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Abstract: High friction surfacing (HFS), bonded to a road surface at high risk locations, has been 

shown to significantly reduce road fatalities and serious injuries, i.e., HFS saves lives. Calcined 

bauxite is the preferred aggregate for use in HFS systems due to its unique ability to resist 

polishing and abrasion by vehicle tires. Calcined bauxite is expensive, negatively impacts the 

environment due to mining, production and transporting processes and has come under supply 

pressures in recent years. This paper investigates the potential for blending natural aggregates with 

calcined bauxite for use in HFS systems. The experiments involved subjecting HFS specimens to 

laboratory simulated trafficking and testing for skid resistance, texture depth and mass loss. The 

testing was carried out in laboratories in Spain and Northern Ireland. The findings suggest that 

there is the potential to reduce the amount of calcined bauxite used in HFS systems by replacing a 

percentage of the calcined bauxite with high PSV natural sandstone or volcanic tuff aggregate. The 

impact of this research could reduce the risks associated with supply issues to the HFS industry, 

reduce environmental impact by using less calcined bauxite in HFS systems and reduce costs 

associated with the aggregate component of HFS systems—enabling road authorities to install 

more systems at high risk locations to further reduce fatalities and serious injuries on their roads.  

Keywords: high friction surfacing; polished stone value; calcined bauxite; blending aggregates; 

skid resistance; simulated trafficking 

 

1. Introduction 

The Global Status Report on Road Safety 2018, launched by the World Health Organization 

(WHO) in December 2018, highlights that the number of annual road traffic deaths has reached 1.35 

million [1]. To put this in context, that is almost 4,000 per day or 154 per hour or 2.5 lives lost every 

minute. Between 20 and 50 million more people suffer non-fatal injuries, with many incurring a 

disability because of their injury. The WHO further reported that, globally, traffic collisions cost 

most governments 3% of their gross domestic product. 

High friction surfacing (HFS) saves lives. HFS, sometimes referred to as anti-skid, is a skid 

resistant surfacing system bonded to a pavement surface in areas where the risk of a vehicle 

skidding out of control is high. Examples would be approaches to traffic lights, pedestrian crossings, 

roundabouts, steep inclines and dangerous bends where sudden or excessive braking or cornering 

may be required. HFS systems give superior performance over other road surfacing materials in 

terms of skidding resistance (i.e., grip) and, as a result, increase road safety to the road user at high 

risk locations. Research has shown that the number of fatalities and serious injuries can be 

substantially reduced when HFS systems are installed at high risk locations [2–4].  

The aggregate specified for use in HFS systems, calcined bauxite, is available in few locations 

throughout the world. Calcined bauxite has unique properties which gives it excellent performance 
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in terms of skidding resistance. Geologically, the grade of bauxite suitable for use in HFS systems is 

not available in parts of the world such as Europe or North America where demand is greatest. The 

two main sources are China and Guyana, in South America. As a result, calcined bauxite is 

expensive and has negative environmental impacts due to the processes involved, in mining the raw 

bauxite, in the calcination process involved in altering the bauxite properties to give it unique skid 

resistance properties, and in the shipping and other transport costs involved to get to its desired 

locations around the world. 

The HFS industry in the UK, USA and Ireland use refractory grade calcined bauxite imported 

predominantly from China. Other sources include Guyana and India. It is estimated that China 

produces 95% of the globe’s refractory bauxite for various industries [5]. In recent years the calcined 

bauxite industry in China has undergone considerable change due to a range of political, 

environmental and economic factors. As part of Chinese government policy to clean up the 

environment and build a moderately prosperous society by 2020 [6], a new environmental tax law 

has been implemented. The new law has resulted in a series of strict environmental inspections on 

mineral producing facilities to reduce industrial pollution levels and crack down on illegal mining 

operations. Throughout 2017 and 2018 environmental inspections led to many calcined bauxite 

production facilities being either temporarily or permanently shut down [7].  

The closures were related to the requirements for the industry to upgrade its calcining facilities, 

at a considerable cost. The costs associated with the Government’s drive to upgrade production 

plants from coal to natural gas fired kilns has led to many producers being forced to close their 

businesses [8]. Furthermore, the crackdown on illegal businesses and the stricter controls on the use 

of explosives have further compounded the industry. All these factors have inevitably led to supply 

shortages which have resulted in price rises within the market. Calcined bauxite is predicted to 

experience continued tight supply and high prices throughout 2019. Although refractory bauxite is 

currently excluded from US trade tariffs, there is the risk over the coming years that the 

implementation of such tariffs, due to a US-China trade war, could lead to further price increases 

and volatility within the bauxite market [5]. 

