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Abstract: This article presents the results of a computer study of electrical conductivity and
deformation behavior of new graphene–carbon nanotube (CNT) composite films under bending and
stretching. Mono- and bilayer hybrid structures with CNTs (10,0) and (12,0) and an inter-tube distance
of 10 and 12 hexagons were considered. It is revealed that elastic deformation is characteristic for
mono- and bilayer composite films both in bending and stretching. It is found that, in the case of
bending in a direction perpendicular to CNTs, the composite film takes the form of an arc, and, in the
case of bending in a direction along CNTs, the composite film exhibits behavior that is characteristic
of a beam subjected to bending deformation as a result of exposure to vertical force at its free end. It is
shown that mono- and bilayer composite films are more resistant to axial stretching in the direction
perpendicular to CNTs. The bilayer composite films with an inter-tube distance of 12 hexagons
demonstrate the greatest resistance to stretching in a direction perpendicular to CNTs. It is established
that the CNT diameter and the inter-tube distance significantly affect the strength limits of composite
films under axial stretching in a direction along CNTs. The composite films with CNT (10,0) and an
inter-tube distance of 12 hexagons exhibit the highest resistance to stretching in a direction along
CNTs. The calculated distribution of local stresses of the atomic network of deformed mono- and
bilayer composite films showed that the maximum stresses fall on atoms forming covalent bonds
between graphene and CNT, regardless of the CNT diameter and inter-tube distance. The destruction
of covalent bonds occurs at the stress of ~1.8 GPa. It is revealed that the electrical resistance of mono-
and bilayer composite films decreases with increasing bending. At the same time, the electrical
resistance of a bilayer film is 1.5–2 times less than that of a monolayer film. The lowest electrical
resistance is observed for composite films with a CNT (12,0) of metallic conductivity.

Keywords: graphene–carbon nanotube composite films; deformation behavior; electrical conductivity;
bending; stretching; strain energy; local stress; tensile strength; electrical resistance; radius
of curvature

1. Introduction

At present, a new scientific direction devoted to the theoretical and experimental study of hybrid
materials based on two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes
(CNTs) exists in materials science [1–6]. Research teams from different countries proposed several
structural varieties of this hybrid material, differing in the method of joining CNTs and graphene,
as well as their mutual orientation [7]. Three-dimensional (3D) composites (pillared graphene) with
a vertical orientation of CNTs spliced with graphene structures [8–17], and 2D films with a horizontal
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orientation of CNTs, which are connected to graphene through several covalent bonds or interact
with it through van der Waals forces [17–20], are of prime interest to researchers. The reason for
the increased attention of scientists to these hybrid structures is their unusually wide range of
applications and an improved palette of properties as compared to conventional carbon materials
due to the synergistic effect of CNTs and graphene. The first results of a study of novel carbon
composite structures showed their superiority over individual nanotubes and graphene in electrical,
optical, and electrochemical properties, providing new ways for developing promising practical
applications based on these materials. In particular, the excellent electrochemical properties of
pillared graphene led to its wide application as an electrode for batteries and supercapacitors [8–11].
The pillared graphene-based supercapacitors demonstrate a capacitance retention of 98% over
30,000 charge–discharge cycles, while maintaining excellent cyclic stability and electrochemical
reversibility [8]. In addition, pillared graphene is promising as a hydrogen storage system [12] and
methane storage system [13], as membranes for gas separation [14], as thermal interface materials
for high-performance cooling applications [15], and as the element base of phonon devices [16] and
nanomechanical sensors [17].

Two-dimensional graphene–CNT composite films with horizontally oriented CNTs are also in high
demand as multifunctional materials. Modern synthesis technologies allow us to obtain graphene–CNT
hybrid films with both ordered and unordered arrangement of multi-walled CNTs (MWCNTs) or
single-walled CNT (SWCNTs) connected to graphene through covalent bonds [18–25] or through van
der Waals forces [26–28]. At the same time, hybrid films with CNTs located on graphene [29–32],
and hybrid films with CNTs covered with graphene on top [33–36] are distinguished. The diversity in
the architecture of graphene–CNT hybrid films results in their wide range of applications.

