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Abstract: This study focused on the deposition of indium-doped zinc oxide (IZO) films at high
growth rates by ultrasonic spray pyrolysis. We investigated the influence of processing parameters,
such as temperature and solution flow rate, on the structural, optical, and electrical film properties.
For all depositions, low-cost and low-toxicity aqueous solutions and metal salt precursors were used.
Through the optimization of the spraying parameters and pattern, a spatially homogeneous IZO layer
with transparency greater than 80%, resistivity of 3.82 × 10−3 Ω·cm for a thickness of 1800 nm (sheet
resistance of 21.2 Ω/sq), Hall carrier density of 1.36× 1020 cm−3, Hall mobility of 12.01 cm2 V−1 s−1, and
work function of 4.4 eV was obtained. These films are suitable for implementation in optoelectronic
and photovoltaic devices.

Keywords: transparent conductive electrode; TCO; zinc oxide; indium-doped ZnO; thin film; oxide
semiconductor; spray pyrolysis; aqueous solution deposition

1. Introduction

Transparent conducting oxides (TCOs) are important materials for various applications, such
as flat-panel displays [1], functional windows [2], light-emitting diodes [3], and photovoltaics [4].
Established TCOs are wide-band gap (>3 eV), n-type semiconductors based on indium oxide (In2O3),
tin oxide (SnO2), or zinc oxide (ZnO) that have been doped with donors to increase the charge carrier
concentration. ZnO-based TCOs are especially attractive due to their low cost and ease of fabrication
through solution-based deposition techniques. To attain a high carrier concentration and improve the
film conductivity, ZnO can be doped with the group III elements Al, Ga, or In. Depending on the
deposition methods and conditions, different dopants result in distinctive film properties. For spray
pyrolysis—a versatile and low-cost solution-based deposition technique—it was shown that doping
with In promotes lower film resistivity compared to Al or Ga, even at low In concentrations [5–7].

Previously, we reported on the spray pyrolysis of In-doped ZnO (IZO) films with Zn-acetate
and In-acetylacetonate (In(acac)3) as precursors [8]. Although the films were highly transparent and
conductive, the film growth rate was restricted to ~10 nm/min. To obtain films with sufficiently low
resistivity for device applications, the deposition time had to be extended to several hours. Further, due
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to the low solubility of In(acac)3 in water, it was necessary to stir the solution at 80 ◦C for at least 2 h.
This resulted in an extended fabrication time, which was disadvantageous with respect to upscaling.
Rapid deposition would also reduce the amount of alkali ions diffusing from the glass substrate during
spraying, which can act as acceptors in ZnO and decrease the conductivity [9].

Literature reports on the spray pyrolysis of IZO films demonstrated that it was challenging to
obtain both high growth rates and high-quality films at the same time. Currently, rapidly processed
films possess either poor electronic properties [10] or low transparency (~60%) [11]. Considering this, the
main purpose of the present study was to increase the growth rate of IZO films on glass substrates while
maintaining a high film transparency and low resistivity. This was accomplished by using In-acetate
(InAc3) as a precursor with a higher solubility compared to In(acac)3 in aqueous solutions. Further, the
influence of the main spraying parameters on the growth rate and film properties was investigated.
Notably, InAc3 also has a lower environmental and health impact compared to In(acac)3 [12].

2. Materials and Methods

Borosilicate glass substrates (Schott Nexterion®D, Mainz, Germany. 7.5 × 2.5 cm2) were prepared
as previously reported [13]. In summary, they were ultrasonically cleaned in a Hellmanex®III (Munich,
Germany) washing solution, rinsed with deionized water (DI, 18 MΩ·cm−1) and isopropanol, and
dried in nitrogen stream. The prepared optimized precursor solution contained 0.2 M zinc acetate
dihydrate (ZnAc2 × 2H2O, Sigma-Aldrich 96459 (Munich, Germany)), 4 mol % indium acetate (InAc3,
Sigma-Aldrich 510270) dissolved in DI water with 8 vol % acetic acid (HAc, Sigma-Aldrich A6283).
For complete dissolution of the precursor salts, the solution was placed for 10 min in an ultrasonic
bath at 25 ◦C.

