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Abstract: With the increasing demand for bone implant therapy, titanium alloy has been widely
used in the biomedical field. However, various potential applications of titanium alloy implants
are easily hampered by their biological inertia. In fact, the interaction of the implant with tissue
is critical to the success of the implant. Thus, the implant surface is modified before implantation
frequently, which can not only improve the mechanical properties of the implant, but also polish
up bioactivity and osseoconductivity on a cellular level. This paper aims at reviewing titanium
surface modification techniques for biomedical applications. Additionally, several other significant
aspects are described in detail in this article, for example, micromorphology, microstructure evolution
that determines mechanical properties, as well as a number of issues concerning about practical
application of biomedical implants.
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1. Introduction

In the past few decades, resulting from the aging of the population and the change of people’s
lifestyle, tens of thousands of people have been plagued by orthopedic, oral and maxillofacial
diseases [1]. Thus, solving these problems enables patients to return to a high-quality life, and
the demand for medical implants increases dramatically with the growing maturity of implant
technology [2]. As scientists have predicted, more people will suffer from orthopedic diseases in the
future and the annual economic costs will be particularly huge [3].

Today, as biomaterials are developing rapidly, biomedical materials can be mainly divided into
metals, ceramics, bioactive glass, plastics and their combinations [4]. Among all biomedical materials,
metal materials are the earliest applications and the most widely used in clinical practice [5]. Titanium
alloy especially, compared with other metal alloys, has great advantages in mechanical properties,
such as elasticity modulus, tensile strength, toughness, and fatigue resistance [6,7]. At the same time,
titanium alloy has excellent corrosion resistance to physiological fluids and excellent biocompatibility,
due to its oxidation film passivation stability [8,9]. In addition, biological responses of titanium
alloy implants, such as bioactivity and osseointegration, are positive for clinical application [10].
Thus, it is not only widely used in dental implants, artificial joints and bone wounds, but also has
become an important material for human body hard tissue substitutes. Moreover, with the continuous
improvement and perfection of medical titanium alloys, the exploration of novel medical titanium
alloys and the diversification of production technology will further expand their applications [11,12].

Although titanium-based alloys have excellent mechanical properties, the exposed surface of
titanium-based implants is easily affected by the environment and may cause complications. Therefore,
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it is necessary to improve the reliability of Ti-based implants to minimize certain biomechanical and
biological function failure [13,14]. In order to overcome its harm to human body, titanium alloy
must be surface modified to meet medical application requirements. This review focuses on various
surface modification methods such as plasma spray, ion implantation, micro-arc oxidation, laser
surface modification, sol-gel, friction stir processing (FSP) and the practical biomedical applications of
each technology.

2. Surface Modification Methods

2.1. Micro-Arc Oxidation

Micro-arc oxidation (MAO), forming a high-quality reinforced ceramic film on implant
surface, is a relatively effective technique of the surface treatment in biomedical field based on
anodic-oxidation [15,16]. The schematic diagram is shown in Figure 1 [17]. MAO has been widely
studied in numerous fields including biomedical applications because the advantages of low-cost,
high efficiency, high bonding strength between the MAO coating and substrate, no restriction on the
surface shape of the workpiece and so on [18–20]. The microstructure and mechanical properties of
micro-arc oxide film, which are mainly controlled by electrolyte type, matrix composition and process
parameters, determine the interaction between implants and surrounding host tissues and is essential
for cell adhesion, proliferation and differentiation [21–23].
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Figure 1. Schematic diagram of the micro-arc oxidation (MAO) process [17]. Reprinted with permission
from reference [17] 2017 Elsevier.