Due to their improved electrochemical properties, graphene–CNT composite films CNTs and
reduced graphene oxide coupled through van der Waals are considered as high-performance negative
electrodes in asymmetric supercapacitors [37]. It was found that intercalating a small amount of
CNTs between reduced graphene oxide sheets led to excellent specific capacitance of 272 F·g−1

at a scan rate of 5 mV·s−1 in a negative potential window from −0.8 to 0 V. The coating of such
a composite structure with cobalt hydroxide allows us to further increase the specific capacity of
the graphene oxide–CNT composite film-based asymmetric supercapacitor up to 310 F·g−1 [38].
Composite films based on a CNT layer coated with a graphene layer are promising materials for
photovoltaics. As shown by Maarouf et al. [36], the hybrid films with a graphene monolayer deposited
on a monolayer of self-assembled conducting SWCNTs had a transparency of 97% in the visible
wavelength range. Kholmanov et al. [33] obtained hybrid films from a graphene monolayer deposited
on a layer of ordered MWCNTs that showed strong anisotropy in optical transparency depending
on the direction of polarization of the electromagnetic wave. In particular, when the electromagnetic
wave was polarized parallel to the direction of CNT orientation, the transparency of hybrid films was
75%–80% in the wavelength range from 400 to 1400 nm. When the electromagnetic wave was polarized
perpendicular to the direction of CNT orientation, the transparency of hybrid films was 87%–93% in
the same wavelength range.

Composite films with a covalent compound of CNT and graphene are one of the latest structural
modifications of graphene–CNT hybrid films. Terrones et al. [18] developed a self-assembly method
for producing hybrid paper-like films consisting of alternating layers of graphene oxide and various
types of MWCNTs (pristine and doped with boron and nitrogen). The electrical resistivity of the
created films was 3 × 10−4 Ω·cm, which is significantly less than the resistivity of MWCNT films
(0.13 Ω·cm). In addition, these hybrid films can be used as highly efficient electron field emission
sources with a threshold electric field of 0.55 V/µm, a field enhancement factor as high as 15.19 × 103,
and operating currents up to 220 µA. Tour et al. proposed an effective technology for producing
transparent and highly conductive graphene–CNT hybrid films by annealing functionalized CNTs on
Cu foils [22]. In this hybrid structure called “rebar graphene”, CNTs act as a reinforcing bar (“rebar”)
to improve the mechanical strength and electrical conductivity of the graphene sheets. The rebar
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graphene sheets demonstrated ~95.8% transmittance at a 550-nm wavelength with a sheet resistance
of ~600 Ω/sq, indicating better performance than those of stacked bilayer graphene or CNT films at
the same transmittance. A similar graphene–CNT hybrid film was obtained by Kim et al. [19] using
the thermal chemical vapor deposition (CVD) method on a Cu foil coated with CNTs. The resulting
film possessed a sheet resistance of 300 Ω/sq with 96.4% transparency. A distinctive feature of these
hybrid structures is the alignment of CNTs on graphene, which makes it possible to obtain improved
current characteristics of composite films that are promising for the design of field-effect transistors.

One of the main criteria for effectiveness of the use of new composite materials as the elemental
base of modern electronics is their ability to withstand certain mechanical loads retaining the
electroconductive properties. The preservation of the electroconductive properties of the material
during deformation is especially important for devices of flexible and transparent electronics.
The mechanical properties of pillared graphene were studied in detail by experimental methods [39]
and computer simulation methods [40–44]. For these hybrid carbon structures, the tensile strength
at axial stretching and compression was already determined, stress–strain curves were constructed,
and Young’s modulus and Poisson’s ratio were estimated. The mechanical properties of composite films
based on covalently bonded graphene and horizontally oriented CNTs are currently still unexplored.
There are only a few works devoted to the experimental study of the electromechanical properties of
hybrid films based on horizontally oriented CNTs covered with a graphene layer, interacting through
van der Waals forces [33,35]. At the same time, information on the behavior of such hybrid films during
deformation and the evaluation of their tensile strength and electrical conductivity are necessary for the
development of devices of flexible and tensile electronics with improved characteristics. The purpose
of this work was to study the mechanical and electroconductive properties of mono- and bilayer
graphene–CNT composite films with horizontal orientation of CNTs using quantum and molecular
dynamics modeling.

2. Atomistic Models of Graphene–CNT Composite Films

The super-cells of mono- and bilayer graphene–CNT composite films under study were constructed
using an original approach, which we called the “method of magnifying glass” [45]. The essence of this
approach lies in the combined use of molecular-mechanical and quantum-mechanical mathematical
models at different stages of modeling in order to obtain the topology of the considered structure
as close as possible to the data of a natural experiment. At the initial stage of the “method of
magnifying glass”, an atomistic model is constructed as a large fragment of the graphene–CNT
composite with a number of atoms of several tens of thousands, and the atomic network of the
object is optimized by minimizing its total energy using the molecular dynamics method and the
empirical adaptive intermolecular reactive bond order (AIREBO) potential [46]. At the next stage,
a smaller fragment is cut from the middle part of the optimized composite structure, which is
re-optimized in a periodic box using the self-consistent charge density functional tight-binding
(SCC-DFTB) method [47]. The dimensions of the box are also optimized to find the configuration that
corresponds to minimum total energy. At the final stage, the unit cell is selected from the previous
optimized fragment, which is again optimized in the periodic box using the SCC-DFTB method.
The optimization parameters in this case are the coordinates of the atoms, and the dimensions of
the box.