Several studies in the US have investigated the potential use of alternative aggregates in HFS 

systems by comparing each aggregate’s performance to that of calcined bauxite. The general 

conclusions from these studies show that calcined bauxite maintains higher levels of friction for 

longer periods of time than all other alternative aggregates investigated. The Texas A and M 

Transportation Institute undertook a laboratory study to compare the performance of a sandstone 

aggregate as a potential alternative to calcined bauxite [9]. Although the sandstone had good 

frictional properties, it did not perform as good as calcined bauxite. The authors also highlighted the 

high micro-deval mass loss as a concern for the performance of the softer sandstone. A research 

study sponsored by the Indiana Department of Transportation compared the laboratory and field 

performance of steel slag as a potential alternative to calcined bauxite [10]. After completion of 

cyclical polishing, the laboratory findings showed that friction was reduced by 8% and 4% for steel 

slag and calcined bauxite, respectively. The field data showed that, after nine months of service, the 

steel slag reduced friction by 45% and the calcined bauxite reduced in friction by 20%.  

The National Center for Asphalt Technology (NCAT) at Auburn University conducted two 

studies into alternative aggregates for use in HFS systems. The first study compared the laboratory 

and field performance of seven alternative aggregates including: granite, flint, basalt, silica sand, 

steel slag, emery, and taconite [11]. The laboratory data showed that all seven aggregates performed 

worse than calcined bauxite. The field data found that calcined bauxite maintained higher friction 

levels over a 24-month period. Calcined bauxite friction values decreased from 70 to 64. Flint friction 

values decreased from 55 to 43. Granite friction values decreased from 55 to 40. The second study 

compared the laboratory performance of ten alternative aggregates including: basalt, copper slag, 

flint, feldspar, three samples of calcined kaolin and three samples of quartz [12]. The laboratory data 

showed that calcined bauxite maintained higher friction values than all other alternative aggregates 

during testing.  
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A review of 50 years of UK road trial data and laboratory investigations also found that calcined 

bauxite is the only aggregate to consistently offer the highest levels of performance for the longest 

period [13]. Natural aggregates with very good resistance to wear will polish and become slippery 

over time. Conversely, natural aggregates with very good resistance to polishing will abrade and 

wear away over time [14,15]. 

In 2017, the authors considered how in-service performance of HFS could be predicted in the 

laboratory and investigated the 100% replacement of calcined bauxite with a range of natural 

aggregates. The data showed that calcined bauxite outperformed all the natural aggregates with 

only one natural aggregate (sandstone) just meeting the British Board of Agrément (BBA) Type 1 

specification requirements required in the UK. That paper also reviewed the use and certification of 

HFS in the UK. The work reported in 2017 led to the data reported in this paper which investigates 

whether there is a natural aggregate that could be blended with calcined bauxite for use in HFS 

systems and still be able to meet specification requirements. 

The aim of this paper is to investigate the use of locally available natural aggregates found in 

the UK with calcined bauxite in HFS systems. This paper considers how the results from three 

separate laboratory experiments could potentially impact society, the economy and the 

environment. The three experiments are as follows: 

 Experiment 1: Subject cold-applied HFS specimens of calcined bauxite, granite, sandstone and 

volcanic tuff, at various blend ratios, to simulated trafficking and test for skid resistance, texture 

depth and mass loss.  

 Experiment 2: Subject hot-applied HFS specimens of calcined bauxite and high PSV sandstone, 

at various blend ratios, to simulated trafficking and test for skid resistance, texture depth and 

mass loss. 

 Experiment 3: Subject cold-applied HFS specimens of calcined bauxite and high PSV sandstone, 

at various blend ratios, to simulated trafficking and test for skid resistance, texture depth and 

mass loss. 

2. Materials and Methods  

2.1. Aggregates used in Experiments 

The natural aggregates used in the experiments were sandstone from three separate sources (A, 

B and C), granite and volcanic tuff. There were three sources of calcined bauxite used in the 

experiments: buff colored Chinese calcined bauxite, grey colored Chinese calcined bauxite and grey 

colored Guyanese calcined bauxite. Each aggregate type was tested for loose bulk density [16], 

particle density and water absorption [17] prior to manufacture of test specimens. The polished 

stone value (PSV) [18] and aggregate abrasion value (AAV) [19] were declared values by the 

suppliers. Table 1 shows the PSV, AAV, bulk density, particle density and water absorption data for 

the aggregates used in the experiments. 

Table 1. Aggregate properties 

Aggregate type 
PSV 

(declared) 

AAV 

(declared) 

Bulk Density 

(kg/m3) 

Particle Density – 

oven dried (kg/m3) 

Water 

Absorption (%) 

Chinese Calcined Bauxite Buff >70 <4 1387 2629 6.8 

Chinese Calcined Bauxite Grey >70 <4 1674 3314 1.4 

Guyana Calcined Bauxite Grey >70 <4 1745 3490 2.3 

Granite 55 2 1350 2619 0.3 

Sandstone A 70 7.6 1353 2716 1.2 

Sandstone B 70 6.4 1296 2524 2.4 

Sandstone C 67 6.3 1272 2500 1.7 

Volcanic Tuff 68 6 1344 2515 0.1 
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Local authorities often select HFS systems to be aesthetically pleasing as well as for the obvious 

safety reasons. For this reason, the natural aggregates selected to be blended with each source of 

calcined bauxite were chosen based on predicted performance and for aesthetic reasons. For 

example, in Experiment 1, sandstone A was dark in colour and was blended with grey Chinese 

bauxite. Each aggregate blend was compared against a reference specimen which was 100% of the 

calcined bauxite used in the experiment.  