Researchers have explored bioactive coating with suitable structure of medical implants that
can improve the biocompatibility and shorten osseointegration time [24]. Xu et al. [25] prepared
porous coatings with different roughness by controlling oxidation duration on Ti implants by MAO.
The porous coating surface significantly promotes adhesion and proliferation of osteoblasts. Similarly,
in order to create functional surfaces with antibacterial and osteogenic properties, Coquillat et al. [26]
explored the effect of processing time on coating composition and morphology in two different
electrolytes. Furthermore, Li et al. [27] studied the two-step micro-arc oxidation method to prepare
super-hydrophilic biomedical coatings with macro/micro/nano three-layer structures. In addition,
Wang et al. [28] and Sedelnikova et al. [29] prepared coatings on Ti-based alloy with different surface
morphology, thickness and adhesion strength with MAO through controlling voltage. The SEM
micrograph is shown in Figure 2. After MAO treatment, the implant has a promoting effect on cell
adhesion, diffusion, proliferation and differentiation. In addition to oxidation duration, the composition
of electrolyte and biological elements play a crucial role in biocompatibility.
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Figure 2. SEM micrographs of the wollastonite-calcium phosphate (W-CaP) coatings on Ti (a–c)
and SEM micrographs of the cross-sectional W-CaP coatings on Ti (d–f) produced under different
voltages [29].

Researchers have investigated the effect of electrolyte composition on the microstructure and
properties of titanium matrix micro-arc oxidation coating. It is obvious that the composition of
electrolyte affects the physical and chemical properties of the coating and the growth rate of the
coating [30,31]. Recent research has shown that biological elements, such as Cu, Ca, Zr, P and Si are
beneficial for improving the bioactivity of materials, further enhancing implant osseointegration [32–34].
Huang et al. [35] investigated bone regeneration and bactericidal capacity of MAO coatings on Ti
in a Cu-containing electrolyte. Macrophage-mediated osteogenesis, macrophage polarization and
macrophage bactericidal assay experiments showed that coating with higher content of Cu is more
favourable for macrophage proliferation. Interaction between macrophages and bacteria on various
surfaces are shown in Figure 3. The capture behavior of bacteria by macrophages is significant on
the surface with high Cu content, which indicates that the bactericidal capacity of macrophages is
promoted on the Cu-MAO surface.
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Figure 3. The bactericidal capacity of macrophages in response to material surfaces. The SEM images
showing the macrophage/bacteria interactions on different Cu-containing surfaces. Respectively,
specimens treated with 0.2 and 2 mM CuSO4·5H2O were recorded as Cu(l)-MAO) and 2(Cu(h)-MAO).
The white arrows indicate that bacteria are captured by macrophages [35]. Reprinted with permission
from reference [35] 2018 Elsevier.
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The microstructure, morphology and mechanical properties of the micro-arc oxidation coating are
affected by the alloying elements. Recently, Wang et al. [36] and Correa et al. [32] have studied the
effect of Ti-based alloy composition on the growth mechanism of MAO films. Additionally, in order to
obtain bioactive surfaces, Hu et al. [37] prepared multilayer TiO2/CaSiO3 coating on titanium substrate
by MAO and electron beam evaporation. Surface morphologies are shown in Figure 4. The needle and
flake-like nanocrystals CaSiO3, which are considered a potential material for bone tissue regeneration,
were deposited on TiO2 coating by electron beam evaporation. To achieve antibacterial capacity and
cytocompatibility, an implant with gradient structure of Ti/TiO2/ZnO was developed by MAO followed
by hydrothermal treatment, as reported by Zhang et al. [38].
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From the above, it can be seen that titanium alloy micro-arc oxidation bioactive coating has highly
bonding strength with the matrix due to the compact interior. In addition, the loose and porous outer
layer, which are conducive to protein adsorption, osteoblast adhesion and bone tissue regeneration,
promote bone integration and prevent implant-related infections. It is the direction of further exploration
to regulate the bioactive components and construct multi-level micro- and nano-structure coating for
cell adhesion and proliferation. Additionally, in order to prevent from inflammation that would affect
healing and further promote tissue repair, the construction of multi-functional coatings with biological
activity and bacteriostasis are a hot research topic [39].