As shown previously, the most stable monolayer graphene–CNT composite films are formed
from semiconductor (10,0) and metal (12,0) CNTs with an inter-tube distance of 8–14 hexagons [45].
For these atomistic models of the composite film, the heat of formation is in the range from −1.5 to
−0.1 kcal/mol·atom. Therefore, in the current work, bilayer composite films were built on the basis
of CNTs (10,0) and (12,0). The inter-tube distance was taken in a wide range of 8–16 hexagons.
Our research results showed that the inter-tube distance should be an even number of hexagons to
obtain a regular structure with the same spacing between CNTs in both layers. This situation is shown
in Figure 1, which presents obtained models of composite films based on CNT (12,0) with an inter-tube
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distance of 12 hexagons. This figure also shows that the middle graphene layer of the bilayer composite
film is deformed unlike the other two. The sites of the middle layer enclosed between two adjacent
areas of covalent contacts with CNTs (the covalent bonds of graphene–CNT are marked in red) are
almost straight. At the same time, the outer graphene layers exhibit an obvious curvilinearity as in the
case of a monolayer composite. The geometric and energy parameters of all models of the super-cells of
mono- and bilayer composite films based on CNTs (10,0) and (12,0) are presented in Table 1. This table
shows the translation vectors Lx in the direction of the X-axis (in the direction perpendicular to the CNT
axis), the heat of formation Hf, the inter-tube distance rt–t, and the parameter a/b characterizing the
degree of deformation of CNTs, where a is the major semi-axis and b is the minor semi-axis, as shown
in Figure 1. The length of the graphene–CNT covalent bond in all cases is 1.61–1.62 Å. The value of the
translation vector Ly in the direction of the Y-axis is not given in Table 1, since it is approximately the
same for all super-cells and is equal to 4.27–4.29 Å. Analysis of the characteristics of the constructed
super-cells shows that the degree of deformation of CNTs during formation of the composite film is
the same for all types of models and is equal to ~1.64–1.66. The heat of formation is negative in all
cases. The super-cells of atomistic models with an inter-tube distance of 10 and 12 hexagons are the
most energetically favorable for both mono- and bilayer composite films.
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Figure 1. Super-cells of mono- and bilayer graphene–carbon nanotube (CNT) composite films with
CNT (12,0) and an inter-tube distance of 12 hexagons.

Table 1. Geometric and energy parameters of mono- and bilayer graphene–carbon nanotube (CNT)
composite films.

Parameters
Monolayer Film Bilayer Film

(10,0) (12,0) (10,0) (12,0)

8 hexagons

Lx (Å) 20.07 20.06 19.47 19.76
rt–t (Å) 12.93 12.49 12.73 12.19

a/b 1.63 1.63 1.65 1.65
Hf (kcal/mol·atom) −0.10 −0.95 −0.08 −0.07

10 hexagons

Lx (Å) 24.6 24.3 24 24.61
rt–t (Å) 18.31 16.92 17.78 17.13

a/b 1.64 1.66 1.66 1.65
Hf (kcal/mol·atom) −0.50 −1.12 −0.45 −0.90

12 hexagons

Lx (Å) 29.43 29.42 28.92 29.2
rt–t (Å) 23.18 21.70 22.70 21.72

a/b 1.64 1.66 1.66 1.65
Hf (kcal/mol·atom) −0.60 −0.20 −0.50 −0.15
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Table 1. Cont.

Parameters
Monolayer Film Bilayer Film

(10,0) (12,0) (10,0) (12,0)

14 hexagons

Lx (Å) 34.81 35.1 34.3 34.62
rt–t (Å) 28.5 28.3 28.08 27.75

a/b 1.65 1.66 1.66 1.65
Hf (kcal/mol·atom) −0.20 −0.10 −0.15 −0.08

16 hexagons

Lx (Å) 39.45 39.85 38.5 38.9
rt–t (Å) 33.5 30.3 32.28 29.05

a/b 1.65 1.66 1.65 1.65
Hf (kcal/mol·atom) −0.05 −0.05 −0.02 −0.03

3. Deformation of Graphene–CNT Composite Films and Its Effect on Electrical Conductivity:
A Mathematical Model

To study the deformation behavior of graphene–CNT composite films, a series of numerical
molecular dynamics experiments on the stretching and bending of the considered hybrid carbon
structures along different axes were carried out using the SCC-DFTB method to calculate more
accurately the object energy during relaxation at each deformation step.

