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Abstract: HfO2 thin films are extensively applied in optical coatings and microelectronic devices.
However, film defects, which are vital to the performance of the thin films, are still under intense
investigation. In this work, the absorption, photoluminescence, and crystallization characteristics of
HfO2 films prepared by electron-beam evaporation and ion-assisted deposition are investigated in
detail. Experimental results showed that high-temperature thermal annealing in air resulted in a
reduced absorption coefficient, an increased bandgap width, and an increased degree of crystallization.
After thermal annealing, an absorption shoulder near 5.8 eV was caused by excitons in the films,
which were independent of oxygen vacancy defects and crystallization. Under 6.4 eV (193 nm) laser
excitation, the photoluminescence spectrum showed five emission peaks for HfO2 films both with
and without thermal annealing. The emission peak near 4.4 eV was generated by the self-trapped
exciton, and the peak near 4.0 eV was related to the OH group in the film. The oxygen vacancy
defect-induced absorption of HfO2 films in a broad spectral range significantly increased when HfO2

film was re-annealed in Ar gas after first being annealed in air, while the photoluminescence spectrum
showed no significant change, indicating that the emission peaks at 2.3, 2.8, and 3.4 eV were not
related to oxygen vacancy defects.

Keywords: HfO2 thin films; optical absorption; photoluminescence; electron-beam deposition;
ion-assisted deposition (IAD)

1. Introduction

HfO2 is a dielectric material with a wide band-gap, high dielectric constant, high refractive
index, and high thermal stability that is widely used in the preparation of optical coatings and
microelectronic films [1–3]. For optical thin-film applications, it is widely used in the preparation
of optical films with low absorption and high damage threshold for high-power pulsed laser
systems [4–8]. For microelectronic applications, HfO2 is the most promising alternative to SiO2

in metal-oxide-semiconductor (MOS) microelectronic devices [9]. Studies have shown that there are
various defects in HfO2 films, such as oxygen vacancies and charge traps [9–16]. These defects affect the
absorption loss and laser damage threshold of the optical coatings, and the leakage current and carrier
mobility of the MOS. The investigation of the defects in HfO2 films is therefore of great significance for
the preparation of high-performance laser optical thin films and microelectronic films.
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Defects in HfO2 films are difficult to measure directly. When defects are present, localized states
are generated between the valence band and conduction band. When electrons at lower energy
levels absorb photon energy, they may jump to higher energy levels, and when electrons at higher
energy levels return back to lower energy levels via radiation relaxation, photon emission may
occur. Therefore, the optical absorption spectrum and the photoluminescence emission spectrum
of HfO2 films can be used to analyze the defect states in the films. There has been some past
research studying both the absorption and photoluminescence of HfO2 optical films. Ciapponi et al.
found that HfO2 films prepared by electron-beam deposition (EBD) showed significant luminescence,
but the luminescence of ion-assisted films could not be distinguished from the uncoated substrate [15].
Papernov et al. studied the optical properties of oxygen vacancies in HfO2 thin films by absorption
and luminescence spectroscopy [13]. They only investigated the luminescence for EBD films since
no measurable luminescence was detected in the films prepared by ion-beam sputtering (IBS). In this
paper, we present the absorption, photoluminescence, and crystallization properties of two kinds of
HfO2 films prepared by EBD and ion-assisted deposition (IAD), respectively. The optical absorption
and photoluminescence characteristics of the films as deposited and after thermal annealing were
investigated in detail in combination with the crystallization of the films, and the causes of the films’
absorption and photoluminescence were analyzed. These results will be very helpful in the preparation
of high-performance HfO2 films with low absorption and high damage threshold that are essential for
high-power laser applications.