2.2. Plasma Spraying

Plasma spraying technique, as a practical and reliable coating method, has been carried out for
decades. It is worthy of note that plasma-spray technique has attracted lots of attention for biomedical
field, due to the advantages of low cost, high efficiency and ability to control the coating thickness [40].
During processing, numerous variables affect the final performance of ceramic coating, such as
chemical compositions, structures, and crystallinity [41,42]. The schematic diagram of the plasma
spray equipment is shown in Figure 5. It can be seen the system comprises DC electrical power source,
gas flow control, water-cooling system and powder feeder [43].
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Recently, with the progresses in the utilization of titanium devices coating, plasma sprayed
ceramic coatings not only achieve most mechanical requirements, but also provide suitable growth
environment for bone cells and tissues [44]. It was reported that plasma sprayed ceramic coatings are
able to increase performances in bonding strength, hardness, wear and corrosion resistance, etc. There
is no doubt that the improvements of bioceramic coating are mainly related to thermal stability, phase
and chemical composition, as well as microstructure [45]. Plasma sprayed bi-layer coating containing
Al2O3–13 wt.% TiO2 and ZrO2 layer was successfully deposited on Ti–13Nb–13Zr substrate, and the
corrosion and wear resistance properties of the coatings were significantly increased due to its lower
porosity and higher adhesion strength [46,47]. In addition to composition design of bioactive coatings,
heat treatment after plasma spraying might affect the mechanical properties [48].

For plasma sprayed coatings in biomedical implants, hydroxyapatite (HA)-based coatings
seem to be the most widely used in surface modification, resulting from HA can lead to favorable
biocompatibility and bone regeneration between the bone tissue and implant surface [49]. In order
to improve the biological stability of HA-coated implants for long-term, Yang et al. [50] found
industrial pure titanium can be used as an effective bonding agent to significantly improve the interface
bonding and stress reduction of the plasma-sprayed HA coating and Ti-alloy system. As is shown
in Figure 6, the excellent bonding can be observed between commercial pure titanium (CP-Ti) and
the substrates, and the surface roughness of CP-Ti is unaltered after application of the HA coating.
Furthermore, the corrosion resistance and cytocompatibility were enhanced by plasma sprayed
HA and pure Ti coatings on Ti alloy matrix [51]. In another study, an innovative double-layer of
HA/Al2O3-SiO2 nanocomposites is deposited on the surface of titanium implants by plasma spray
technique. The results indicated that bi-layer plasma sprayed coating enhanced roughness, wettability,
as well as improved the cell viability and proliferation compared to single layer of HA coating [52].
Meanwhile, biofunctional (Mg, Sr)-HA coatings with high bonding strength were successfully produced
by plasma-spray technique [53]. In Figure 7, cellular extensions and extracellular matrices secreted
were observed, which demonstrated the HA composite coating with Mg and Sr ions have great
biological activity. In addition to an HA coating, pure Ti coating obtained by plasma-spray technique
on Poly-ether-ether-ketone substrate seems to be an effective way for surface modification [54,55].
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Figure 7. Micrographs of (a) the surface of the control group without cells and (b–d) cell morphology
after culture on the (Mg, Sr)-HA coatings for five days. White arrows show filopodia of cells and cellular
extensions. A large magnification (d) of the white dash box in (c) shows the cellular extensions [53].
Reprinted with permission from reference [53] 2018 Elsevier.

In recent years, several concerns have been raised on stress shielding, poor osseointegration,
composition control, porosity and low adhesive strength of the coating is an immense challenge,
which influences the long-term stability of implants. To further improve the surface comprehensive
properties of implants, it is necessary to combine various surface modification technologies to produce
biofunctional coatings with excellent mechanical properties. In line with what Ke et al. [56] reported,
a gradient HA-based composite coating with antibacterial properties was deposited utilizing laser and
plasma spray technology for enhancing the mechanical properties.

2.3. Ion Implantation

While numerous techniques were used to modify implant material surfaces, ion implantation has
attracted wide attention for biomedical applications resulting from mechanical and electrochemical
properties of metal materials treated with ion implantation have been shown to significantly
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improve [57,58]. Particularly, it’s an effective way to enhance the anchoring strength of coating
on substrate without altering the original characteristics of the matrix material. Additionally, ion
implantation is a promising strategy to prevent infection and improve implant osseointegration for
biological systems [59]. In general, ion implantation technology can be divided into two categories: ion
beam ion implantation (IBII) and plasma immersion ion implantation (PIII). These two methods are
different in the way of producing high energy ions, but the physical mechanism of surface modification
is similar. In the ion implantation process, energetic ions, whose energy is closely related to penetration
depth inside the substrate, get incorporated into the substrate after losing all their energies [60].