To quantify the mechanical properties of composite films at different stages of deformation,
the distribution of local stresses of the atomic network of the structures under study was calculated
using the approach proposed by us earlier [48]. This approach is based on the original idea, according
to which the stress per atom of the deformed structure should be evaluated by a change in the energy
of the framework atom under external influence. The stress per atom should be understood as the
value of the difference between the energy of an atom of a deformed framework and an unloaded
(free) framework. This value will reflect the degree of deformation at a given point of the structure,
that is, the stress of an atomic network near this atom. The calculation of the local stress was carried
out according to the following algorithm:

• Optimization of the atomic network of a non-deformed composite film by minimizing its total
energy by the coordinates of all atoms using the SCC-DFTB method;

• Calculation of the distribution of the bulk energy density over the atoms using the
AIREBO potential;

• Optimization of the atomic network of the deformed composite film by minimizing its energy by
the coordinates of all atoms using the SCC-DFTB method;

• Calculation of the distribution of the bulk energy density over the atoms of a structure subjected
to an external action using the AIREBO potential;

• Calculation of the local stress distribution of the atomic framework from the difference between the
values of the bulk energy density of the atoms of the deformed and non-deformed composite film.

The stress per atom with the number i was calculated as follows:

σi =
∣∣∣wi − w0

i

∣∣∣ (1)

where w0
i is the bulk energy density of the atom of the composite film before deformation, and wi is

the bulk energy density of the atom of the composite film after deformation. The bulk energy density
of the atom in the framework of the AIREBO potential was calculated as follows:
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wi =

(
∑
j 6=i

[
EREBO

ij + ELJ
ij + ∑

k 6=i,j
∑

l 6=i,j,k
Etors

kijl

])/
Vi (2)

where EREBO
ij is the interaction energy of covalently bonded atoms, which is determined by the type

of atoms and the distance between them; i and j are the numbers of interacting atoms; Etors
kijl is the

energy of torsion interaction, which is a function of a linear dihedral angle built on the basis of atoms
with an edge on the i–j bond (atoms forming chemical bonds with atoms i, j); ELJ

ij is the van der Waals

interaction energy between covalently unbounded atoms; Vi = 4/3πr0
3 is the volume occupied by the

atom i; and r0 is the van der Waals radius of carbon atom, equal to 1.7 Å.
In order to carry out the numerical experiments, we used the DFTB+ software package

(version 18.1) [49], which implements the SCC-DFTB method, and the Kvazar software package
(version 2.0) [50], which implements the molecular dynamics method and the AIREBO potential.

The calculation of the electrical conductivity was carried out in the framework of the
Landauer–Buttiker formalism [51]. This formalism allows us to calculate the electron transmission
function and static conductivity. The electron transmission function is determined as follows:

T(E) =
1
N

N

∑
k=1

Tr
(

Γs(E)GA
C (E)ΓD(E)GR

C(E)
)

(3)

where GA
C , GR

C are the advanced and retarded Green matrices describing contact with the electrodes,
and Γs(E), ΓD(E) are the broadening matrices for the source and drain. Static conductivity is described
as follows:

G =
I
V

=
2e2

h

∞∫
−∞

T(E)FT(E− EF)dE (4)

where EF is the Fermi energy of the material of the contacts which are connected to the object
under study, e is the electron charge, h is the Planck constant, and e2/h is the conductance quantum.
The multiplier (2) takes into account the spin of the electrons.

4. Results and Discussion

The first series of numerical experiments was devoted to a study of the behavior of mono- and
bilayer composite films during bending deformation. To carry out calculations, two types of atomistic
models of the composite film were constructed from the super-cells shown in Figure 1, taking into
account the direction of bending. The deformation was considered in the direction perpendicular to
CNTs, and in the direction along the CNT axis. Figure 2 shows atomistic models of mono- and bilayer
composite films using the example of a hybrid structure with CNT (12,0) and an inter-tube distance of
12 hexagons. It can be seen from the Figure 2 that the atomistic model of the composite film in both
considered cases of deformation consists of five super-cells which we constructed earlier by means of
the method of magnifying glass. In one case, the cell length increases in the direction perpendicular to
CNTs (X-axis), and, in the other case, it increases along the CNT axis (Y-axis). The number of super-cells
in the atomistic model was chosen to minimize the influence of edge effects and to reproduce the
deformation behavior of the material adequately from the physical point of view, as well as to take
into account the computational features of the SCC-DFTB method used to recalculate the energy at
every stage of deformation.

