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Abstract: The given research was driven by prospects to design Mo-rich coatings with iron group
metals electrodeposited from a highly saturated ammonium acetate bath. The obtained coatings
could be employed as prominent electrodes for the hydrogen evolution reaction (HER). It was found
that the Mo content in Ni–Mo alloys can be tuned from 30 to 78 at.% by decreasing the molar ratio
[Ni(II)]:[Mo(VI)] in the electrolyte from 1.0 to 0.25 and increasing the cathodic current density from 30
to 100 mA/cm2. However, dense cracks and pits are formed due to hydrogen evolution at high current
densities and that diminishes the catalytic activity of the coating for HER. Accordingly, smoother and
crack-free Ni–54 at.% Mo, Co–52 at.% Mo and Fe–54 at.% Mo alloys have been prepared at 30 mA/cm2.
Their catalytic behavior for HER has been investigated in a 30 wt.% NaOH solution at temperatures
ranging from 25 to 65 ◦C. A significant improvement of electrocatalytic activity with increasing
bath temperature was noticed. The results showed that the sequence of electrocatalytic activity in
alkaline media decreases in the following order: Co–52 at.% Mo > Ni–54 at.% Mo > Fe–54 at.% Mo.
These peculiarities might be linked with different catalytic behavior of formed intermetallics (and
active sites) in electrodeposited alloys. The designed electrodeposited Mo-rich alloys have a higher
catalytic activity than Mo and Pt cast metals.

Keywords: Ni–Mo; Co–Mo; Fe–Mo alloys; electrodeposition; hydrogen evolution reaction;
electrocatalysis

1. Introduction

Hydrogen is a clean fuel and an energy carrier that can be used for energy conversion and storage
and is considered as a possible substitute for fossil fuels [1]. Electrocatalytic water splitting offers an
ideal approach for highly pure hydrogen production. However, despite the multitude of on-going
research, the development of an optimized, cost-effective and sustainable catalyst, which possesses
a high catalytic activity for hydrogen evolution reaction (HER) is still rather appealing. Commonly,
the ability of a given metal to catalyze the HER is estimated based on the exchange current density
(ECD), i.e., the current density in the absence of net electrolysis at zero overpotential (at formal
equilibrium potential for hydrogen evolution reaction in the particular solution). It is known, that the
higher the ECD, the lower the overvoltage that must be applied to create a significant current flow.
Hence, elaborated electrocatalysts should manifest exchange current densities equivalent or analogous
to the ECD of polycrystalline platinum (~1 × 10−3 A/cm2 in alkaline electrolytes) [2].
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A considerable part of research on the design of effective cathode materials for HER has been
focused on Mo alloys with iron group metals (Ni, Co, Fe) due to their superior catalytic performance
in alkaline media [3–5], stability at elevated temperatures [6] and reasonable corrosion and oxidation
resistance [7–10]. These characteristics, combined with good electrical conductivity, easy usage and
reasonable price, are attractive parameters for selecting the cathode material for water electrolysis.
It was revealed that the activity of the Ni–x at.% Mo (12 ≤ x ≤ 29) alloy for HER is much higher than
that of separate metallic nickel and molybdenum electrodes [11–15]. This phenomenon is attributed
to the synergistic effect of Mo dispersed in the Ni matrix, which increases the real surface area of the
electrode [12,16]. In addition, the enhancement of the catalytic activity for the HER of the Ni–15 at.%
Mo alloy was ascribed to the modification of electron density in d-orbitals upon alloying nickel with
molybdenum [17]. In other words, this model implies that some of the electrons of the iron group
metal (Ni, Fe, Co) with more filled d-bands are shared with Mo having less-filled d-orbitals. This leads
to maximal bond strength and stability of the intermetallic alloy phases [18,19].

Commonly, Mo alloys with iron group metals (Ni, Co, Fe) can be synthesized by applying
mechanical alloying [3,20–22], powder metallurgy [11,23,24], spraying [25] and laser cladding
techniques [26]. However, fabrication processes in aqueous media are often considered as simpler,
cheaper and more environmentally friendly fabrication methods than those requiring sophisticated
apparatus, volatile and corrosive chemicals and extra energy that must be incurred to keep the system
in a liquid state. Thus, molybdenum can be successfully co-electrodeposited in the presence of
iron group metal ions (Ni(II), Co(II), Fe(II)) and appropriate complexing agents from an aqueous
electrolyte. It is assumed that the molybdate ions are reduced to molybdenum oxide or hydroxide,
which in the presence of iron group metal (Ni, Fe or Co) species allows the formation of the
corresponding binary alloy deposits. The effective Mo alloys electrodeposition with iron group metals
were carried out from citrate [3,5,7,27], citrate–ammonia [10,12], citrate-gluconate [28], ammonia [29]
and pyrophosphate [30,31] aqueous electrolytes.