The ultrasonic spray pyrolysis was carried out on a Sono-Tek ExactaCoat®system (Milton, NY,
USA), equipped with a 120 kHz Sono-Tek Impact®ultrasonic nozzle in horizontal geometry. The fine
droplet mist was directed towards the hot plate which was covered with an alumina substrate holder
using compressed air (0.5 bar). The temperature varied between 360 and 400 ◦C, due to the contribution
of a volatile basic zinc acetate complex to the IZO film formation under this temperature regime [14].
The flow rate was varied between 0.8 and 2.4 mL/min to obtain a steady spraying cone and to avoid
precipitates. The spraying volume was a constant 45 mL in all cases, except when using the optimized
spraying pattern.

The deposited films were characterized by scanning electron microscopy at an accelerating voltage
of 5 kV and in-lens detector (SEM, Zeiss, Ultra 40, Oberkochen, Baden-Württemberg, Germany), atomic
force microscopy (AFM, Molecular Imaging, Pico Plus, San Diego, CA, USA) in tapping mode, X-ray
diffraction using Cu Kα (λ = 1.5419 Å) radiation (XRD, ThermoFisher Scientific, ARL Equinox 100,
Waltham, MA, USA), Fourier transform infrared spectroscopy (FTIR, Bruker Vertex 70, Billerica, MA,
USA) and 4-point probe set-up connected to a semiconductor parameter analyzer (Süss MicroTec probes,
Garching, Bayern, Germany and Agilent 4156 C parameter analyzer, Santa Clara, CA, USA). The film
growth rate was extracted from SEM cross sections by taking the mean value of several film thickness
measurements. The optimized IZO films were additionally characterized by Hall effect measurements
in the van der Pauw geometry with a magnetic field of 0.27 T. Ultraviolet photoemission spectroscopy
(UPS) was performed in a JEOL JPS-9030 photoelectron spectrometer system (Japan Electron Optics
Laboratory JEOL, Akishima Tokyo, Japan) using a monochromatic E-LUX (Excitech Ltd., Enfield,
Middlesex, UK) light source as excitation source (10.2 eV). The samples were electrically grounded
during the measurements of the valence band, while a bias of −5 V was applied for determining the
secondary electron cutoff (SECO).

3. Results and Discussion

The solution composition influences the properties of the films prepared by spray pyrolysis in
various ways [15,16]. In the present study, the amount of zinc acetate was fixed to 0.2 M, and the
amount of indium acetate varied between 3 and 5 mol %. It was observed that the solution containing



Coatings 2019, 9, 245 3 of 9

4 mol % InAc3 resulted in a slightly lower film resistivity compared to samples deposited from 3 and
5 mol % InAc3 solutions.

To investigate the influence of the acetic acid concentration on the film properties, 0–16 vol % of
acetic acid (HAc) was added to the aqueous solution containing 4 mol % of InAc3. The role of acetic acid
was to stabilize the volatile indium- and zinc-acetate complexes in the solution and adjust the pH to its
optimum value for the deposition [17]. A low HAc concentration resulted in unwanted precipitates on
the film surface, while a high HAc concentration caused an increase in film resistivity. In accordance with
our previous results [8], the lowest resistivity (7.4 × 10−3 Ω·cm) combined with highest transparency
(>80%) were obtained for ~1500 nm-thick films deposited from a solution containing 8 vol % HAc
(pH = 3.65).

3.1. Film Growth Rate

The film growth rate was influenced by the solution composition in various ways. It was shown
that the type of precursor metal salt influenced the growth of ZnO film [18] and a pH value between
3.5 and 4.3 resulted in the highest ZnO growth rate, due to zinc acetate complexes forming at this
pH range [19]. Within the narrow concentration range for InAc3 (3–5 mol %) and HAc (4–16 vol %)
in this study, there was practically no obvious influence on the growth rate, as shown in Figure 1a,b.
In comparison to our previous study [8], changing the zinc acetate concentration from 0.1 to 0.2 M
and the type of indium precursor salt resulted in a ~4-fold increase of the growth rate, as displayed in
Figure 1. In Figure 1c it can be observed that increasing the deposition temperature from 360 to 400 ◦C
resulted in a minor gradual decrease of the growth rate. A higher flow rate (v), as displayed in Figure 1d,
offers the possibility to accelerate the growth process. With constant spraying volume and adjustment
of the spraying cycles, the highest possible v to avoid undesired salt precipitation, due to incomplete
precursor decomposition, was 2.4 mL/min. Although the step from 0.8 to 1.6 mL/min led to a significant
increase of growth rate, a further increase to 2.4 mL/min had practically no effect on the growth rate.
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3.2. Influence of Deposition Temperature and Solution Flow Rate on Film Properties