2.2. Specimen Manufacture 

Thermosetting, more commonly known as cold-applied HFS systems, comprise a resin binder 

that is applied to a road surface and acts as an adhesive to hold 1–3 mm aggregates in place which 

provide high levels of friction. Binder systems include epoxy resin, polyurethane, polyurea or 

methyl methacrylate (MMA). After the resin binder is applied, an excess of the 1–3 mm aggregates 

are spread over the binder. After the resin is cured the excess or loose aggregates are removed by 

sweeping. For Experiment 1, test plates were supplied by Aetec Laboratories, Madrid, Spain. For 

Experiments 2 and 3, test slabs were supplied by Ulster University, Newtownabbey, UK. The test 

plates/slabs were brushed clean and taped off to provide adequate formwork to hold the binder in 

place. The binder component, used for each specimen in investigations 1 and 3, was a two-part 

epoxy resin.  

The two components (A and B) of the epoxy system were thoroughly mixed at a ratio of 50:50 

until homogenous. The epoxy binder was then spread evenly over the test plates/slabs using a 

serrated edged squeegee at a coverage rate of 1.8 kg/m2. Aggregates of various blend ratios were 

then spread over each test plate/slab to excess. After initial curing over-night the excess was 

removed by brushing. The specimens were then left to fully cure. Figure 1(a) shows a newly laid 

HFS system on an approach to a roundabout in Ireland whilst Figure 1(b) shows a cold applied HFS 

specimen prior to simulated traffic testing in Experiment 1. 

  
(a) (b) 

Figure 1. (a) Newly laid HFS system in Ireland; (b) cold applied HFS specimen used in Experiment 1. 

Thermoplastic, more commonly known as hot-applied HFS systems, comprise a pre-mixed 

rosin ester binder and aggregate thermoplastic system. The mixture is heated to high temperatures 

in truck mounted boilers before being discharged into buckets and applied to a road surface in strips 

using a screed box. For Experiment 2 the test slabs were brushed clean and taped off to provide a 

neat edged finish. The mixture was heated in appropriate size pans in the laboratory to the 

recommended laying temperatures whilst being continuously and thoroughly mixed. The heated 

material was then transferred to a heated screed box and spread over the slab. The screed box was 

combed over the material several times to ensure even distribution of aggregate and a well textured 

finish. The tape was removed before the specimens were left to fully cure over-night. 

2.3. Simulated Trafficking and Testing 

2.3.1. Wear Simulator Turntable 
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The wear simulator turntable located at Aetec Laboratories is primarily used to assess the 

performance of road marking materials [20]. The Turntable consists of a 6.4 m external diameter 

table that can rotate up to a maximum speed of 120 km/h. Up to eighteen test plate specimens can be 

mounted on the table. Four vertically mounted approved commercial tires with pressures of 0.25 ± 

0.02 MPa run freely on the table at a steering angle of 1° ± 10’, applying a load of 3,000 ± 300 N on the 

test specimens from each tire.  

The wear simulator has a water dispenser to apply water over the test plates and a cleaning 

system to keep the specimens and tires clean. The turntable is enclosed in a temperature-controlled 

room where testing is carried out at 7.5 ± 2.5 °C. The agreed test intervals were: 0 wheel-passes (WP), 

5,000 WP, 40,000 WP, 100,000 WP, 200,000 WP, 500,000 WP, 1 million WP, and 1.5 million WP. For 

the first 500,000 WP a steering angle of 1° ± 10’ was used with the remainder of testing carried out at 

a steering angle of 1.5° ± 10’. For every hour of simulated trafficking on the turntable the following 

test conditions were maintained: 15 min of wet trafficking at 15 km/h followed by 45 min of dry 

trafficking at 60 km/hr. The wear simulator Turntable is shown in Figure 2(a). 

2.3.2. Road Test Machine 

Appendix H of the Transport Research Laboratory (TRL) Report 176 contains a generic 

description of the test equipment used to perform the wear test [21]. There is only one device 

available for use in the UK. This is known as the Road Test Machine 1 (RTM) and is shown in Figure 

2(b). This equipment was identified as being suitable to simulate trafficking and so predict wear 

resistance. The RTM is now located at Ulster University where it is used in the UK BBA process of 

HFS certification. The equipment is used to test other types of asphalt and concrete products under 

conditions of simulated wear. This allows direct comparison of HFS data with other types of asphalt 

or concrete products used as a road surfacing.  