Moreover, it was claimed that Ni–Mo electrodes show higher electrocatalytic activity than
other Ni-based binary alloys such as Ni–Co, Ni–Fe, Ni–Zn and Ni–Cr [5,29]. For a given reason,
the fabrication of Ni–Mo alloys possessing the highest activity for effective hydrogen production
was the target for the vast research in the last decades. There are numerous reports certifying
that the catalytic activity for hydrogen evolution is qualitatively proportional to the Mo content
in Mo-based alloys [11,13,17]. Therefore, researchers’ efforts were directed to optimize the plating bath
vs. deposition conditions in order to obtain Mo-rich alloys as effective catalysts for the HER. It was
shown that electrodeposition from ammonia based aqueous solutions produces Mo alloys with up to
~41 at.% of Mo [32–36]. Coatings containing more than 40 at.% Mo have been electrodeposited from
ammonium-citrate solution in the presence of imidazolium-based ionic liquids as an additive [37].
Ammonia is frequently added to improve the cathode current efficiency, however, there is also some
data about its effect on decreasing the Mo content in bimetallic Mo system with iron group metal (Ni,
Co, Fe) [34]. Thus, despite the reduced current efficiency, typically ammonia-free electrolytes are used
for the preparation of Mo-rich coatings, e.g., the Fe–Mo electrodes containing up to 59 at.% of Mo have
been prepared from a pyrophosphate bath [38,39]. Binary Fe–Mo alloys with 49 at.% of Mo have been
electrochemically formed from an aqueous trisodium nitrilotriacetate bath [40]. A considerable increase
in Mo content, i.e., up to 70 at.%, can be caused by the addition of Mo powder to the electrolyte [41].
In addition, it has been noted that Mo content in alloys composition can be increased by carrying out
the electrodeposition under the pulse current mode [42]. The highest Mo content, 74 at.%, achieved so
far by induced electrodeposition in aqueous citrate electrolyte was reported for a Ni–Mo alloy [43].

Therefore, based on the mentioned above, the given research was focused on the electrodeposition
of Ni-, Co- and Fe- Mo-rich alloys from a highly saturated ammonium acetate bath. The electrolyte’s
composition given in Reference [44] was adapted for the electrodeposition of binary Mo-containing
alloys. In order to determine the influence of the nature of the iron group metal on the catalytic
activity of target coatings (Ni-, Co- and Fe- Mo-rich alloys) the electrochemical conditions were tuned
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in such way to ensure deposition of alloys with similar content of Mo. The catalytic activity of the
electrochemically fabricated Mo-based alloy electrodes for the HER was explored in a 30 wt.% NaOH
solution. In order to compare the electrochemical activity with other typical electrode materials,
experiments were also performed using bare platinum electrode (same geometrical area) under the
same conditions.

2. Materials and Methods

2.1. Mo-Rich Alloys Electrodeposition

Mo-rich alloys, namely Ni–Mo, Co–Mo and Fe–Mo, were prepared from highly saturated
ammonium acetate electrolytes (Table 1) based on bath composition proposed in Reference [44] for
Mo films deposition. All solutions were prepared from chemicals of analytical grade (A.R.) dissolved
in demineralized water. The electrodeposition of coatings was carried out at 30 ◦C in order to lower
the viscosity of the concentrated solutions and to avoid salt precipitation. Cu rod (surface area of
1 cm2), platinum sheet (3 × 7 cm2) and a saturated Ag/AgCl electrode were used as a working,
counter and reference electrodes, respectively. Prior to the electrodeposition, Cu rods were washed and
cleaned in an ultrasonic bath for 6–7 min and etched in an HNO3:CH3COOH:H3PO4 (1:1:1) solution at
60 ◦C. The thickness of the prepared Mo alloy coatings with iron group metals was calculated from
gravimetric and elemental analysis data. Further, the electrocatalytic activity for the HER in 30 wt.%
NaOH of fabricated cathodes has been investigated.

Table 1. Composition of electrolytes for Ni–Mo (Baths No. 1–3), Co–Mo (Bath No. 4) and Fe–Mo (Bath
No. 5) coatings electrodeposition.