Figure 3 illustrates the scheme of the composite film bending in each of the considered deformation
directions using the example of topological models of bilayer composite film with CNT (12,0) and
an inter-tube distance of 12 hexagons. In both cases, in order to maintain the atomic network
deformation during relaxation of the structure to a minimum of energy, the middle atoms in each of
the composite layers were rigidly fixed, forming a neutral layer of atoms not involved in minimizing
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the object total energy. These atoms are marked in Figure 3 in orange. A similar scheme of bending
and the fixing of atoms was used for monolayer composite films.

Figure 3 shows that, in the case of bending in the direction perpendicular to CNTs (along the
X-axis), the bilayer composite film takes the form of an arc, and, in the case of bending in the direction
along the CNT axis (Y-axis), the upper composite layer stretched along the Y-axis, and the lower layer
compressed along the same axis. This behavior is typical for a beam subjected to bending deformation
as a result of an impact of vertical force on its free end, and is described in the framework of the
classical beam bending theory. For monolayer composite films, the pattern of deformation behavior
was similar to that of the the bilayer composite films. During the study, the bending angle of the
composite film along the X-axis ranged from 0◦ to 120◦, and, along the Y-axis, it ranged from 0◦ to 15◦.
The radius of curvature of the atomic network was changed in the range from 8 to 40 nm for the case
of bending along the X-axis, and in the range from 8 to 81 nm for the case of bending along the Y-axis.
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an inter-tube distance of 12 hexagons in various directions: (a) perpendicular to CNTs (X-axis); (b) along
CNT axis (Y-axis).

Using the SCC-DFTB method, the change in the total energy of the composite film at each
deformation step was monitored, and relaxation of the atomic network of the structure was carried
out. It was found that the composite film structure continued to maintain an arched shape with
an increase in the degree of bending along the X-axis, and only the distance between its ends changed.
With an increase in the degree of bending along the Y-axis, the composite film structure retained
a tendency to contraction near the base, while the upper layer of the composite film stretched along
the Y-axis, and the lower layer compressed along the same axis. This behavior is typical for a rod.
The degree of bending was estimated from the radius of curvature of the composite film atomic
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network. According to the results of numerical experiments, we plotted the dependence of the strain
energy of the composite film on the radius of curvature of its atomic network. The strain energy was
found according to the difference between the total energy of the object before and after bending.
Figure 4 shows the dependences obtained for mono- and bilayer composite films, respectively.

These plots show that the strain energy varied in a similar way in both directions of bending
for the monolayer and bilayer composite structures. With an increase in the radius of curvature of
the atomic network, the strain energy decreased, indicating that the graphene–CNT composite film
adapted to its new geometric shape. The presence of the second layer affected mainly the energy,
i.e., it doubled in comparison with the monolayer. Analyzing the course of the dependences presented
in Figure 4, it can be noted that, in the case of bending in the direction perpendicular to CNTs, the strain
energy rapidly decreased in a narrow range of variation of the radius of curvature of the composite film
atomic network, i.e., in the range of 15–30 nm for monolayer structures, and in the range of 20–40 nm
for bilayer structures. A different pattern was observed in the case of the composite bending in the
direction along the CNT axis. In this case, the strain energy decreased more slowly and more smoothly,
reaching a saturation with the radius of curvature of about 80 nm for both monolayer and bilayer
composites. Such a distinction can be due to the fact that the properties of the structural components
of composite film manifested differently depending on the direction of deformation; along the X-axis,
the properties of graphene were represented, while, along the Y-axis, the properties of CNTs were
represented. This was also indicated by the structure of the super-cell of the composite film in each of
the considered cases of bending. When simulating the bending along the X-axis, the cell was translated
in the direction of the graphene edge, while, when bending along the Y-axis, it was translated in the
direction of the CNT axis. The absence of the sharp energy peaks on the graph suggests that elastic
deformation is typical for bent mono- and bilayer composite films. This deformation was accompanied
by an exponential decrease in strain energy down to zero as the atomic network of the composite film
was curved.