The RTM equipment consists of a 2.1 m diameter table that rotates at 10 RPM or 1.1 m/s. The 

table has spaces for mounting ten 305 mm × 305 mm × 50 mm test specimens. These are typically 

asphalt slabs made using a roller compacter unto which the HFS is applied. Two vertically mounted 

full size 195/70R14 tires run freely on the table each applying a load of approximately 5 kN. Tire 

inflation pressure is maintained at 2 bar or 30 psi. During testing the tires track back and forth across 

the width of the test specimen generating additional stress. The RTM is enclosed in a 

temperature-controlled room with testing carried out at 10 ± 2 °C to avoid deformation of the test 

specimen. The wear test was carried out in a dry condition with no abrasive.  

The Appendix H wear test method requires initial test values and after 100,000 wheel-passes, 

i.e., 50,000 rotations of the table. However, test values at the start and finish of accelerated testing do 

not adequately show what happens during the whole period of simulated trafficking. 

Understanding what happens during testing offers improved insight into time related changes 

which relate to in-service trafficking conditions. Simulated RTM trafficking is typically stopped at 

regular intervals to measure changes in HFS properties.  

  
(a) (b) 

Figure 2. (a) The wear simulator turntable located at Aetec Laboratories, Madrid; (b) the road test 

machine located at Ulster University. 
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2.3.3. Test Methods 

Each test specimen was photographed and weighed to assess erosion loss and assessed for wet 

skid resistance value (SRV) and texture depth using the British pendulum [22] and volumetric patch 

technique [23] methods respectively. 

3. Results 

3.1. Experiment 1 

This experiment involved manufacturing cold applied HFS specimens and subjecting them to 

1.5 million wheel-passes of simulated trafficking on the wear simulator turntable. During simulated 

trafficking the turntable was stopped periodically, and the specimens tested for wet skid resistance, 

texture depth and mass loss. One specimen was tested for each blend ratio. 

3.1.1. Skid Resistance 

Table 2 and Figure 3(a) show the development of skid resistance for the slab specimens up to 1.5 

million wheel-passes. There is a ranking of specimens before, during and after testing on the wear 

simulator turntable. All the test specimens followed a similar downward trend of development 

during simulated trafficking. Skid resistance values were initially very high for all specimens prior 

to trafficking, followed by a decline in skid resistance to equilibrium levels. 

Figure 3(b) shows the skid resistance data for the specimens ranked in order of performance 

after 1.5 million wheel-passes of simulated trafficking. After 1.5 million wheel-passes the specimens 

had undergone considerable polishing and as would be expected, the specimen containing 100% 

granite performed the worst. The second worst performer was the specimen containing a blend of 

50% granite and 50% calcined bauxite (CB) Chinese grey. Even though 50% of the granite was 

replaced with 50% of the overall best performing aggregate (CB Chinese grey) it was still the second 

worst performer. This shows the susceptibility of granite to polishing by vehicle tires over time. 

Figure 3(b) shows that half of the worst performing specimens were made using 100% natural 

aggregate and one other specimen which contained 50% granite. Half of the best performing 

specimens contained either 100% calcined bauxite or a blend of sandstone or tuff and calcined 

bauxite. Two of the specimens containing a blend of sandstone and calcined bauxite out-performed 

the specimen containing 100% Chinese buff calcined bauxite. This shows how blending calcined 

bauxite with high PSV sandstone or tuff can increase wet skid resistance. 

Table 2. Skid resistance data up to 1.5 million wheel-passes (Aetec data). 

HFS Slab Ref. Skid Resistance (PTV) 

Wheel Passes 0 5,000 40,000 100,000 200,000 500,000 1,000,000 1,500,000 

CB Chinese Buff 100% 112 107 94 89 87 82 79 72 

CB Chinese Grey 100% 109 104 97 92 89 84 79 76 

Granite 100% 97 90 77 74 69 66 59 58 

CB/Granite 50/50% 102 97 87 82 79 70 70 65 

Sandstone A 100% 97 92 84 84 79 76 73 71 

CB/Sandstone A 50/50% 104 102 94 87 84 82 74 74 

Sandstone B 100% 99 97 87 79 79 74 66 66 

CB/Sandstone B 50/50% 99 102 94 92 87 79 82 75 

Sandstone C 100% 102 90 89 84 79 77 74 70 

CB/Sandstone C 50/50% 104 97 92 87 85 82 74 72 

Tuff 100% 102 97 89 86 80 76 74 66 

CB/Tuff 50/50% 104 100 89 89 79 79 72 72 
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(a) (b) 

Figure 3. (a) Skid resistance development up to 1.5 million wheel-passes; (b) skid resistance ranking 

after 1.5 million wheel-passes (Aetec data). 