Recently studies have found that PIII has attracted wide attention for biomedical applications
due to PIII technique enables to inject various elements into the near-surface with a complex shape
of various substrates [61]. As is shown in Figure 8, silver nanoparticles were successfully implanted
on the hierarchical titanium surface by PIII, and the rough surface is obtained by virtue of acid
etching [62]. Furthermore, the content and distribution of implanted ions in the matrix can be precisely
controlled using PIII technology by adjusting the implantation parameters [63–65]. Additionally, surface
micromorphology, which is associated with the incident current of PIII, would influence the corrosion
resistance, Young’s modulus, nano-hardness and bioactive of cells in NiTi alloys surface, as reported by
Li et al. [63]. Previous studies have shown that the implantation of zinc ions on titanium surface by PIII
technology can provide an environment with great antimicrobial and biocompatibility [64]. According
to Jin et al. [65], Zn ions were implanted into the oxalic acid etched titanium using PIII technology.
The Zn-implanted titanium not only had an antibacterial effect, but also promotes osseointegration
while without negative side effect by controlling the content and release of Zn ions.
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There are numerous elements, such as zinc (Zn), silver (Ag), fluorine (F), tantalum (Ta), calcium
(Ca), chlorine (Cl),nitrogen (N), iodine (I), copper (Cu) and carbon (C), that might be injected into
titanium alloys surface by PIII of the corresponding ions [66–68]. Notably, these ions can divide
into metal ions and non-metal ions to achieve a variety of surface functions. Recent studies have
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pointed that a significant enhancement of surface mechanical properties and the corrosion resistance
have been observed by implanting C ions with the PIII technique [66]. Furthermore, the nitrogen ion
implanted the surface of Ti-35Nb-7Zr-5Ta β titanium alloy and found that the specimens have better
corrosion resistance and more secure ions release rate than the unmodified alloy [67]. Additionally, ion
implantation, as a promising approach, endows the surface of titanium alloys with antimicrobial effect
by incorporating with ions such as Zn, Cu, Ag and F ions. There is no doubt ions’ gradual release
from specimens into surrounding tissues affect the bactericidal and cell activity, which would elicit
a favorable cells response from tissues [68]. Thus, an emerging research area is the development of
anti-bacterial implant materials. For example, Kim et al. [69] indicated the concentration of implanted
silver and the topography of the surface determine the effect on the action against micro-organisms.
As is shown in Figure 9, hierarchical titanium with silver nanoparticles surface (Figure 8e,f) significantly
promoted cellular adhesion and proliferation while have excellent antimicrobial ability.
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Figure 9. Investigation of the initial adhesion and spreading behaviors of mesenchymal stem cells
(MSCs) after 24 h of culture on the samples micro-Ti, nano-Ti and Ag-Ti. Note: actin, green; nuclei,
blue [62]. Reprinted with permission from reference [62] 2016 Elsevier.

As one of the most important methods for surface modification of titanium, ion implantation
is convenient, controllable and flexible. Implantation of ions with various functions can not only
effectively improve the physical and chemical properties or biological activities of titanium alloys,
but also improve the antimicrobial ability of titanium alloys. These are closely related to the success
rate of implants. However, single ion implantation modification only improves some properties
of implanted materials. In recent years, with the development of composite ions implantation
technology, the development trend of ion implantation technology of titanium materials will be to
obtain multi-functional surface by simultaneously implanting various ions.



Coatings 2019, 9, 249 9 of 23

2.4. Laser Surface Modification

Laser surface modification technology, which uses laser as a heat source to modify the surface
of metal materials, has gained traction in recent years. The main advantages are that it can control
accuracy and features of implant surface while being highly efficient, pollution-free and have low
material consumption [70,71]. Laser can not only be used to prepare periodic micro/nano structures
on most material surfaces with various surface geometries, such as dimple, linear, rippled patterns
and so on, but also change phase structure and chemical composition of the surface by cladding
bioactive materials on substrate [72–74]. Researchers have attempted to find a biocompatible surface
morphology to improve osteointegration and tissue regeneration, which is critical for the life, durability
and uninterrupted functionality of implants in vivo inthe early phase of implantation [75,76].