2. Materials and Methods

EBD and IAD are the major techniques for preparing low-absorption HfO2 optical films [16].
Both techniques were employed to prepare the HfO2 film samples in our experiment. The samples
were prepared with a Syruspro 1110 coating plant from Leybold Optics, Alzenau, Germany. The raw
material for the coating was a high-purity hafnium metal with purity higher than 99.9%, which was
oxygenated to form the HfO2 films during the coating process. Two sets of samples were prepared
by EBD and IAD, respectively. The starting vacuum pressure for deposition was 3 × 10−6 mbar.
The film deposition rate was 0.2 nm/s, and the substrate temperature was 120 ◦C. The O2 flow rate was
45 sccm (standard cubic centimeters per minute). The ion source used for the IAD process was an
advanced plasma source (APS, Leybold Optics, Alzenau, Germany) operated with 100 V bias voltage
and 50 A beam current. The deposition rate and film thickness were controlled by a quartz crystal.
The transmittance and reflectance spectroscopy of the film samples were measured with a Lambda 950
spectrophotometer (Pekin Elmer, Waltham, MA, USA). The photoluminescence (PL) spectra of the film
samples were excited by an ArF excimer laser at 193 nm (IndyStar 1000, Coherent, Santa Clara, CA,
USA). The laser repetition rate was 100 Hz, and the pulse width was 10.5 ns. The excimer laser beam
was approximately normally incident onto the sample surface. PL was collected at a 45◦ detection
angle from the incident laser beam with a lens coupling the PL emission into an optical fiber that
was connected to the entrance of a high-resolution spectrometer (iHR320, Jobin Yvon, Paris, France,
grating grooves: 300–2400 line/mm, spectral resolution: 0.79–0.02 nm) equipped with an intensified
charge-coupled device (ICCD). A 193 nm filter was placed in front of the entrance of PL collection
optics to avoid interference from the 193 nm laser-excited fluorescence of the optical fiber. The samples
were placed inside an adiabatic chamber purged with high-purity N2 gas. The measurements were
performed at room temperature and in an N2 atmosphere to avoid the influence of the oxygen
absorption of the 193 nm excitation on the PL measurements. The XRD of the film was performed
with a X’Pert3 Powder X-ray diffractometer (XRD, PANalytical, Almelo, The Netherlands) with a
2θ scan range of 10◦–70◦ and a step of 0.03◦. Thermal annealing was carried out in a tube furnace
with a maximum temperature of 400 ◦C. The furnace temperature was first increased linearly from
room temperature to the treatment temperature (400 ◦C) in one hour, then stabilized at 400 ◦C for
1 h, and then decreased back to room temperature (around 25 ◦C). High-purity Ar gas (>99.999%)
was introduced into the tube furnace when needed. The substrates used for depositing the HfO2
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films were fused silica and silicon wafers, respectively, with diameters of 25 mm. The film coated
on fused silica was used for transmittance and reflectance measurements in the wavelength range
of 190–800 nm and for XRD. Considering that fused silica has a strong photoluminescence under
193 nm laser irradiation and silicon substrate does not [17], the HfO2 film coated on silicon was used to
measure the PL spectrum in order to avoid the influence of the substrate emission.

3. Results and Discussion

3.1. Optical Absorption

The EBD and IAD HfO2 film samples presented a significantly lower transmission at wavelengths
shorter than 250 nm compared to bare fused-silica substrate, as presented in Figure 1a, indicating
that the HfO2 films had a strong absorption at the short wavelength range, as presented in Figure 1b.
After thermal annealing at 400 ◦C in air, the transmittance in the short wavelength range improved
with decreasing absorption. In the meantime, the refractive index and physical thickness of the films
were calculated via a method proposed by Swanepoel [18]. The EBD and IAD films had refractive
indices of 1.93 and 2.05 at a wavelength of 400 nm and physical thicknesses of 252 and 227 nm,
respectively. After annealing, the refractive indices increased to 1.98 and 2.06, and the thicknesses
reduced to 245 and 226 nm, respectively. Unlike the ideal crystal, there were many mesoscopic voids
in both the EBD and IAD HfO2 films. Thermal annealing reduced the void density and volume in
the film samples, increasing the refractive index and decreasing the physical thickness of the films.
The annealing-induced changes in the refractive index and thickness of the IAD film were smaller than
that of the EBD film. On the other hand, the weak absorption of the HfO2 films at a wavelength greater
than 250 nm was calculated by the method proposed by Swanepoel [18]. The absorption coefficient α
of a strong absorption at a wavelength shorter than 250 nm was calculated by the formula [12]:

T = (1−R) exp(−αd) (1)

where T and R are the transmittance and reflectance of the film, respectively, and d is the physical
thickness of the film. The relationship between the calculated absorption spectrum presented in
Figure 1b shows that the IAD film had a higher absorption than the EBD film. After annealing in air,
the absorption of the HfO2 film at a photon energy level higher than 5.5 eV (225 nm) was significantly
reduced, which could be related to the reduction of oxygen vacancy defects in the film.
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Figure 1. (a) The transmission of the prepared HfO2 film samples and the substrate; (b) The absorption 
of the prepared HfO2 film samples. EBD: electron-beam deposition; IAD: ion-assisted deposition; Sub: 
bare fused-silica substrate. 
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Figure 1. (a) The transmission of the prepared HfO2 film samples and the substrate; (b) The absorption
of the prepared HfO2 film samples. EBD: electron-beam deposition; IAD: ion-assisted deposition; Sub:
bare fused-silica substrate.
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As HfO2 film is an indirect bandgap material [12,19], the absorption coefficient α related to band
edge and the photon energy satisfy the following formula:

αhv = B
(
hv− Eg

)2
(2)

where hv is the energy of the incident photon, B is the absorption edge width parameter, and Eg is the
band gap.

The optical band gap width Eg of the HfO2 film could be determined by the Tauc patterning
method, and the results are shown in Figure 2 and Table 1. The bandgap data were consistent with
the reported values of 5.25–5.8 eV [14]. The smaller bandgap of the IAD film compared to the EBD
film may be related to the increase of the microscopic defects in the film caused by ion bombardment.
The absorption spectrum of the EBD film after thermal annealing showed a significant shoulder around
5.8 eV. This shoulder appeared after annealing in air, indicating that it was not caused by oxygen
vacancies. Hoppe et al. showed the same results and thought it was intrinsic to monoclinic HfO2 [12],
and Aarik et al. indicated it might have originated from excitonic absorption [19].
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Table 1. The optical bandgap Eg of the HfO2 films.

Coating Method As-Deposited (eV) Annealing in Air (eV) Re-Annealing in Ar (eV)

EBD 5.56 5.66 5.64
IAD 5.49 5.55 5.54

3.2. Crystalline Structure

A comparison of the crystalline structures of the HfO2 films before and after thermal annealing
(as shown in Figure 3) indicated that the EBD film was amorphous and the monoclinic-phase HfO2

appeared after annealing. The as-deposited IAD film contained a monoclinic phase, and the diffraction
peak became stronger after annealing. According to the Scherrer formula, the crystal size D (nm) can
be evaluated as:

D = Kγ/(Bcos θ) (3)

where K = 0.89 is the Scherrer constant, B is the half-maximum width of the diffraction peak (radians),
θ is the diffraction angle, and γ is the X-ray wavelength (0.154056 nm). Defects may have contributed
to line broadening and thus caused errors when we used the Scherrer formula. For a rough estimation,
we ignored the error and directly used the Scherrer formula to calculate the crystallite sizes of thin
films. The crystallite sizes of the EBD and IAD HfO2 films after annealing were 14.90 and 14.40 nm,
respectively. The small difference in crystallite size but the significant difference in the absorption
shoulder near 5.8 eV after annealing for both the EBD and IAD films, as well as the fact that no
absorption shoulder was present for as-deposited and partially crystallized IAD films, clearly indicated
that the absorption shoulder was not related to the film crystallization.
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Figure 4. Photoluminescence (PL) spectra of (a) the EBD HfO2 films and (b) the IAD HfO2 films, 
excited by 193 nm laser irradiation. The insets are the multi-band fits. 
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3.3. Photoluminescence