3.1.2. Texture Depth 

Table 3 and Figure 4(a) show the development of texture depth for the slab specimens up to 1.5 

million wheel-passes. Similar to the skid resistance data, there was a ranking of specimens before, 

during and after testing on the wear simulator turntable. All the test specimens followed a similar 

downward trend of development during simulated trafficking. Texture depth testing was not 

carried out prior to simulated trafficking due to the risk of the test sand affecting initial skid 

resistance values. Texture depth values were initially high for all specimens prior to trafficking, 

followed by a decline in texture depth levels. 

Figure 4(b) shows the texture depth data for the specimens ranked in order of performance after 

1.5 million wheel-passes of simulated trafficking. The best performers were the two specimens 

containing 100% calcined bauxite. The three worst performers were the specimens containing 100% 

sandstone. The graph shows that, blending calcined bauxite with natural aggregates can increase 

texture depth performance during simulated trafficking. 

Table 3. Texture depth data up to 1.5 million wheel-passes (Aetec data) 

HFS Slab Ref. Texture Depth (mm) 

Wheel Passes 40,000 100,000 200,000 500,000 1,000,000 1,500,000 

CB Chinese Buff 100% 1.8 1.6 1.5 1.5 1.4 1.3 

CB Chinese Grey 100% 1.8 1.8 1.5 1.5 1.4 1.3 

Granite 100% 1.4 1.6 1.3 1.3 1.2 1.2 

CB/Granite 50/50% 1.6 1.5 1.4 1.4 1.3 1.3 

Sandstone A 100% 1.4 1.3 1.2 1.2 1.0 1.0 

CB/Sandstone A 50/50% 1.6 1.6 1.6 1.5 1.3 1.3 

Sandstone B 100% 1.3 1.2 1.1 1.1 1.0 0.9 

CB/Sandstone B 50/50% 1.6 1.5 1.3 1.4 1.3 1.2 

Sandstone C 100% 1.5 1.4 1.3 1.2 1.1 1.0 

CB/Sandstone C 50/50% 1.5 1.4 1.4 1.3 1.2 1.1 

Tuff 100% 1.6 1.5 1.5 1.3 1.2 1.1 

CB/Tuff 50/50% 1.6 1.6 1.6 1.4 1.2 1.1 
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(a) (b) 

Figure 4. (a) Texture depth development up to 1.5 million wheel-passes; (b) Texture depth ranking 

after 1.5 million wheel-passes (Aetec data). 

3.1.3. Mass Loss 

Very little aggregate loss occurred for the majority of specimens after 1.5 million wheel-passes. 

Figure 5 shows the cumulative percentage mass loss for each specimen after 1.5 million 

wheel-passes. This shows the specimens ranked in order of highest percentage mass loss (top) to 

lowest percentage mass loss (bottom). 

 

Figure 5. Percentage mass loss ranking after 1.5 million wheel-passes (Aetec data). 

3.2. Experiment 2 

This experiment involved manufacturing hot applied HFS specimens and subjecting them to 

100,000 wheel-passes of simulated trafficking on the road test machine located at Ulster University, 

Northern Ireland. During simulated trafficking the turntable was stopped periodically, and the 

specimens were tested for skid resistance, texture depth and mass loss. Two specimens were tested 

for each blend ratio and the values reported in this paper are average values. 

3.2.1. Skid Resistance 

Table 4 shows the development of skid resistance data for all the slab specimens up to 100,000 

wheel-passes. Figure 6(a) plots the data for the specimens made using Chinese grey calcined bauxite 

and sandstone B up to 100,000 wheel-passes. Skid resistance values prior to simulated trafficking 

ranged from 63 to 65 before increasing significantly to a range of 79 to 85 at 5,000 wheel-passes. This 

was caused by the excess aggregate on the surface of the test specimen influencing the initial 

pendulum testing. This was quickly worn off exposing the aggregate held by the resin binder. After 

5,000 wheel-passes the specimens began to polish and as a result skid resistance values began to 

decline. After 25,000 wheel-passes the CB/sandstone B 70/30% specimen increased in skid resistance 

for the remainder of testing. After 100,000 wheel-passes the two blended specimens were 

comparable to the Chinese grey calcined bauxite. 
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Figure 6(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

Included is a dotted line running vertically at 70 PTV. This is the BBA specification limit in the UK 

for Type 1 laboratory specimens tested after 100,000 wheel-passes in the RTM. This shows that all 

the specimens in this experiment would pass the BBA test requirements for Type 1 skid resistance 

after 100,000 wheel-passes. 

Table 4. Skid resistance data (Ulster University data). 

HFS Slab Ref. Skid Resistance (PTV) 

Wheel Passes 0 1,000 5,000 25,000 50,000 100,000 

CB Chinese Grey 100% 63 70 85 79 77 75 

CB/Sandstone B 70/30% 65 72 81 73 75 76 

CB/Sandstone B 50/50% 64 66 79 78 77 73 

CB Chinese Buff 100% 96 85 84 82 83 79 

CB/Sandstone C 70/30% 86 80 82 79 76 74 

CB/Sandstone C 50/50% 96 77 80 77 76 72 

 

  

(a) (b) 

Figure 6. (a) Skid resistance development up to 100,000 wheel-passes; (b) Skid resistance ranking 

after 100,000 wheel-passes (Ulster University data). 