Depending on the feature to be manufactured and material types, various lasers with unique
functions are used, such as femtosecond lasers, excimer laser (Nd:YAG), etc. [71]. Previous
studies have revealed that using femtosecond lasers to form a periodic structure can control the
proliferation of cells [77]. Laser-induced periodic surface structures (LIPSSs), nanopillar-(NPs) and
microcolumn-(F) textured surfaces were produced by femtosecond laser treatment on Ti-6Al-4V alloy
substrate (Figure 10) [78,79]. LIPSSs and NPs can improve osteoblastic differentiation of stem cells,
as demonstrated by Cunha et al. [78]. Recently, it was significantly observed by Bryane et al. [79]
that submicron surface structures with various periodic ripples were produced on titanium substrate
by pulsed femtosecond lasers, and cell metabolism of laser ablation surface was higher than the
control surfaces.
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Figure 10. SEM micrographs of laser-induced periodic ripples surface structures (A–D), nanopillar
(E) and microcolumn (F) textured surfaces [78,79]. Reprinted with permission from reference [78]
2015 Elsevier.

In addition to femtosecond lasers, researchers have also explored the surface modification
behavior of other lasers by controlling machining parameters. Marticorena et al. [80] showed that
laser irradiation of pure titanium films with different pulse frequencies produces surface structures
with different morphologies. Experimental results show that the surface microstructure, texture and
roughness of implant surfaces are important for the biocompatibility of implants in vivo. Additionally,
Trtica et al. [81] found that liquid (water) is the preferred medium for the surface structure of titanium
alloy implants. At the same time, water also showed high oxidation capacity, which promotes
the surface biological activity. Hsiao et al. [82] developed an efficient method to increase surface
roughness in titanium alloy (Ti-6Al-4V) with a low energy pulsed ultraviolet (UV) laser, which was
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similar to laser modified surfaces. Renu et al. [83] presented laser surface texturing of titanium alloy
(Ti-6Al-4V) with line and dimple geometry using ArF excimer laser. After laser modification, Young’s
modulus, corrosion resistance and nano-hardness increase as compared with the as-received titanium.
The fluorescence micrograph showed that the surface morphology controls cell adsorption and growth
direction, as shown in the Figure 11.
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In order to overcome the problem of the constituent metals leach from the implant, which may be
at risk of biotoxicity, and further improve biocompatibility and bioactivity, researchers have proposed
laser coating bioactive coating on the surface of implants [84,85]. Figure 12 shows the principle of
laser cladding (LC) that the high-energy laser beam melts the material and then directly coats it on the
target surface and merges with it. Furthermore, as a flexible technology, we can obtain multifunctional
coatings by changing the composition of power.

A great amount of researchers have focused on exploring the effect of morphology and composition
of bioceramics surface on implants. The mechanical properties and biological responses of the coatings
can be controlled accurately by biomimetic design of the roughness and graded porosity of the
coatings without affecting the chemical structure of the matrix [86,87]. In this case, calcium phosphate
coatings with different morphologies by changing the pulse frequency were obtained, as reported by
Paital et al. [88]. After treatment, the hydrophilicity of the samples is enhanced, which improved the
proliferation and diffusion ability of the cell. According to Zheng et al. [89], the bioceramic coatings
were prepared on Ti-6Al-4V by LC. Simulated body fluids (SBF) results show that the appearance of
flake-like and cotton-like morphology of apatite provides favorable conditions for osseoconnection.
In addition, the multifunctional design of implants is closely related to the composite coating, and
coupled with appropriate post-treatment, which can further affects the biomedical application of
implants. Rasmi et al. [90] used LC to prepare functionally graded material (FGM) HA-TiO2, which
comprises of five different preplaced layers on Ti-6Al-4V alloy. Figure 13 indicates that the interface
thickness between the composite coating and the substrate is higher, and cellular structure was observed
in the upper part of CL. Apparently, the FGM with multiphase, micro-textured coating provides better
metallurgical bonding at the interface, and the wettability and the protein adsorption capacity of FGM
are significantly improved.
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Figure 13. Cross-sectional morphology of 100% HA and functionally graded material (FGM) laser
cladding at laser energy density (LED) 21.6 J/mm2 (a,c) interface between the crust layer (CL) and
the transition layer (TL) (low magnification) and (b,d) CL (high magnification) [90]. The top layer of
cladding is identified as CL. Beneath the CL, the TL is present, where transition of elements between
cladding and substrate occurs. Reprinted with permission from reference [90] 2018 Elsevier.