While substrate temperature is a parameter frequently investigated in the spray pyrolysis of IZO
films [20–23], there are only a few studies that examine the influence of the precursor solution flow rate
on IZO film properties [21,24]. Further, none of the abovementioned reports use the same solvent and
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precursor combination as the present study. Both the precursor type and the solvent composition have
been shown to have a significant influence on film properties [17,25–27]. Table 1 lists film thickness,
growth rate, film resistivity, and sheet resistance for varying substrate temperatures and solution flow
rates. In this study, when the flow rate was doubled and the temperature was kept constant at 380 ◦C,
the number of spraying cycles needed to be reduced by the same factor to obtain comparable film
thicknesses (compare IZO-2 with IZO-4/IZO-5 in Table 1).

Table 1. Film properties for variations in deposition temperature and solution flow rate. IZO, indium-
doped zinc oxide.

Exp.
No.

Temp.
(◦C)

Flow
Rate

(mL/min)

Spraying
Cycles

Film
Thickness

(nm)

Growth
Rate

(nm/min)

Resistivity
(Ω·cm)

Sheet
Resistance

(Ω/sq)

Crystallite
Size (nm)

IZO-1 360 0.8 540 1450 40.3 7.4 × 10−3 51 12.1
IZO-2 380 0.8 540 1400 38.9 7.3 × 10−3 52 15.8
IZO-3 400 0.8 540 1350 37.5 1.4 × 10−2 104 16.1
IZO-4 380 1.6 270 1750 49.8 4.7 × 10−3 27 17.4
IZO-5 380 2.4 180 1720 47.8 4.6 × 10−3 27 16.7
IZO-6 380 1.6 200* 1500 53.3 5.7 × 10−3 38 14.4

* lower number of spraying cycles and same conditions as IZO-4 to obtain a lower film thickness.

A deposition temperature of 400 ◦C resulted in a higher resistivity compared to 360 and 380 ◦C.
The lowest resistivity was obtained with an increased v of 1.6 and 2.4 mL/min. To allow for comparison
of samples with a similar thickness, IZO-6 was deposited using the same conditions as for IZO-4, but
with a lower number of spraying cycles. IZO-6 films showed a decreased resistivity compared to films
deposited at the same temperature with a lower flow rate (IZO-2), and this was independent of the
reduced thickness.

The SEM plane-view image in Figure 2a shows that a lower temperature and a v of 0.8 mL/min
resulted in a reduced grain size and more compact films. The most significant influence on film
morphology was caused by raising the deposition temperature to 400 ◦C while maintaining a flow rate
of 0.8 mL/min, as seen in Figure 2c. In this case, larger elongated grains or grain agglomerates were
observed. Increasing the flow rate at a constant temperature of 380 ◦C resulted in the elongation of
small-sized grains (compare Figure 2b,d). Figure 2f shows the cross section image of the IZO-4 film
deposited at 380 ◦C with a flow rate of 1.6 mL/min.
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The roughness of the films was also studied by AFM, as shown in Figure 3a–e. In accordance
with observations from SEM images, the film deposited at low temperature and flow rate showed the
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lowest film roughness with a root mean square (RMS) of 6.4 nm. Increasing the deposition temperature
and the flow rate tended to increase the surface roughness, with the highest RMS value obtained for
the film deposited at 380 ◦C and 2.4 mL/min flow rate.
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Figure 3. AFM images of (a) IZO-1; (b) IZO-2; (c) IZO-3; (d) IZO-2; (e) IZO-4; and (f) IZO-5.