Figure 7(a) plots the data for the specimens made using Chinese buff calcined bauxite and 

sandstone C up to 100,000 wheel-passes. Skid resistance values prior to simulated trafficking ranged 

from 86 to 96 before declining up to 1,000 wheel-passes. After 1,000 wheel-passes the two specimens 

containing blends of calcined bauxite and sandstone C increased in skid resistance up to 5,000 

wheel-passes before entering a downward trend for the remainder of simulated trafficking. 

Figure 7(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

The specimen containing 100% Chinese buff calcined bauxite was the best performer with a PTV of 

79. The next best performer was the specimen containing a blend of 70% calcined bauxite and 30% 

sandstone and the worst performer was the specimen containing a blend of 50% calcined bauxite 

and 50% sandstone B. Included in Figure 7(b) is the BBA specification limit in the UK for Type 1 

laboratory specimens tested after 100,000 wheel-passes. This shows that all the specimens would 

pass the BBA test requirements for Type 1 skid resistance after 100,000 wheel-passes. 
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(a) (b) 

Figure 7. (a) Skid resistance development up to 100,000 wheel-passes; (b) skid resistance ranking 

after 100,000 wheel-passes (Ulster University data). 

3.2.2. Texture Depth 

Table 5 shows the development of texture depth data for all the slab specimens up to 100,000 

wheel-passes. Figure 8(a) plots the data for the specimens made using Chinese grey calcined bauxite 

and sandstone B up to 100,000 wheel-passes. Texture depth values prior to simulated trafficking 

ranged from 2.6 mm to 3.6 mm. After 1,000 wheel-passes all of the specimens had lost texture before 

entering a slower downward trend for the remainder of simulated trafficking. This was due to 

removal of some excess aggregate particles in the early stages of simulated trafficking that resulted 

in the higher volumetric based texture depth measurements obtained. 

Table 5. Texture depth data (Ulster University data). 

HFS Slab Ref. Texture Depth (mm) 

Wheel Passes 0 1000 5000 25,000 50,000 100,000 

CB Chinese Grey 100% 3.6 2.4 2.3 2.1 1.9 1.9 

CB/Sandstone B 70/30% 2.6 2.3 2.2 1.8 1.8 1.8 

CB/Sandstone B 50/50% 2.9 2.3 2.1 1.9 2.0 1.7 

CB Chinese Buff 100% 3.6 2.1 2.3 2.1 1.9 1.9 

CB/Sandstone C 70/30% 3.2 2.2 2.0 1.8 1.7 1.6 

CB/Sandstone C 50/50% 2.6 2.3 2.2 1.8 1.8 1.8 

Figure 8(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

The best performer was the specimen containing 100% Chinese grey calcined bauxite followed by 

the specimen containing a blend of 70% calcined bauxite and 30% sandstone. The worst performer 

was the specimen containing a blend of 50% calcined bauxite and 50% sandstone. Included in Figure 

8(b) is a dotted line running vertically at 1.1 mm texture depth. This is the UK BBA specification limit 

for Type 1 laboratory specimens tested after 100,000 wheel-passes. This shows that all the specimens 

would pass the BBA test requirements for Type 1 texture depth after 100,000 wheel-passes. 
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(a) (b) 

Figure 8. (a) Texture depth development up to 100,000 wheel-passes; (b) texture depth ranking after 

100,000 wheel-passes (Ulster University data). 

Figure 9(a) plots the data for the specimens made using Chinese buff calcined bauxite and 

sandstone C up to 100,000 wheel-passes. Texture depth values prior to simulated trafficking ranged 

from 2.6 mm to 3.6 mm. After 1,000 wheel-passes all of the specimens had decreased sharply before 

entering a slower downward trend for the remainder of simulated trafficking.  

Figure 9(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

The best performer was the specimen containing 100% Chinese buff calcined bauxite followed by the 

specimen containing a blend of 50% calcined bauxite and 50% sandstone. The worst performer was 

the specimen containing a blend of 70% calcined bauxite and 30% sandstone. Included in Figure 9(b) 

is a red dotted line running vertically at 1.1 mm texture depth. This is the BBA specification limit for 

Type 1 laboratory specimens tested after 100,000 wheel-passes. This shows that all the specimens 

would pass the BBA test requirements for Type 1 texture depth after 100,000 wheel-passes. 

  
(a) (b) 

Figure 9. (a) Texture depth development up to 100,000 wheel-passes; (b) texture depth ranking after 

100,000 wheel-passes (Ulster University data). 

3.2.3. Mass Loss 

There was no mass loss encountered for the specimens during testing, apart from the loss of a 

few aggregate particles at the start of simulated trafficking. 