The composite material composed of bioceramics and metal can not only improve the mechanical
properties of implant surface, but also affect the chemical properties such as biocompatibility [91,92].
MgO doped Ta coatings are successfully created by high power lasers on CP-Ti substrate. With the
addition of MgO, the hardness of the coating is four times higher compared to CP-Ti. Additionally,
the biocompatibility and cells proliferation was further improved by incorporating MgO in the Ta
coatings [91]. In studies by Deng et al. [92], LC was used to create a compositional gradient NiTi/HA
coatings on NiTi substrate, as well as sintered NiTi (sNiTi)/HA-acid coating which is obtained by
acid-etching post-treatment. Figure 14 shows that by coating NiTi with HA the biocompatibility of NiTi
implants was further enhanced. An increase in extracellular matrix generation and mineral deposition
of osteoblasts was seen on sNiTi, sNiTi/HA and sNiTi/HA-acid coatings. In particular, the presence of
HA significantly promoted the proliferation of osteoblasts.
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Sol-gel technology is a versatile chemical synthesis technology that has been developed recently 
relates to hybrid materials which can be used to achieve unusual composite properties [95,96]. To 
some extent, the application of sol-gel method can produce excellent coating owing to its advantages 
properties such as low process temperature, facile and inexpensive preparation [97]. The process 
illustrated in Figure 16 is not really complete. In fact, altering the initial precursors, time allowed for 
gelation, catalysts, degree of solvation, gelation conditions or physical processing of the gel itself can 
control the coating performance [96]. 

Figure 14. Osteoblast morphology on different sNiTi plates [92].After three days of osteoblast culture,
the top view of the cell monolayers was imaged by SEM: (A) sNiTi; (B) and (D) sNiTi/HA-acid;
(C) and (E) sNiTi/HA. Representative areas in (A–C) showing mineral deposits (yellow arrows),
cell nuclei (blue arrows), and lamellipodia (red arrows). Some cells displayed a dome shape on
sNiTi/HA-acid, as in (D); and sNiTi/HA, as in (E); no similar cells were found for sNiTi. Cross sections
of the osteoblast monolayer were also imaged: (F) sNiTi; (G) sNiTi/ HA-acid; (H) sNiTi/HA. A fibrous
structure which is highlighted by yellow rectangles was observed in (G,H) and possibly represents
extracellular matrix. The red rectangle in (H) indicates possible mineralized microspheres attached to
the cell monolayer. Scale bar: 10 µm. Reprinted with permission from reference [92] 2018 Elsevier.

During the implantation process, the applied stress may exceed the coating-substrate adhesion
strength, which causes the separation of the coating from the metal surface, thereby impairing its
function of promoting bone integration [93]. Therefore, Miranda et al. [94] proposed a novel integrated
approach to avoid the detachment of HA coatings during implantation and affecting biological activity.
As explained by the schematic diagram as seen in Figure 15, the holes on the surface of Ti6-Al-4V are
processed by Nd:YAG laser, and then filled with HA by laser sintering.
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It can be seen from the above that the energy density, wavelength width, scanning speed, pulse
frequency and surface texture design of the laser will affect the biomechanical properties of the final
surface. Laser cladding is a flexible and effective method, by mixing different powder materials,
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forming a special biological coating on the surface of parts, so as to obtain the desired properties.
However, due to the inconsistency between the thermal expansion coefficient of the cladding layer and
the matrix, surface quality problems, such as cracks and pores that maybe difficult to control precisely
in the cladding layer.