Bath CH3CO2K CH3CO2NH4 (NH4)2MoO4 NiSO4·7H2O CoSO4·7H2O FeSO4·7H2O pH

1

10.2 M 10.4 M 0.004 M

0.001 M
– – 8.22 0.002 M

3 0.004 M
4 – 0.002 M

8.35 – 0.002 M

2.2. Morphological and Structural Study

The surface morphology and chemical composition of the prepared Mo-based deposits were
examined with the scanning electron microscope (SEM, Hitachi TM3000, Tokyo, Japan) equipped with
an INCA energy dispersive X-ray spectroscopy detector (EDS, Oxford Instruments, Buckinghamshire,
UK) at an accelerating voltage of 20 kV, respectively. Based on the chemical composition of the obtained
alloys, the current efficiency (CE) was calculated according to the Faradays’ law:

CE (%) =
Fm
It

[
xini
Mi

+
xMo·nMo

MMo

]
× 100% (1)

where F is Faradays constant (96485 C); m is the weight of the electrodeposit (g); I is an applied
current (A); t is the time of electrodeposition (s); xi, ni, Mi is the content (wt.%), electrons transferred
per ion, and molecular weight (g/mol) of Ni, Co or Fe, respectively; xMo, nMo, MMo is the content,
wt.%, electrons transferred per particular ion, respectively; molecular weight of Mo.

The structure of the electrodeposited alloys was investigated by X-ray diffraction (XRD) methods
(Rigaku MiniFlex II, Tokyo, Japan). XRD patterns were produced with Cu Kα radiation (1.5406 Å) in
2θ scanning mode from 20 to 100◦ with a step of 0.01◦.
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2.3. Electrochemical Measurements

The voltammetric measurements for the evaluation of the kinetic parameters of Mo-rich alloys
for the HER were performed in a 30 wt.% NaOH solution at several temperatures (25–65 ◦C, with
the increment of 10 ◦C) in a thermostatic cell. A platinum wire was used as an auxiliary electrode
and a saturated Ag/AgCl electrode was used as the reference electrode. All potentials are given with
respect to the Ag/AgCl reference electrode. Potentiodynamic polarization hydrogen evolution curves
were recorded at the sweep rate of 2 mV/s. The cathode potential was scanned from its open circuit
potential (OCP) up to −1 V. Voltammetric curves were recorded using a potentiostat/galvanostat
AUTOLAB equipped with GPES software (version 4.9). Extrapolation of the polarization curves
obtained at different temperatures, in the coordinates lgi − η to value η = 0 give the possibility to
determine the ECD (i0). The overvoltage, η, was calculated from the following equation:

η = E − Er (2)

Er = −
(

2.3RT
F

)
pH (3)

where η is an overpotential of the HER (V), E is an experimental potential value at which the reaction
takes place (V); Er is the reversible potential value calculated from the Nernst equation (V), R is
the universal gas constant (8.314472 J/K mol); T is the temperature (K); F is the Faraday constant
(96,485 J/mol).

For the calculation of overpotentials at temperatures other than 25 ◦C, the tabulated data [45] of
the temperature dependence of the potential of the saturated Ag/AgCl electrode vs. the hydrogen
electrode, were used.

3. Results and Discussion

3.1. Design of Mo-Rich Alloys Coatings

The high percentage of molybdenum in Mo-based alloy electrodeposits leads commonly to
the growth of the ECD value but also has a positive influence on their corrosion resistance and
microhardness [10]. On the other hand, the electrodeposition of coatings having a very high
molybdenum content (>38 at.% of Mo) is more sensitive to side reactions, namely the evolution
of hydrogen, which can lead to the appearance of a dense net of cracks, bumps and small pits that
diminish practical application of such coatings for the HER. Thus, the first step of the given research
was dedicated to the selection of the optimum electrochemical conditions (bath chemistry, applied
current density) in order to obtain high-quality Mo-rich alloys with a reasonable deposition rate.
The first investigated system was Ni–Mo (Table 1, Baths 1–3) since a high amount of publications have
reported [15,46,47] that the Ni–Mo alloy is the most promising non-noble catalysts for the HER among
other refractory metal-based electrodes.

Previously, it was shown that if the ratio [Ni(II)]:[Mo(VI)] is approaching 10, the amount of Mo in
the Ni–Mo deposit decreases dramatically from 65 to 20 at.% [48]. Therefore, in order to obtain Mo-rich
alloys, the ratio was kept at 0.25, 0.5, 1.0. Another parameter, which influences the refractory metal
content in the alloys is the applied current density. Based on a preliminary study, two cathodic current
densities, namely 30 and 100 mA/cm2, have been chosen for electrodeposition of Mo-rich alloys.