Coatings 2018, 8, x FOR PEER REVIEW  8 of 14 

 

composite film atomic network, i.e., in the range of 15–30 nm for monolayer structures, and in the 
range of 20–40 nm for bilayer structures. A different pattern was observed in the case of the 
composite bending in the direction along the CNT axis. In this case, the strain energy decreased 
more slowly and more smoothly, reaching a saturation with the radius of curvature of about 80 nm 
for both monolayer and bilayer composites. Such a distinction can be due to the fact that the 
properties of the structural components of composite film manifested differently depending on the 
direction of deformation; along the X-axis, the properties of graphene were represented, while, 
along the Y-axis, the properties of CNTs were represented. This was also indicated by the structure 
of the super-cell of the composite film in each of the considered cases of bending. When simulating 
the bending along the X-axis, the cell was translated in the direction of the graphene edge, while, 
when bending along the Y-axis, it was translated in the direction of the CNT axis. The absence of the 
sharp energy peaks on the graph suggests that elastic deformation is typical for bent mono- and 
bilayer composite films. This deformation was accompanied by an exponential decrease in strain 
energy down to zero as the atomic network of the composite film was curved. 

  
(a) (b) 

Figure 4. Dependence of the bending energy on a radius of curvature of the atomic network of 
graphene–CNT composite films: (a) a monolayer; (b) a bilayer. Solid lines correspond to the case of 
bending in the direction perpendicular to CNTs (X-axis), while dashed lines represent bending along 
the CNT axis (Y-axis). 

To estimate the energy stability of graphene–CNT composite film during bending deformation 
in different directions, the local stress distribution of the deformed-structure atomic network was 
calculated using the algorithm described in Section 3. Since the deformation behavior of the 
composite film was estimated by the change in strain energy at the previous stage of the study, the 
use of the original method based on the energy approach to calculate the local stresses of the atomic 
network seems justified from a physical point of view. The local stress distribution was calculated 
for all considered structural models of composite films at the time of ultimate bending in the 
directions perpendicular to CNTs and along CNTs. The obtained results allowed us to establish the 
patterns of the local stress distribution for graphene–CNT composite films, regardless of the varied 
CNT diameter and inter-tube distance, as well as the number of layers. Figure 5 shows the local 
stress distribution of the composite film atomic network by the example of central fragments of the 
super-cells of monolayer graphene–CNT structures with CNT (12,0) and an inter-tube distance of 12 
hexagons. It can be seen from the figure that, in the cases of bending perpendicular to CNTs and 
along CNTs, the maximum stresses fell on the atoms forming the covalent bonds between graphene 
and CNT in the composite film. Covalent bonds between these atoms were broken at the time of 
ultimate bending deformations for the composite films. The values of the critical stresses 
experienced by the atoms of the deformed framework were the same for different bending directions 
and corresponded to the previously established stress value of 1.8 GPa, at which the C–C bond is 
broken in deformed graphene [48]. For bilayer composite films, the pattern of stress distribution had 