X-ray diffractograms, as seen in Figure 4, showed that all films have a polycrystalline ZnO wurtzite
crystal structure (COD: 96-900-4182), showing a high-intensity (1011) reflection and a lower-intensity
(11 2 0) reflection independent of the film thickness (compare IZO-4 and IZO-6). The crystallite sizes
were calculated using the Scherrer equation [28] and are listed for all samples in Table 1. It was observed
that there was a minor crystallite size increase from 12.1 to 16.1 nm with higher temperature, even
though the film thickness decreased with temperature. This was in accordance with the observations
from SEM images. Thick films deposited with high flow rates (IZO-4 and IZO-5) showed the largest
crystallite sizes of 17.4 and 16.7 nm. IZO-6 films exhibited a smaller crystallite size (14.4 nm) that was
similar to films deposited at the lower flow rate.
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Transmittance spectra were measured between 300 and 2500 nm for different deposition
temperatures, as seen in Figure 5a,b. All films exhibited Fabry–Pérot interferences that are commonly
observed in compact thin films. With increasing temperature, the transmittance was enhanced.
The highest absorption in the infrared region, which could be attributed to a higher amount of free
carriers, was observed at 360 ◦C. The band gap was extracted using the Tauc formula [29] and can be
observed in the inset of Figure 5a. The maximum value was 3.23 eV for 360 ◦C, decreasing to 3.14 and
3.17 eV, for 380 and 400 ◦C, respectively. The band edge shift to lower wavelengths was in agreement
with the more pronounced free carrier absorption and may be explained by the Moss-Burstein effect
due to a higher carrier concentration [30].
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Transmittance spectra for films deposited with different solution flow rates are shown in Figure 5c,d.
Higher flow rates caused only a minor decrease in transmittance for wavelengths up to 1000 nm, but a
pronounced absorption in the infrared region, which could again be attributed to a higher amount
of free carrier present in these films. The higher carrier concentration with increasing solution flow
rate may have been due to a superior amount of substitutionally incorporated In3+ in the film. Also,
the lower effective substrate temperature that may arise from the higher flow rate (more pronounced
cooling of the substrate with increased flux of material) could have been another factor. A band gap of
3.23 eV was observed for samples deposited with 1.6 or 2.4 mL/min, which was higher than the that
for the film deposited at 0.8 mL/min. This was in accordance with the tendancy observed in the IR
part of the spectrum. Further, it was seen that for v > 2.4 mL/min, incomplete precursor deposition
resulted in a higher amount of precipitates on the film surface, leading to less conductive films with
lower transmittance.

3.3. Optimized Spraying Pattern

To further accelerate the deposition process and decrease the variations in film thickness over
the 2.5 × 2.5 cm2 glass substrate, an improved spraying pattern was introduced, as shown in Figure 6.
The new spraying pattern increased the material influx. Due to this, it was necessary to decrease the
flow rate from 1.6 to 1.2 mL/min to avoid substantial substrate cooling, which resulted in precipitation
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on the substrate surface. The flow rate of 1.2 mL/min gave rise to a film growth rate of 55.4 nm/min
(compare to Figure 1). For a 1800 nm-thick film, a sheet resistance of 21.2 Ω/sq was obtained and the
same transparency of >80% was maintained. The faster film growth with the new spraying pattern can
be explained by the reduced loss of volatile metal salt precursors to the escaping gas phase, which
instead contribute to film formation. This was also demonstrated by the lower amount of precursor
solution needed (36 instead of 45 mL) as in the previous experiments for approximately the same
film thickness, rendering the film deposition process more efficient. For films deposited with these
optimized deposition conditions, Hall measurements in the van der Pauw geometry were conducted,
and a Hall carrier density of 1.36 × 1020 cm−3, a Hall mobility of 12.01 cm2

·V−1
·s−1, and a film resistivity

of 3.82 × 10−3 Ω·cm were determined. An image of the IZO film on glass is shown in Figure 6c. For the
implementation of IZO electrode in the devices, the electronic band structure is crucial. Therefore, the
work function, ϕ, and the onset of the valence band (VB) for the optimized IZO film were determined
by UPS measurements. The schematic band diagram and the related measurements are shown in
Figure 7a–c. The obtained VB onset was 3.2 eV and the work function was 4.4 eV.
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(SECO) obtained from UPS measurements.

4. Conclusions

This study showed how highly transparent and conductive indium-doped ZnO electrodes can be
fabricated from environment-friendly aqueous precursor solutions using a rapid spray pyrolysis process.
It was observed that the film growth rate was substantially influenced by the type and concentration of
the zinc precursor salt, while the amount of acetic acid and indium acetate showed a minor influence
for the concentrations used in this study. The IZO film growth rate could further be accelerated by
increasing the solution flow rate and optimizing the spraying pattern, resulting in less precursor species
being lost to the gas phase during deposition. The optimized spraying process resulted in films with
excellent electrical, structural, and optical properties, combined with high growth rates.
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