Taking these parameters into account, the dependence of Mo content on the [Ni(II)]:[Mo(VI)] ratio
and the cathodic current density was evaluated (Table 2). Namely, as it was anticipated, the amount
of Mo in the alloys decreases from ~85 to 36 at.% as the Ni(II) increased in the bath. Here it should
be mentioned, that only the content of the metallic phase was taken into account for the evaluation
regardless of the ambiguous values of oxygen and other light elements detected by the EDS analysis.
The highest content of molybdenum in the Ni–Mo deposits, around 85 at.%, was achieved at a
[Ni(II)]/[Mo(VI)] ratio equal to 0.25 in the plating bath. This Mo amount is significantly higher
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in comparison with previous works reported for Ni–Mo alloys obtained from aqueous electrolytes
and is close to that found for Ni–Mo alloys prepared by metallurgical [11] or mechanical alloying
techniques [49]. In order to reveal the interdependencies between bath chemistry and applied current
densities, partial current densities (PSD) for NiPCD, MoPCD reduction and hydrogen evolution were
also evaluated based on Faraday’s law (Table 2).

Table 2. Dependence of composition, morphology and partial current densities of electrodeposited
Ni–Mo alloys on the [Ni(II)]:[Mo(VI)] ratio and applied cathodic current density. Molybdenum at.%
content is specified on the SEM images.

[Ni(II)]:
[Mo(VI)]

Ratio

Applied Cathodic j, 30 mA/cm2 Applied Cathodic j, 100 mA/cm2

SEM Partial Cathodic
j, mA/cm2 SEM Partial Cathodic

j, mA/cm2

1
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jMo = 0.27 jMo = 2.3
jH2 = 29.71 jH2 = 97.5

Namely, the increase of the [Ni(II)]:[Mo(VI)] ratio increases the NiPCD and consequently Ni
content in the deposit the higher applied current density (overpotential) accelerates the reduction of
Ni(II) rather than Mo(VI) compounds. The side reaction is accelerated by a higher Mo content in the
alloy that leads to the propagation of large micro-cracks, especially for Ni–Mo alloys deposited at a
[Ni(II)]/[Mo(VI)] ratio ≤ 0.5 and having more than 50 at.% of Mo. Our results are in a good agreement
with Reference [50], where it was shown that the cracks in the Ni–Mo alloys deposited from a citrate
solution have been tracked at a Mo content higher than ~30 at.% but from an ammonium-citrate
electrolyte [3] they appear even at lower Mo content (~21 at.%).

Hence, in order to obtain Mo-rich alloys without visible defects, the applied current density of
30 mA/cm2 and a [Ni(II)]:[Mo(VI)] ratio of 0.5 should be viewed as the optimum conditions. This ratio
allows for a four times increase in the MoPCD in comparison with the ratio of 0.25. It suggests that the
electroactive complex should contain both molybdenum and nickel species. At the higher ratio (higher
Ni(II) concentration), the MoPCD does not change significantly but the Mo content in the alloy decreases
(from 54 to 40 at.%). Notably, at a current density of 100 mA/cm2, the MoPCD is practically the same for
all investigated [Ni(II)]:[Mo(VI)] ratios, suggesting that electroactive Mo-containing species under such
conditions reaches saturation and has no significant effect on alloy electrodeposition. Furthermore,
at a higher applied current density, an additional roughening due to the pronounced nodular structure
of the coatings is obtained, that can be interconnected with abundant hydrogen evolution, which leads
to cracks and holes on the surface (Table 2). On the one hand, in Reference [51], it was shown that the
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cracked surfaces are characterized by higher HER activity and ascribed to an increased surface area
of the active centers due to the microcracks but on the other hand, a certain amount of the hydrogen
enters the open pores (cracks) of the deposit and it starts peeling off around the pores. Hence, it is
obvious that the application of such coatings in the industrial processes is not recommendable [30].
Moreover, due to high PCDs for hydrogen reduction, the current efficiency in all investigated cases
is rather low (<10%). This is a common characteristic for Ni–Mo co-deposition [52] that is associated
with the formation of a mixed Mo oxides layer in the presence of an excess of Mo(VI) ions in the bath,
which hinders the further reduction.