2.5. Sol-Gel

Sol-gel technology is a versatile chemical synthesis technology that has been developed recently
relates to hybrid materials which can be used to achieve unusual composite properties [95,96]. To some
extent, the application of sol-gel method can produce excellent coating owing to its advantages
properties such as low process temperature, facile and inexpensive preparation [97]. The process
illustrated in Figure 16 is not really complete. In fact, altering the initial precursors, time allowed for
gelation, catalysts, degree of solvation, gelation conditions or physical processing of the gel itself can
control the coating performance [96].Coatings 2019, 9, x FOR PEER REVIEW 13 of 22 
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Figure 16. Gel synthesis routes. Processes are defined as sol–gel by the transition of colloidal solution to
an interconnected gel network (gelation). The further processing stages illustrated are non-redundant
and may be combined depending on the specific needs of the application [96]. 3D: three-dimensional.
Reprinted with permission from reference [96] 2016 Elsevier.

Recently, Çomakl et al. [98] indicted that a titanium dioxide thin film structure prepared by
the sol-gel on CP-Ti substrate is more stable and thicker in comparison to the continuous ion layer
adsorption and reaction (SILAR) method, and the wear properties and corrosion resistance is enhanced.
The surface morphology of sol-gel and SILAR samples is shown in Figure 17. Moreover, sol-gel method
can also be combined with a variety of coating technologies and can produce ideal biological coating
by selecting the appropriate conditions [99,100]. Anjaneyulu et al. [101] prepared sol–gel-derived HA
coatings via spin coating on Ti-6Al-4V alloy substrates. The sol–gel-derived HA surface has excellent
corrosion resistance and great cellular response in terms of cell attachment, growth and proliferation.
Since the loose particles on the medical implant may cause cancer and inflammation, the coating needs
to be firmly bonded to the implant.
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Andrew et al. [102] improved the bonding strength and optimized the mechanical properties of
the sol-gel coating by controlling the annealing temperature. In addition, researchers have found that
the pretreatment of the precursor had a significant effect on the adsorption strength and mechanical
properties of the coating [103]. Roest et al. [104] found that anodizing treatments could improve the
adhesive bonding of HA on Ti substrates, especially for titanium alloys. Analogously, a dense and
stable SiO2 coating was deposited on the surface of pre-oxidized TiNi alloy by sol-gel method. This way
improves the bonding strength between the substrate and film and corrosion resistance. Additionally,
the release of Ni ions can be effectively prevented to ensure the biocompatibility of the implant, as
reported by Yang et al. [105].

Sol-gel coating can not only act as a barrier layer to isolate the metallic substrates from the human
body environment, but also achieve multi-functional coating by adding different components, such
as corrosion inhibitors, growth factor and antibacterial factor [106]. Michelina et al. [107] prepared
organic-inorganic composite coatings on the surface of CP Ti grade 4 substrates by sol-gel method,
and successfully improved the elastic-plastic coating without cracks by adding poly (ε-caprolactide).
Furthermore, on a cellular level, the implants had excellent bioactive and biocompatibility.

Sol-gel technology is an interesting way to modify the surface of the implants. The sol-gel
technology is essentially the use of various materials that are controlled at processing media level,
instead of raw materials in traditional processes that are neither geometrically controlled and chemically
controlled or only geometrically controlled. With no doubt, combined with the change of coating
preparation process and adding other functional components, different functional coatings can be
obtained. In addition, how to shorten the processing time and improve the binding energy between the
surface and the matrix by changing the processing parameters seems to be the main research direction
at present.

2.6. Friction Stir Processing

Friction stir processing (FSP), heat source of processing is friction heat and plastic deformation
heat, is a new method applied to surface repair. For the biomedical field, it is mainly used to
modify surface microstructure or fabricate a composite layer on the surface of substrate. In particular,
composite coatings produced by FSP not only can improve surface properties such as hardness,
abrasion resistance, ductility, corrosion resistance, fatigue life and frictional properties, but also obtain
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desired multifunctional biomedical coating without or less affecting the matrix properties of the
material [108–110].