PL is a sensitive and effective tool for the defect characterization of films. In our experiment,
a 193 nm (6.4 eV) excimer laser was used as the excitation source for PL measurements. The laser
energy density was 2 mJ/cm2. The measured PL spectra of the as-deposited and thermally annealed
EBD and IAD HfO2 films are presented in Figure 4. The PL spectra could be decomposed into five PL
bands, with corresponding peak positions of approximately 2.3, 2.8, 3.4, 4.0, and 4.4 eV, respectively,
as shown in the insets of Figure 4. The PL bands may have originated from self-trapped excitons,
radicals, defects, etc. For both the EBD and IAD samples in general, annealing caused increases
in peak intensities. The peak intensity increase was much more significant for the EBD film than
for the IAD film, which was believed to be related to the annealing-induced crystallization. As the
as-deposited IAD film was already partially crystallized, the annealing-induced peak intensity change
was relatively small.
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Figure 4. Photoluminescence (PL) spectra of (a) the EBD HfO2 films and (b) the IAD HfO2 films, excited
by 193 nm laser irradiation. The insets are the multi-band fits.

In recent years, PL of HfO2 film has been intensively investigated [13,15,19–23]. Aarik et al. [19]
assigned the PL band near 4.4 eV to self-trapped excitons, which caused the absorption shoulder near
5.8 eV. Our absorption and PL measurements confirmed the correlation between the 4.4 eV PL band
and the absorption shoulder near 5.8 eV. From Figures 1 and 4, thermal annealing induced the obvious
absorption shoulder near 5.8 eV and a significant increase in PL intensity at 4.4 eV for the EBD film,
while the influence of annealing on the absorption shoulder near 5.8 and the 4.4 eV PL band of the
IAD film was much less significant. For the PL band near 4.0 eV, Rastorguev et al. [20] correlated it to
the OH radical in the film. Our experimental results support this assignment. From Figures 1 and 4,
thermal annealing induced a smaller change in the refractive index for the IAD film than for the EBD
film, which indicated a smaller change in H2O content for the IAD film than for the EBD film, as well as
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a smaller change in PL intensity near 4.0 eV. On the other hand, the assignments for the 2.3–3.4 eV PL
bands of HfO2 film are still disputable: Kiisk et al. [23] and Aarik et al. [19] assigned them to oxygen
vacancy defects, while Ito [21] studied HfO2 and ZrO2 with different oxygen contents and concluded
that these PL bands were independent of impurities, oxygen vacancies, and interface defects. It was
suggested that these PL bands were most likely due to the radiative recombination between localized
states at the band tails.

To investigate the correlation between PL and the oxygen vacancy defects in HfO2 films, the sample
annealed in air was re-annealed under an Ar gas environment in a tube furnace. The annealing process
was the same as in air in order to create only oxygen vacancy defects in the film. After re-annealing
in Ar gas, the transmittance of the HfO2 film in the range of 190–400 nm was significantly reduced
(Figure 5a). The film absorption (Figure 5b) showed that the oxygen vacancy defects led to an absorption
increase over a wide spectral range of 4.0–6.5 eV, and the bandgap of the film was also slightly reduced
(Table 1). The changes of the 2.3–3.4 eV PL bands were very small, as presented in Figure 6, indicating
that these PL bands were not related to oxygen vacancy defects, in opposition to Kiisk and Aarik’s
assumptions [19,23]. Therefore, their assignments need further investigation.
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4. Conclusions

In summary, absorption and photoluminescence measurements were employed to investigate
defects in EBD and IAD HfO2 films widely employed in optical coatings and microelectronic devices,
which were of great significance for understanding the laser damage mechanism of optical films
for high-energy laser applications and the performance improvement of MOS. Experimental results
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showed that high-temperature thermal annealing in air reduced the absorption of HfO2 films while
re-annealing in Ar gas significantly increased the absorption, demonstrating that the absorption loss of
the film was closely related to the oxygen vacancy defects. The PL spectra of the HfO2 films showed
five bands at approximately 2.3, 2.8, 3.4, 4.0, and 4.4 eV. The experimental results confirmed the
assignments of 4.4 and 4.0 eV PL bands to self-trapped excitons and the OH radical, respectively,
but refuted the assignments of 2.3–3.4 eV PL bands to oxygen vacancy defects. Further research on
correlation between the photoluminescence and localized states of the film is still needed.
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