi is the grey relational grade (GRG) for the ith run; n is the number of responses, which is
two in this study.

Table 6. Original experimental data after normalization and the corresponding deviation.

Run X(θ) ∆(θ) X(η) ∆(η)

1 0.96466 0.03534 0.37922 0.62078
2 1 0 0.25096 0.74904
3 0.53678 0.46322 0.05554 0.94446
4 0.22831 0.77169 0 1
5 0.34055 0.65945 0.53076 0.46924
6 0.58739 0.41261 0.58544 0.41456
7 0.95390 0.04610 0.55164 0.44836
8 0.91382 0.08618 0.69393 0.30607
9 0.94488 0.05512 0.83134 0.16866
10 0.80306 0.19694 0.93133 0.06867
11 0.09836 0.90164 0.74349 0.25651
12 0.23962 0.76038 0.59085 0.40915
13 0.16761 0.83239 1 0
14 0 1 0.91820 0.08180
15 0.64956 0.35044 0.93754 0.06246
16 0.75691 0.24309 0.85501 0.14499

In this paper, the goal of achieving a good flatness ratio and high cladding efficiency were
determined to be equally important. Therefore, the same weight was given to both the flatness ratio
and cladding efficiency for the grey relational grade (GRG) calculation. The GRCs, GRG, and S/N
conversion of GRG for each run are shown in Table 7, with larger values being more desirable. The 9th
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run setting (A3B1C4D2) was determined to be the preferred processing parameters (1.4 kW laser power;
5 mm/s scanning speed; 1200 L/h gas flow; 20% overlapping rate), with a GRG value of 0.82423.

Table 7. Grey relational coefficient (GRC) of flatness ratio and cladding efficiency, grey relational grade
(GRG), S/N conversion of GRG for each run.

Run GRC(θ) GRC(η) GRG S/N (GRG) Rank

1 0.93398 0.44612 0.69005 −3.22240 8
2 1 0.40031 0.70015 −3.09613 7
3 0.51909 0.34615 0.43262 −7.27782 15
4 0.39318 0.33333 0.36326 −8.79575 16
5 0.43124 0.51587 0.47355 −6.49262 13
6 0.54788 0.54671 0.54729 −5.23559 11
7 0.91558 0.52723 0.72140 −2.83645 6
8 0.85298 0.62029 0.73664 −2.65495 4
9 0.90070 0.74776 0.82423 −1.67902 1
10 0.71742 0.87924 0.79833 −1.95633 2
11 0.35673 0.66093 0.50883 −5.86856 12
12 0.39670 0.54996 0.47333 −6.49665 14
13 0.37527 1 0.68763 −3.25287 9
14 0.33333 0.85940 0.59637 −4.48973 10
15 0.58793 0.88895 0.73844 −2.63372 3
16 0.67287 0.77520 0.72403 −2.80481 5

The results of ANOVA on the S/N of the grey relational grade are shown in Table 8. Based on the
obtained p-values, the overlapping rate (D) and laser power (A) were statistically significant and had
an impact on the flatness ratio and cladding efficiency. The scanning speed (B) showed a trend toward
significance (p = 0.0628).

Table 8. ANOVA on S/N of GRG.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value Prob > F

A 11.31 3 3.77 12.27 0.0343
B 7.19 3 2.40 7.80 0.0628
C 1.92 3 0.64 2.09 0.2807
D 47.74 3 15.91 51.78 0.0044

Residual 0.92 3 0.31 – –
Cor Total 69.08 15 – – –

Analysis of GRG S/N data in Table 9 shows the maximum absolute value difference to occur in
the overlapping rate. This indicates that the overlapping rate had the most significant influence on
both the flatness ratio and cladding efficiency. Table 9 was used to determine the optimal processing
parameter settings by selecting the level in each category with the highest value. The optimal setpoint
was determined to be A4B2C2D1 (1.5 kW laser power; 6 mm/s scanning speed; 1000 L/h gas flow;
10% overlapping rate). Since this processing parameter setting was not one of the settings in the 16
original runs, a validation experiment was needed to confirm this processing parameters prediction.

Table 9. Mean of S/N (GRG) for each processing parameter.

Processing
Parameter

Notation
Levels Absolute Value

Difference
Rank

1 2 3 4

Laser Power A −5.59802 −4.28774 −3.93094 −3.29528 2.30274 2
Scanning Speed B −3.64456 −3.62525 −4.65414 −5.18804 1.56279 3

Gas Flow C −4.26131 −3.71838 −4.54653 −4.58602 1.02268 4
Overlapping Rate D −2.54765 −2.60410 −5.56573 −6.39449 3.84684 1
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3.4. Processing Parameters Optimization and Experimental Validation

The GRG prediction was used to estimate the outcome of the parameter setpoint (A4B2C2D1)
prior to conducting the experiment. The GRG prediction was calculated by [26],

GRGprediction = GRGtotal +

q∑
j=1

(
GRG j −GRGtotal

)
(7)

where GRGprediction is the predicted value of GRG from the selected set; GRGtotal represents the total
mean of the GRG; q is the number of processing parameters, which is four in this study; GRG j stands
for the average GRG value at the selected level for the jth processing parameter.