Accordingly, based on the experimental results obtained for Ni–Mo alloys, the following optimal
conditions were adapted for electrodeposition of Co–Mo and Fe–Mo alloys: cathodic current density
30 mA/cm2 and [Me(II)/Mo(VI)] = 0.5. This allowed for the electrodeposition of Mo-rich coatings
(Co–52 at.% Mo and Fe–54 at.% Mo) coupled with suitable morphology (crack-free coatings with a less
rough globular surface) and to evaluate the influence of iron group metal on the catalytic activity for
HER in alkaline media. The obtained morphology of Mo-rich alloys was quite similar regardless of the
iron group metal (Figure 1).
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Figure 1. SEM images of electrodeposited at 30 mA/cm2 and [Me(II)]/[MoO4
2−] = 0.5 coatings: Ni–Mo

(a), Co–Mo (b) and Fe–Mo (c). The time of electrolysis was 1 h and the thickness of all deposits was
~10 µm.

The structure and crystallite size was evaluated by XRD analysis. A characteristic broad peak
at 2θ = 43◦–44◦ was obtained for Ni–54 at.% Mo and is depicted in Figure 2a. According to the
thermodynamic equilibrium data, the solubility limit of Mo in the fcc Ni structure at room temperature
is ~17 at.%. When the Mo content exceeds this limit, an amorphous microstructure can be noticed
and the formation of intermetallic Ni4Mo, Ni3Mo, NiMo compounds becomes possible for Ni–Mo
alloys having >25 at.% of Mo [31,53]; a line with a solid solution of Ni in Mo. It is also known that the
broadening of the XRD peak is related to the refinement of crystallite size that typically occurs with an
increasing Mo content [31]. According to the literature, the mean crystallite size of Ni–Mo coatings
can decrease from 50 to 2 nm by increasing the Mo content from 1 to 38 at.%, respectively [35,37,54].
This corresponds to a crystallite size of the investigated Ni–Mo coatings as small as ~2 nm. Notably,
Ni–Mo deposits consisting of such small crystallites can have a lower overpotential for hydrogen
evolution due to the larger concentration of crystal lattice defects and dislocations, which are considered
as active centers for HER [12,19].
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Figure 2. XRD pattern for: (a) Ni–54 Mo, (b) Fe–54 Mo and (c) Co–52 Mo electrodeposits (composition
is given in at.%).

The XRD patterns for Fe–54 at.% Mo and Co–52 at.% Mo alloys showed the analogous crystalline
structure to the Ni–54 at.% Mo coating (Figure 2b,c). Since the presence of one broad peak in the
X-ray diffraction patterns makes it difficult to interpret the results, it can be only proposed that a
mixture of Mo solid solution in the iron group metal and corresponding intermetallic compounds were
formed. For the Fe–Mo (also Fe–W) system, the Mössbauer spectroscopy supports this presumption
and suggests that deposits having more than 17 at.% of refractory metal consists of a mixture of
molybdenum solid solution in α-Fe and intermetallic phases, e.g., Fe3Mo, Fe2Mo [55,56]. In the case
of the Co–Mo alloy, some of the studies reported that a Mo solid solution in cobalt and intermetallic
Co3Mo is formed [36,57].

The different intermetallic phases should have an impact on their activity for the HER. It was
emphasized that the maximum electrocatalytic activity could be achieved for intermetallic phases
of highest symmetry and minimal entropy, such as Laves phases or A3B types (Co3Mo, Ni3Mo,
Fe3Mo) and the Brewer theory for intermetallic bonding predicts as the most stable systems [58]. Thus,
it was reported that films consisting of a Co3Mo phase (for Co–x at.% Mo, 18 ≤ x ≤ 28) have the
best electrocatalytic properties among other Co–Mo alloys having lower molybdenum contents [59].
Furthermore, in Reference [60], it was concluded that Co3Mo intermetallic compounds are more stable
in a hot alkaline solution than other Co–Mo phases. Similarly, in the case of the Fe–Mo alloy system,
the lowest overvoltage for hydrogen evolution at a current density of 200 mA/cm2 has been observed
for the Fe–47 at.% Mo sample with a predominant Fe3Mo intermetallic compound phase [38].

3.2. Catalytic Behavior

The electrocatalytic activity for hydrogen evolution in 30 wt.% NaOH of Ni–Mo, Co–Mo and
Fe–Mo samples containing ~52–54 at.% of Mo in their composition was evaluated using a linear scan
voltammetry method that allows for the determination of the apparent exchange current densities.
Polarization curves and semi-logarithmic coordinates of all chosen systems obtained at 25 ◦C are
presented in Figure 3. In order to compare the catalytic behavior of Mo-rich Ni-, Co-, Fe-Mo coatings,
the cast Mo and Pt electrodes were used. Table 3 summarizes the calculated apparent exchange current
densities (i0), the overpotentials at a selected current density of 200 mA/cm2 (η0.2) and the current
densities obtained at an overpotential of 0.3 V (i0.3); calculated Tafel slopes (bc).
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Figure 3. Cathodic polarization curves of (a) Mo-rich electrodeposits in 30 wt.% KOH at 25◦C and
(b) plots in semi-logarithmic coordinates. The scan rate was 2 mV/s (composition is given in at.%).