3.3. Experiment 3 

This experiment involved manufacturing cold applied HFS specimens and subjecting them to 

100,000 wheel-passes of simulated trafficking on the RTM located at Ulster University. During 

simulated trafficking the turntable was stopped periodically, and the specimens were tested for skid 

resistance, texture depth and mass loss. Two specimens were tested for each blend ratio and the 

values reported in this paper are average values. 
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3.3.1. Skid Resistance 

Table 6 shows the development of skid resistance data for all the slab specimens up to 100,000 

wheel-passes. Figure 10(a) plots the data for the specimens made using Guyanese and Chinese buff 

calcined bauxite and sandstone C. Prior to and during simulated trafficking there was a clear 

difference between the specimens containing Guyanese calcined bauxite and Chinese buff calcined 

bauxite. The Guyanese calcined bauxite outperformed the Chinese buff calcined bauxite.  

Figure 10(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

The specimen containing 100% Guyanese bauxite had a PTV of 90. Replacing 50% of the Guyanese 

calcined bauxite with 50% of sandstone C gave a PTV of 79. The specimen containing 100% Chinese 

buff calcined bauxite had a PTV of 75. Replacing 50% of the Chinese buff calcined bauxite with 50% 

of sandstone C gave a PTV of 73. Included in Figure 10(b) is a dotted line running vertically at 70 

PTV. This is the BBA specification limit in the UK for Type 1 laboratory specimens tested after 

100,000 wheel-passes. This shows that all the specimens would pass the BBA test requirements for 

Type 1 skid resistance after 100,000 wheel-passes. 

Table 6. Skid resistance data (Ulster University data). 

HFS Slab Ref. Skid Resistance (PTV) 

Wheel Passes 0 5000 15,000 50,000 100,000 

CB Guyanese 100% 105 91 90 88 90 

CB/Sandstone C 50/50% 109 94 87 81 79 

CB Chinese Buff 100% 88 82 79 76 75 

CB/Sandstone C 50/50% 93 84 80 75 73 

 

  

(a) (b) 

Figure 10. (a) Skid resistance development up to 100,000 wheel-passes; (b) skid resistance ranking 

after 100,000 wheel-passes (Ulster University data). 

3.3.2. Texture Depth 

Table 7 shows the development of texture depth data for all the slab specimens up to 100,000 

wheel-passes. Figure 11(a) plots the data for all the specimens that were made using Guyanese and 

Chinese buff calcined bauxite and sandstone C. Texture depth values prior to simulated trafficking 

ranged from 2.7 to 3.0 mm. After 5,000 wheel-passes all the specimens had decreased sharply before 

entering a slower downward trend for the remainder of simulated trafficking.  

Figure 11(b) plots the data for the specimens after 100,000 wheel-passes of simulated trafficking. 

The best performer was the specimen containing 100% Guyanese calcined bauxite. The worst 

performer was the specimen containing a blend of 50% Chinese buff calcined bauxite and 50% 

sandstone C. The specimen containing a blend of 50% Guyanese calcined bauxite and 50% sandstone 

C had the same texture depth as the specimen containing 100% Chinese buff calcined bauxite. 

Included in Figure 11(b) is a dotted line running vertically at 1.1 mm texture depth. This is the BBA 
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specification limit for Type 1 laboratory specimens tested after 100,000 wheel-passes. This shows 

that all the specimens would pass the BBA test requirements for Type 1 texture depth after 100,000 

wheel-passes. 

Table 7. Texture depth data (Ulster University data). 

HFS Slab Ref. Texture Depth (mm) 

Wheel Passes 0 5000 15,000 50,000 100,000 

CB Guyanese 100% 2.8 2.2 2.0 1.9 1.8 

CB/Sandstone C 50/50% 2.7 2.1 1.8 1.6 1.7 

CB Chinese Buff 100% 3.0 2.1 1.8 1.9 1.7 

CB/Sandstone C 50/50% 2.8 2.1 1.9 1.7 1.6 

 

  

(a) (b) 

Figure 11. (a) Texture depth development up to 100,000 wheel-passes; (b) texture depth ranking after 

100,000 wheel-passes (Ulster University data). 

3.3.3. Mass Loss 

There was no mass loss encountered for the specimens during testing. 

4. Discussion 

The results reported in this paper clearly show that there are natural aggregates available that 

can be blended with calcined bauxite and meet national laboratory performance requirements for 

HFS systems such as those that have been used in the UK. For many years researchers have tried to 

come up with alternatives to calcined bauxite in HFS systems. The approach (or mistake) was to look 

for 100% replacement using natural aggregates. For example, using 100% granite will not work 

because it will polish prematurely and become slippery to the road user over time. Using 100% 

sandstone will not work because it will wear prematurely over time because it is not durable enough 

to withstand the enormous stresses exerted on the material at high stress/risk locations where HFS 

systems are used. The same can be used to account for why other natural rock types do not perform 

in HFS. This can be seen from the results of Experiment 1, where the specimen containing 100% 

granite was the worst performer in terms of skid resistance. The next worst performer was the 

specimen containing a blend of granite and calcined bauxite. Even though 50% of the granite was 

replaced with 50% calcined bauxite, it was still the second worst performer. This illustrates the 

susceptibility of granite and other similar rock types to polishing and the risk that their use in HFS 

could pose to the road user. 