The best results from the 16 orthogonal runs, the grey relational analysis (GRA) prediction, and the
validation experiment are compared in Table 10. When the best results from orthogonal experimental
design (A3B1C4D2) were compared with the optimal parameters setting derived from GRA (A4B2C2D1),
the flatness ratio increased from 0.881 to 0.889 and the cladding efficiency increased from 253.336 to
260.786 mm3/s. Although the increase of the flatness ratio was only 0.91%, the increase of the cladding
efficiency was 2.94%. These differences may not seem significant, but even a small improvement in
processing parameters can have a large impact on the overall quality of the product and substantial
financial gains. In addition, the optimal parameters setting derived from GRA increased the two
responses simultaneously, indicating that the optimal parameters setting was better than the best run
in the Taguchi orthogonal array.

Table 10. Optimization and experimental validation result comparison.

Output Best Parameter set from
Orthogonal Design GRA Prediction Validation on GRA Prediction

Parameter Set A3B1C4D2 A4B2C2D1 A4B2C2D1
Flatness Ratio 0.881 – 0.889

Cladding Efficiency 253.336 – 260.786
GRG 0.82423 0.87663 0.88510

Furthermore, the grey relational grade prediction derived from Equation (7) and the experimental
validation differed by less than one percent (0.97%). It shows the high accuracy of multi-response
optimization using grey relational analysis. The methods developed in this paper can also be used to
evaluate uneven weighting distributions for the flatness ratio and cladding efficiency, for example,
if flatness ratio was deemed to be a higher priority, the weighing factor in the GRA could be set to
75% for the flatness ration and only 25% for the cladding efficiency. In addition, this multi-response
optimization method with GRA could be used to guide the design of a large-scale experiment. This is
important because actual experiments can be expensive and time-consuming. It could be used to
evaluate different responses such as wetting angle, penetration depth, and dilution instead of flatness
ratio and cladding efficiency. Moreover, because GRA was designed to optimize multiple responses,
it could also be used to optimize three or four of the above responses simultaneously.

Figure 5 below shows the clad morphology and cross-section comparison of multi-track laser
clad derived by the best parameter set from the orthogonal design experiment and the optimal GRA
parameter set, respectively. Figure 5d elucidates that incomplete fusion was significantly avoided in
the optimal GRA parameter set, compared with the best parameter set found in the orthogonal design
experiment (Figure 5b). The morphology of the clad made with the optimal parameters (A4B2C2D1)
found using the GRA is shown in Figure 5c. No excessive powder adhesion was observed, and it
had better cladding efficiency than the best run in the orthogonal design experiment. These results
demonstrate the remarkable quality of the cladding layer when produced using the optimal processing
parameters obtained from grey relational analysis.
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4. Conclusions

This paper utilized an orthogonal experimental design to study the influence of laser power,
scanning speed, gas flow, and overlapping rate on clad flatness ratio and cladding efficiency in
multi-track laser cladding. Signal–to–noise ratio conversion and grey relational analysis was used to
find the optimal processing parameters. Once the optimal processing parameters were determined,
a validation experiment was conducted to verify the results. Based on this investigation, the following
conclusions were made:

• Analysis of the flatness ratio as the single response showed that the overlapping rate and laser
power affected the flatness ratio. The flatness ratio increased then decreased with increasing
overlapping rate and laser power over the range of values studied.

• Analysis of the cladding efficiency as the single response revealed that the cladding efficiency
was influenced by laser power, overlapping rate, and scanning speed. The cladding efficiency
increased dramatically with the increased laser power. Increased scanning speed and overlapping
rate caused a relatively small reduction in cladding efficiency.

• Grey relational analysis was effective in finding processing parameters that optimized the flatness
ratio and cladding efficiency simultaneously. When these two objectives were weighted equally,
the optimal processing parameters were determined to be 1.5 kW laser power, 6 mm/s scanning
speed, 1000 L/h gas flow over, and 10% overlapping rate. This optimal parameter setting generated
a better flatness ratio and cladding efficiency than best run in the orthogonal design experiment.

• The validation experiment using the optimal parameter setting found by grey relational analysis
were within one percent (0.97% error) of the predicted value. This demonstrates the potential that
GRA perform as a tool for identifying optimal laser cladding processing parameters. The methods
presented in this paper can be used as a guide to developing optimal multi-track laser cladding
processes for industrial applications.
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