Table 3. Calculated apparent exchange current densities (i0), Tafel slopes (bc), overpotentials (ηi) at
i = 0.3 A/cm2 and current densities (iη) at η = −0.3 V for hydrogen evolution different electrodes
(composition is given in at.%).

Parameter
Electrode

Ni–54 Mo Co–52 Mo Fe–54 Mo Mo Pt

io (mA/cm2) 0.62 1.90 0.23 2.90 × 10−5 2.63
bc (mV/dec) 128 132 152 231 122

ηi (V) 0.46 0.43 0.54 0.67 0.48
iη (A/cm2) 9.1 × 10−2 1.8 × 10−1 9.3 × 10−2 5.4 × 10−4 8.2 × 10−2

Binary Mo alloy cathodes possess 105 times higher apparent exchange current densities than
cast Mo, thus are more active for the HER. However, all alloys demonstrated lower apparent
exchange current densities for the HER at 25 ◦C in comparison with a bare Pt electrode. However, the
overpotentials required to obtain current densities of 300 mA/cm2 and current densities at −0.3 V
for active bimetallic Mo alloys ware similar to those determined for Pt, making them competitive
electrodes for hydrogen production. Notably, as it was mentioned above, the nature of the iron group
metal affects the catalytic activity for the HER and the cathodic current density for the Co–52 at.%
Mo coating is higher in comparison to that of Ni–54 at.% and Fe–54 at.% Mo, thus indicating the best
catalytic performance among the synthesized electrodes, which is consistent with the lowest η0.2 and
i0.3 values.

It is well known that the lower Tafel slope implies a lower electrochemical electrode polarization
during the HER process, particularly at a high current density. The values of the Tafel slope for
Ni–54 at.% Mo and Co–52 at.% Mo deposits under high polarization conditions are 128 mV/s and
132 mV/dec, respectively. Meanwhile, the Tafel slope for Fe–54 at.% Mo under these conditions shifted
to more positive values, i.e., increased up to 152 mV/dec and it can be related to the higher iron
affinity to the air and the presence of a thin oxide film on the surface that is characterized by a lower
conductivity that impedes the electron transfer rate [15].

An improvement of catalytic activity for the HER with the operation temperature, as is desired
for practical industrial alkaline electrolysis has been reported [36,42]. Accordingly, in the present
study, the electrodeposited alloy electrodes were tested at temperatures ranging from 25 to 65 ◦C by
applying 10 ◦C increments. A general comparison of the performance of electrodeposited Ni–54 at.%
Mo, Fe–54 at.% Mo, Co–52 at.% Mo and cast separate metals in the temperature range 25–65 ◦C is
given in Figure 4. The apparent exchange current densities were calculated from the linear region
at low overpotential values and are presented in Table 4. As it was expected, the electrocatalytic
activity of Ni–54 at.% Mo, Fe–54 at.% Mo and Co–52 at.% Mo is significantly higher than cast Mo in
the whole tested temperature range. Moreover, the results suggest that at an elevated temperature
(>35 ◦C) Mo-rich alloys have a more prominent HER outperformance than Pt investigated in our
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laboratory. Although the HER activity, namely i0, was found to increase with temperature, the Tafel
slopes for the Mo-based alloys remained almost constant and varied in the range of 120–150 mV/dec.
This phenomenon has been discussed in terms of the entropic contribution towards free energy of
activation [61]. Among all investigated systems, the Co–52 at.% Mo electrode demonstrates the
best performance towards the HER, particularly at temperatures higher than 45 ◦C. These results
correspond well with findings published in Reference [62] where it was confirmed that Co–Mo
co-deposits are characterized by a higher catalytic activity and stability in alkaline water electrolysis
than Ni–Mo, Co–W and Ni–W alloy electrodes. Moreover, in Reference [63], it was shown that catalytic
activity depends on the metal-hydrogen bond strength and absorption sites in the alloy available to
hydrogen and thus the electrochemically charged H content decreases in the series of Co–Mo > Co–W
> Ni–Mo. Furthermore, comparing Co–Mo, Co–W and Ni–Mo electrodeposits, the thermal desorption
of hydrogen occurs at the lowest temperature on Co–Mo showing a faster recombination step of H
atoms possible on this alloy, thus improving its electrocatalytic performance [63].
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 Figure 4. Effect of temperature on cathodic polarization curves at Ni–54 Mo (a), Fe–54 Mo (c), Co–52 Mo
(e) electrodeposits in 30 wt.% KOH at different temperatures and plots in semi-logarithmic coordinates
for Ni–54 Mo (b), Fe–54 Mo (d), Co–52 Mo (f) electrodes. The scan rate was 2 mV/s (composition is
given in at.%).
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Table 4. Experimental values of the apparent exchange current (i0, in mA/cm2) and Tafel slopes
(bc, in mV/dec) for Ni–54 Mo, Co–52 Mo and Fe–54 Mo alloy electrodes at different temperatures
(composition is given in at.%).