In Experiment 1, one would expect the two control specimens containing 100% calcined bauxite 

to have the highest skid resistance. This was not the case. The best performer was the specimen 

containing 100% Chinese grey calcined bauxite with a skid resistance of 76. The next two best 

performers were the specimens containing blends of Chinese grey calcined bauxite and sandstone B 
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and sandstone A with skid resistance values of 75 and 74 respectively. The 100% Chinese buff 

calcined bauxite specimen had the same skid resistance value as the specimens containing blends of 

calcined bauxite with sandstone A and volcanic tuff. In terms of texture depth, the two best 

performers were the two specimens containing 100% calcined bauxite. The three worst performers 

were the three specimens containing 100% sandstone. This illustrates the susceptibility of softer 

sandstone to wear and loss of texture. All the other specimens fell between these two groups. 

In Experiment 2, Figure 6(b) shows that the specimen containing 70% Chinese grey calcined 

bauxite and 30% sandstone B outperformed the 100% calcined bauxite specimen by one point. The 

specimen containing 50% calcined bauxite and 50% sandstone B had a skid resistance of 73. Figure 

7(b) shows the specimens ranked in order as would be expected. The 100% Chinese buff calcined 

bauxite specimen was the best performer with a skid resistance of 79. This was followed by the 

specimens containing 70% and 50% Chinese buff calcined bauxite with skid resistance values of 74 

and 72 respectively. The early life friction development differs for both sets of specimens in Figures 

6(a) and 7(a). Figure 6(a) shows friction development increasing from 0 to 5,000 wheel-passes before 

entering a downward cyclical trend of friction development. Figure 7(a) shows friction development 

decreasing in a downward cyclical trend throughout testing. Figures 8(a) and 9(a) shows both sets of 

specimens having similar trends of texture development. Both sets of data show that texture depth 

development stabilized after 25,000 wheel-passes and underwent minimal texture change for the 

remainder of testing. Figures 8(b) and 9(b) show that after 100,000 wheel-passes texture depths 

ranged from 1.9 to 1.6 mm. Both specimens containing 100% calcined bauxite had the highest texture 

depths. The experiment shows that all specimens would meet the laboratory wear test specification 

requirements for Type 1 HFS in the UK. 

In experiment 3, Figure 10(a) shows both sets of specimens to have a similar trend of friction 

development with equilibrium being reached after 50,000 wheel-passes. Figure 10(b) shows the 

Guyanese calcined bauxite to be superior in performance to all the other specimens including the 

Chinese buff calcined bauxite. The specimen containing 50% Guyanese calcined bauxite and 50% 

sandstone C had a skid resistance four points higher than the 100% Chinese buff calcined bauxite. 

This illustrates potentially significant cost savings whilst ensuring performance. Figure 11(a) shows 

texture development to be similar for both sets of specimens during testing. Figure 11(b) shows 

texture depths ranging from 1.8 to 1.6 mm. The experiment shows that all specimens would meet the 

laboratory wear test specification requirements for Type 1 HFS in the UK. 

The concept of blending calcined bauxite with high PSV sandstone or volcanic tuff compensates 

for the lack of resistance to wear in the sandstone or tuff by ensuring there is enough calcined 

bauxite in the blend to absorb most of the impact energy exerted on to the HFS by vehicle tires at 

high stress locations. As the tire rubber envelopes are essentially point contacts, compared to a 

typical asphalt or concrete road surface, the presence of calcined bauxite protects the blended 

particles around them. Optimizing the blend, both in terms of ratio and complimentary natural 

aggregate wear characteristics, ensures the longer-term survival of point contacts to maximize 

interfacial contact at a high stress site or during high vehicle demand driving maneuver. The correct 

combination of aggregates in the blend work in unison to achieve high levels of skid resistance, 

whilst the extremely hard calcined bauxite protects the softer sandstone or tuff particles from 

wearing away prematurely. These findings have potential major implications for road safety, the 

environment and industry supply chains.  

5. Conclusions 

The conclusions, and impact of this research, are that blending much cheaper high PSV 

sandstone or volcanic tuff aggregate with expensive calcined bauxite could: 

 allow budget-stretched road authorities to lay more of these HFS systems at high risk 

locations which will save further lives and reduce serious injuries on our roads; 

 contribute to national environmental and climate change targets by reducing carbon 

emissions as a result of using less calcined bauxite in HFS systems; 
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 reduce the risk to supply chains and over reliance on calcined bauxite as has been 

highlighted in China in recent years. 
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