Figure 4. Dependence of the bending energy on a radius of curvature of the atomic network of
graphene–CNT composite films: (a) a monolayer; (b) a bilayer. Solid lines correspond to the case of
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To estimate the energy stability of graphene–CNT composite film during bending deformation
in different directions, the local stress distribution of the deformed-structure atomic network was
calculated using the algorithm described in Section 3. Since the deformation behavior of the composite
film was estimated by the change in strain energy at the previous stage of the study, the use of the
original method based on the energy approach to calculate the local stresses of the atomic network
seems justified from a physical point of view. The local stress distribution was calculated for all
considered structural models of composite films at the time of ultimate bending in the directions
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perpendicular to CNTs and along CNTs. The obtained results allowed us to establish the patterns
of the local stress distribution for graphene–CNT composite films, regardless of the varied CNT
diameter and inter-tube distance, as well as the number of layers. Figure 5 shows the local stress
distribution of the composite film atomic network by the example of central fragments of the super-cells
of monolayer graphene–CNT structures with CNT (12,0) and an inter-tube distance of 12 hexagons.
It can be seen from the figure that, in the cases of bending perpendicular to CNTs and along CNTs,
the maximum stresses fell on the atoms forming the covalent bonds between graphene and CNT
in the composite film. Covalent bonds between these atoms were broken at the time of ultimate
bending deformations for the composite films. The values of the critical stresses experienced by the
atoms of the deformed framework were the same for different bending directions and corresponded
to the previously established stress value of 1.8 GPa, at which the C–C bond is broken in deformed
graphene [48]. For bilayer composite films, the pattern of stress distribution had a similar outcome as
the distribution for monolayer composite films; however, the values of maximum stress decreased
slightly for bilayer composites. In general, analyzing the results of the numerical modeling of the
deformation behavior of mono- and bilayer composite films during bending, we can note the higher
energy stability of graphene–CNT films when bending along the CNT axis.
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The second series of numerical experiments was devoted to a study of the behavior of
graphene–CNT composite films under stretching. The calculations were carried out for the same
super-cells as in the case of bending. During the experiment, the length of the composite film was
subsequently increased by 1% at each deformation step. The graphene–CNT structure was retained
in the stretched state due to the rigid fixing atoms along the edges of the composite film super-cell
and could not return to the initial state. The fixed atoms did not participate in the searching of the
equilibrium configuration of the framework corresponding to the ground state. The dependences of
the strain energy of the composite film on the strain value in relative units were plotted according
to the results of numerical experiments. The strain energy was found by the difference between
the total energy of the composite film before and after stretching. Figure 6 shows the dependences
obtained for mono- and bilayer composite films. From the plots presented in the figure, it can
be seen that an increase in the strain energy was observed according to a quadratic law for both
types of composite films, which corresponds to the elastic deformation of the structure. It should
be noted that the graphene–CNT structures under study were more resistant to axial stretching in
the longitudinal direction (perpendicular to CNTs). With deformation in the transverse direction
(along CNTs), the destruction of the composite film structure occurred faster. This behavior of the
composite film can be explained by the topological features of the super-cell types under consideration,
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i.e., the significant difference in cell lengths in the direction of the stretching graphene–CNT structure.
In particular, for mono- and bilayer composite films with CNT (12,0) and an inter-tube distance of
12 hexagons, the length of the super-cell was ~14.5 nm in the direction of deformation perpendicular
to CNTs (X-axis), and ~2 nm in the direction along the CNT axis (Y-axis).

Analyzing the curves in the graph, one can see that the CNT diameter and inter-tube distance
had an impact on the tensile strength of the composite film under axial stretching. In particular,
both mono- and bilayer composite films with CNT (12,0) and an inter-tube distance of 10 hexagons
offerred the least resistance to tensile strain in the direction along the CNT axis. For monolayer
composite films, the destruction of the atomic network occurred at 5% stretching, while that for bilayer
composites occurred at 3% stretching. Composite films with tubes (10,0) and an inter-tube distance
of 12 hexagons demonstrated the most resistance to tensile deformation along the CNT axis among
the studied topological models of mono- and bilayer graphene–CNT hybrid structures. When the
composite film was stretched in the direction perpendicular to CNTs, a dependence of the strength
properties of the graphene–CNT hybrid structure on the layering was clearly observed. For monolayer
composite films, the C–C bond breaking occurred at 7% stretching regardless of the CNT diameter
and inter-tube distance. For bilayer composite films, the highest tensile strength was demonstrated by
hybrid structures with an inter-tube distance of 12 hexagons. For them, the covalent bond breaking
occurred at 8% stretching. The calculation of the local stress distribution showed that the destruction
of the atomic network of mono- and bilayer composite films occurred at a critical stress of ~1.8 GPa,
regardless of the diameter of the tube and inter-tube distance. This result is in good agreement with
the results of computer studies of the deformation of graphene nanoribbons [48].
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As is well known, the stretching of the atomic network of nanostructures does not change their
electrical conductivity, since the electronic structure does not change. The electrical conductivity value
will also change dramatically at the moment of the breaking of interatomic bonds. A completely
different situation occurs in the case of the bending. During the bending of nanostructures, the electron
clouds of atoms are re-hybridized; therefore, the nature of electron transport changes. In this connection,
we carried out calculations of the transmission function T(E) using Equation (3) and the electrical
conductivity G using Equation (4) at each step of bending. First of all, we note that an anisotropy
of electrical conductivity was observed in the composite films under study. In the X-direction
(see Figure 2), perpendicular to the CNT axis, the electric current was almost absent, since the electrical
resistance was tens to hundreds of megaohms. In the Y-direction, along the CNT axis, the electrical
resistance value was comparable with the resistance of individual CNTs. In this regard, we carefully
studied the pattern of changes in T(E) and G during bending precisely in the Y-direction.
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At first, the behavior of the transmission function T(E) during bending of mono- and bilayer
composite films based on semiconductor CNT (10,0) and metal CNT (12,0) with different inter-tube
distances was investigated. Initially, the function T(E), regardless of the CNT type and the number of
layers, exhibited a small gap near the Fermi level (0.2–0.5 eV), i.e., zero conductivity. The presence
of the gap was due to the peculiarity of the conductivity of zigzag CNTs. As is known, zigzag CNTs,
even metal, are characterized by the presence of a small area of zero conductivity near the Fermi
level. However, during bending, accompanied by re-hybridization and additional overlapping of
electron clouds, the zero-conductivity gap completely disappears for all types of composite films,
regardless of the CNT type and the number of layers. As expected, the electrical conductivity of
composite films reacted differently to bending. The nature of the response was determined only
by the type of conductivity of CNTs. For samples based on metallic CNTs, the conductivity at the
Fermi level increased with increasing curvature (decreasing radius of curvature), regardless of the
layering. At a radius of curvature of ~15 nm, the composite films based on CNT (12,0) already had
one conduction channel at the Fermi level. For clarity, Figure 7 shows the plots of changes in T(E) of
monolayer films as the radius of curvature decreased, i.e., as the bending angle increased. The plots
are given for CNTs (10,0) and (12,0) with the same inter-tube distance of 10 hexagons. The unit of
measurement for T(E) is the conductance quantum. A violet color represents a plot corresponding to
the infinite radius of curvature, when bending is absent. The behavior of T(E) with increasing bending
qualitatively predicts an increase in conductivity. The value of conductivity G gives a quantitative
prediction, and the value of electrical resistance R(Ω) is calculated using conductivity G. Plots of the
change in electrical resistance R during bending in the Y-direction are shown in Figure 8 for mono- and
bilayer composite films with CNTs (12,0) and (10,0) at different inter-tube distances. An analysis of the
plots shows that the trend in the changes of electrical resistance was the same for both types of films,
i.e., resistance decreased. The lowest value of R was observed for composite films with metal CNT
(12,0). These films initially had a lower electrical resistance than samples with semiconductor CNTs,
which was quite expected. However, it should be noted that the electrical resistance of an individual
CNT (10,0) was significantly greater than the resistance of a composite film with the same CNT.
This was due to the covalent bonding of CNT with graphene. It can also be seen from the plots that
the resistance of the two-layer film was 1.5–2 times less than that of the monolayer film. This can be
explained by the presence of two channel-tubes in a super-cell, i.e., two conductors instead of one.
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5. Conclusions