FSP is one of the prospective surface modification technologies that allows to control mechanical
properties by changing localized microstructure in a surface layer while retaining properties of the
base material. In general, the final microstructure of FSP surface is dependent on several independent
factors, such as processing parameters, chemical composition of modified material and consequent
heat treatment [111]. As a fairly environmentally friendly process, FSP is used for uniform distribution
of composition and microstructure, fabrication of ultra-fine grained materials and elimination of
casting defects [112]. As reported in recently work, FSP was employed to obtain defect-free and
homogenous fine-grained surface layer of the Ti-6Al-4V alloy by the applied processing parameters.
The ultra-refined α phase or Martensite-α’ phase produced by phase transformation provides a
beneficial condition for the enhancement in hardness and dry sliding wear performance [113]. In order
to further optimize mechanical properties for biomedical applications, Wang et al. [114] systematically
studied the microstructure evolution of Ti-35Nb-2Ta-3Zr alloy surface by FSP. As is shown in Figure 18,
the size of equiaxed grains is considerably refined by the severe shear deformation in stir zone.
Moreover, it is apparent that the occurrence of dynamic recrystallization is accompanied by phase
transition due to severe plastic deformation during three-pass FSP.
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Numerous studies have demonstrated that FSP is an effective method of fabricating surface
composites [115,116]. The common method with reinforcement particles in the fabrication of surface
composites by holes is explained in Figure 19 [117]. In the first step, the holes with proper dimensions
are machined on the modified plat and the reinforcement particles are filled in the holes. Then, the tool
with probe is applied to pack the holes completely. It should be noted that dimension, shape and
number of holes and distance between each other can be varied to achieve required volume fraction
of the second phases. In general, when a reinforcing phase is incorporated into a matrix, surface
composites show the synergistic effect of grain refinement by FSP and reinforcement particle [118,119].
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Targeting on tissue-substrate interactions, several works has been done to explore the effects
of FSP surface composites on titanium alloys for medical implant. Recently, FSP titanium alloys
reinforced by HA, TiC, SiC and TiO2 nano-particles are suitable for biomedical application [120].
Zhu et al. [117] successfully utilized FSP to fabricate titanium/silicon carbide composite layer on the
surface of pure Ti substrate and found an increase of microhardness. Furthermore, the adhesion,
proliferation and osteogenic differentiation of the cells on the surface of the nanocomposite material
were enhanced. Then, TiO2/TC4 composite coating, which provides a no biotoxicity environment for
cells and promotes cell adhesion and proliferation, was produced [121]. Wang et al. [122] produced a
promising biomaterial−TC4/Ag metal matrix nanocomposite, which can achieve a balance between the
antibacterial effect and biocompatibility. In Figure 20, with the increase of silver content, the number
of staphylococcus aureus (S. aureus) cells decreased significantly and dead cells with an indistinct or
deformed membrane were observed on 2 mm-Ag-FSP.

This section mainly focused on introducing all the aspects and biomedical applications of FSP that
is a novel and advanced solid-state surface modification technology, as well as reviewing the reported
short literature on this subject. On the one hand, it is effective to refine the grain structure and eliminate
surface defects during FSP because of dynamic recrystallization phenomena that occur in severe
thermal deformation [123,124]. On the other hand, recent studies pertaining to coating pointed out that
FSP has great potential to obtain functional gradient multifunctional composite coating from powder
pre-placed sheet system by using different lengths of grooves and tools. However, the inferior flexibility
of FSP limits its usage. This limitation restricts the use of the FSP technique to manufacture complex
counterparts with precise dimensional tolerance as compared to the other fusion-based technology.
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3. Conclusions

The surface modification of biomaterials has become a vital topic, especially in overcoming the
rejection reactions, such as inflammation and allergic reactions. When these biomaterials are implanted
into the body, most of them will interact with the maternal environment, which cannot achieve the
desired effect. Thus far, surface modification of biomaterials is believed to be the best way to improve
its various properties. This paper summarizes the methods and research progress of biomedical surface
modification in recent years.

This review provides a summary of the commonly emphasized surface modification methods,
such as plasma spraying, ion implantation, micro-arc oxidation, laser surface modification, sol-gel
and FSP. These methods are of great help to the practical application of biomedical implants; however,
there are still some deficiencies. In order to improve the success rate of implants and achieve long-term
stability of implants, it is necessary to combine surface modification and biomedicine to design the
optimal surface morphology and formulate effective coating immobilization strategies.
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