Sample
Measurement temperature (◦C)

25 35 45 55 65

i0 bc i0 bc i0 bc i0 bc i0 bc

Ni–54 Mo 0.62 128 3.21 128 7.32 119 1.47 116 25.4 123

Fe–54 Mo 0.23 152 0.99 148 4.33 142 5.83 139 14.6 145

Co–52 Mo 1.90 132 9.53 130 17.1 128 32.0 121 46.2 119

Mo 2.9 × 10−2 231 8.3 × 10−2 220 1.9 × 10−1 220 2.1 × 10−1 215 2.3 × 10−1 221

Pt 2.63 122 3.68 129 6.51 120 2.63 125 11.5 125

In many previous publications the Ni–Mo alloy coatings are characterized by a lower overpotential
value, as compared to the Co–Mo [14]. Though, there is also some information suggesting that Co–Mo
coatings have a better catalytic activity for the HER compared to Ni–Mo deposits [62,64]. At the first
glance, these controversial results could be attributed to the different alloy preparation techniques that
are capable of yielding an uneven composition, morphology and structure of the prepared samples
and thus, directly influence the catalytic properties of the samples. However, the clear tendency
between the nature of the iron group metal effect during alloying with Mo and catalytic behavior
also cannot be easily defined even for the Ni–Mo, Co–Mo and Fe–Mo cathodes fabricated using
the same electrodeposition technique (Table 5). As it can be seen, the exchange current densities,
even for alloys having a similar chemical composition, vary depending on the selected alkaline media
and temperature.

In general, the present study shows the catalytic activity for the Ni–Mo alloy is comparable to
previously reported samples under similar experimental conditions (Figure 5). Moreover, in the case
of the Co–Mo and Fe–Mo system, the apparent exchange current density calculated in our work is
significantly higher than it was expected from other authors observations (the corresponding columns
are not given in the figure due to a significantly lower value). This could be attributed to the more
concentrated alkaline media and higher temperature used in the present study.
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Figure 5. The comparison of apparent exchange current densities (i0) towards the HER on Mo alloys
with iron group metals determined in this study (*) with the published data. The experiments were
performed in NaOH at 60–65 ◦C. The composition of alloys is given in at.%.

Notably, the Fe–Mo coating demonstrates lower exchange current densities for the HER in an
alkaline environment among other electrodes investigated in this study. This may be related to the
higher iron affinity to the air by forming an oxide, hydroxide, or mixed film that physically separates
the metal surface from the electrolyte.
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Table 5. Comparison of the HER apparent exchange current density values, i0, extracted from the
published data for electrodeposited Ni–Mo, Co–Mo and Fe–Mo alloy electrodes.

Sample Mo content (at.%) Media i0 (mA/cm2) Reference

Ni–Mo

26 8.25 M NaOH, 85 ◦C 44.4 [4]

20 6 M KOH; 80 ◦C 18.62 [5]

33.8 7 M KOH, 25 ◦C 2.8 [19]

– 7 M KOH, 80 ◦C 55.24 [29]

25 2 M NaOH, 30 ◦C 3.1 × 10−2 [32]

20.8 11 M NaOH; 80 ◦C 42.4 [42]

29.8 1 M NaOH, 30 ◦C 11.1 [65]

27.5 1 M KOH 3.18 × 10−3 [66]

7.5 6 M KOH; 70 ◦C 7.3 [67]

NiMo-modified Ni foam 2.5 0.1 M NaOH, 25 ◦C 4.1 × 10−2 [28]

Ni + Mo composite 44 5 M KOH; 25 ◦C 1.0 [68]

Ni–Mo–rGO 30.8 1 M KOH; 25 ◦C 4.31 × 10−3 [69]

Ni–Mo 10.4
7 M KOH, 25 ◦C

2.6 × 10−2
[62]