As a result of a series of numerical experiments carried out using the molecular dynamics method
and the SCC-DFTB method, we determined patterns of the deformation behavior and electrical
conductivity of mono- and bilayer graphene–CNT composite films with CNTs (12,0) and (10,0) and
inter-tube distances of 10 and 12 hexagons under stretching and bending. It was established that
the direction of deformation plays an important role in determining the deformation behavior of the
graphene–CNT structure under bending. In the case of bending perpendicular to CNTs, the composite
film takes the form of an arc, and, in the case of bending along the CNT axis, the composite film
exhibits behavior characteristic of a beam subjected to bending deformation as a result of exposure
to vertical force at its free end. The revealed patterns are valid for both mono- and bilayer composite
films. When the composite film was axially stretched both in the direction along the CNT axis and
perpendicularly to CNTs, a pattern of elastic deformation, accompanied by a quadratic increase
in the deformation energy, was observed. At the same time, the graphene–CNT composite film
showed greater resistance to stretching deformation in the direction perpendicular to CNTs. In the
case of stretching in the direction perpendicular to CNTs, the destruction of the composite structure
occurred at 7% stretching for monolayer films, regardless of the CNT diameter and inter-tube distance,
and at 8% stretching for bilayer films with CNTs (10,0) and (12,0) and an inter-tube distance of
12 hexagons. During the deformation in the direction along CNTs, the breaking of C–C bonds of the
atomic framework occurred for individual topological models of composite films at 3% stretching.
The results of the calculation of the local stress distribution of the composite film atomic network under
study during bending and stretching showed that the of C–C bond breaking occurred at a critical stress
of ~1.8 GPa per atom. A similar pattern was previously observed for graphene nanoribbons subjected
to axial compression.

Some patterns were found in the behavior of the electrical conductivity of composite films. Bilayer
composite films with CNTs of metal conductivity had the highest conductivity. For these, the value of
electrical resistance reached 5 kΩ. The electrical conductivity of bilayer composite films was 1.5–2 times
higher than the conductivity of monolayer composite films, since not one but two tubes were in one
super-cell. As a result, both CNTs mimicked two conductors or conduction channels. This was
evidenced by a decrease in the electrical resistance of the composite films, regardless of the type of
conduction of CNTs and the inter-tube distance.
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