Co–Mo 21.4 2.3 × 10−2

Co–Mo

40.9 1 M NaOH 1.5 [33]

32 0.5 M NaOH; 60 ◦C 6.9 × 10−3 [36]

25 1 M NaOH, 25 ◦C 0.13 [59]

19 1 M KOH, 25 ◦C 0.36 [70]

33 1 M NaOH, 30 ◦C 5.0 × 10−2 [71]

Fe–Mo 59.3 1 M NaOH, 25 ◦C 2.4 × 10−3 [39]

In order to obtain a more complete picture of electrocatalytic behavior for the HER,
the corresponding Ea values for all tested systems have been calculated considering the linear
dependence lg(i0) = f (1/T) using Arrhenius equation:

Ea = −2.303R
∂(lgi0)
∂(1/T)

(4)

where Ea is the activation energy (J/mol), i0—apparent exchange current density, T—temperature (K).
Figure 6 shows the Arrhenius plots for the as-deposited Ni–54 at.% Mo, Co–52 at.% Mo and

Fe–54 at.% Mo electrodes. From the slope of these plots Ea values of 36.6, 32.5 and 27.9 kJ/mol for
Fe–Mo, Ni–Mo and Co–Mo electrodes were determined, respectively. It is known that the lower the
Ea value is, the lower the energy requirements for hydrogen production. Thus, it is obvious that the
charge transfer rate is favored by Co–52 at.% Mo alloys electrodeposition, since this electrode showed
slightly lower activation energy than that of the Ni–54 at.% Mo and Fe–54 at.% Mo coatings.
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4. Conclusions

• The electrodeposition of Mo-rich (36–82 at.%) alloys with iron group metals (Ni, Co, Fe) from
highly saturated ammonium acetate aqueous electrolytes is reported. The composition was
affected by the [Ni(II)]/[Mo(VI)] ratio in the plating bath and cathodic current density.

• The electro-catalytic activity towards cathodic hydrogen evolution in 30 wt.% NaOH solution
in the temperature range of 25–65 ◦C on the electrodeposited Ni–54 at.% Mo, Co–52 at.% Mo,
Fe–54 at.% Mo and Co–52 at.% Mo alloy coatings characterized by amorphous-like structure has
been investigated.

• Bimetallic Mo-based alloys are considered as more active for the HER in comparison with the
cast Mo and Pt since they demonstrate higher apparent exchange current densities in the tested
temperature range. The apparent exchange current density of hydrogen for Co–52 at.% Mo
deposits were considerably higher than those for Ni–54 at.% Mo and Fe–54 at.% Mo alloy coatings
and this can be attributed to the formation of stable intermetallic Co3Mo phase which ensures
optimal Co and Mo distribution over the surface and produces larger active sites for the HER.

• The calculated activation energy values suggest that the Mo alloy coating with iron group metals
shows promising electrocatalytic activity for the HER and among all investigated samples, the
Co–52 at.% Mo electrode is characterized by a lower activation energy (27.9 kJ/mol) than the
Ni–54 at.% Mo (32.5 kJ/mol) and Fe–54 at.% Mo (36.6 kJ/mol) coatings.
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38. Elezović, N.; Grgur, N.B.; Krstajić, N.V.; Jović, V.D. Electrodeposition and characterization of Fe–Mo alloys as
cathodes for hydrogen evolution in the process of chlorate production. J. Serb. Chem. Soc. 2005, 70, 879–889.
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58. Jakšić, M.M. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel
valence-bond theory. J. Mol. Catal. 1986, 38, 161–202. [CrossRef]

59. Zhou, Q.F.; Lu, L.Y.; Yu, L.N.; Xu, X.G.; Jiang, Y. Multifunctional Co–Mo films fabricated by electrochemical
deposition. Electrochim. Acta 2013, 106, 258–263. [CrossRef]

60. Lee, C.R.; Kang, S.G. Electrochemical stability of Co–Mo intermetallic compound electrodes for hydrogen
oxidation reaction in hot KOH solution. J. Power Sources 2000, 87, 64–68. [CrossRef]

61. Conway, B.E.; Tessier, D.F.; Wilkinson, D.P. Temperature dependence of the Tafel slope and electrochemical
barrier symmetry factor. J. Electrochem. Soc. 1989, 136, 2486–2493. [CrossRef]

62. Fan, C.; Piron, D.L.; Sleb, A.; Paradis, P. Study of electrodeposited nickel-molybdenum, nickel-tungsten,
cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis.
J. Electrochem. Soc. 1994, 141, 382–387. [CrossRef]
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