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Abstract: Atmospheric plasma spray (APS) yttria-stabilized zirconia coatings have a complex
microstructure with a variety of pores that significantly reduce the thermal conductivity. APS thermal
barrier coatings (TBCs) with a similar monoclinic phase were prepared. The pore sizes and
distributions of the coatings were obtained by scanning their cross-section via SEM; the scanned areas
were over 1 mm × 2 mm and more than 23,000 pores for each coating were analyzed. Multiple linear
regression was used to analyze the porosity data and then to determine the quantitative relationship
between different types of pores and thermal conductivity. Results revealed that the different
pores have different effects on decreasing the thermal conductivity. The small, vertical pores
have the biggest effect, while the horizontal pores also play a significant role in decreasing the
thermal conductivity.
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1. Introduction

Thermal barrier coatings (TBCs) are commonly applied to protect the hot-path components of
gas turbines and engines by reducing the temperature of metallic substrates. The state of the art
of TBCs are represented by yttrium-stabilized zirconium (YSZ) oxide (7–8 wt.%), which has a low
thermal conductivity (~2.5 W/(m·K)) [1,2]. YSZ is usually deposited onto the components either by
atmospheric plasma spray (APS) or by electron beam physical vapor deposition (EB-PVD) techniques.
Further, EB-PVD is favored because it results in a coating with superior thermal shock resistance,
which results in longer cycling life, while the APS technique has been widely used due to its relatively
low cost and much lower thermal conductivity [3–6]. APS TBCs have a splat-based structure that
contains pores with various morphologies trapped in between the splats. Because of these pores, the
thermal conductivity can be significantly lower (i.e., by as much as 50%) than fully dense coatings [7].

The thermal conductivity is determined by the microstructure, such as the porosity, grain size, and
gain boundary. Hence, the thermal conductivity is often affected by multiple factors. Chen et al. [8]
analyzed the relationship between the microstructure and thermal conductivity quantitatively
using multiple linear regression, and they found that the porosity significantly affects the thermal
conductivity at a fixed temperature, while the monoclinic phase content has a great influence on the
thermal conductivity at higher temperatures.
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Numerous researchers have studied the relationship between the porosity and thermal
conductivity by carrying out theoretical calculations and experiments. It is generally accepted that a
higher porosity leads to a lower thermal conductivity. In fact, the thermal diffusivity or conductivity
of porous materials is highly sensitive to the morphology of pores [9,10]. Many models have been
proposed in previous studies to investigate the effect of pores on the thermal conductivity by setting
specific parameters as input. Golosnoy et al.’s [11] results based on finite element analysis showed the
lower thermal conductivities compared with the experimental ones. While Tan et al.’s [12] model, which
was based on image analysis (IA) and finite, element analysis showed similar trends for YSZ coating
thermal conductivity, the simulated results were higher than those compared to the experimental
data. The difference among the simulating results and experimental ones mainly motivates researchers
to conduct further investigation on the modeling. However, simulation of APS TBCs’ thermal
conductivity based on comprehensive microscopic pore morphology has still not been achieved.
For decades, numerous studies have measured the porosity and thermal conductivity of true APS
TBCs samples prepared with different spray parameters to determine the factors influencing thermal
conductivity. However, these studies mostly focused either on the linear relationship between the
overall porosity and thermal conductivity, or on the effect of only crack-like pores termed inter-lamellar
pores on the thermal conductivity. As often highlighted in the literature, the thermal conductivity is
particularly sensitive to inter-lamellar pores that have their thickness oriented parallel to the heat flux,
and are less sensitive to pores with other shapes and morphologies [13–15]. In fact, the volume of
inter-lamellar pores is usually much smaller than that of other pores [9]. For porosity measurements,
usually, methods such as IA [16], Archimedean displacement [17], and mercury intrusion porosimetry
(MIP) [18] are used. However, these methods do not allow the comprehensive characterization of pores
containing the full thickness of the TBCs [19]. Thus, few researchers have systematically analyzed the
effect of pores with different shapes, orientations, and sizes.

The variation in the thermal conductivity comes from the interaction between all pores. Multiple
linear regression is a typical empirical method that is widely used to characterize the quantitative
dependence among factors [20]. Hence, multiple linear regression would be a suitable approach to
determine the role played by each type of pores.

The aim of this study is to investigate the effect of pores with different morphologies on the
thermal conductivity. In this work, several 8%-YSZ coatings with similar monoclinic phase contents
were prepared. A rectangular macroscopic area of 1 mm × 2 mm in each sample, with its thickness
corresponding to nearly the full thickness of the coatings, was analyzed to measure the porosity
employing a method named panoramic statistics [19]. More than 141,000 pores in five samples were
automatically scanned and distinguished using panoramic statistics. In addition, data like aspect
ratio, orientation, and area of every pore were automatically categorized in statistical lists of the INCA
Feature software (V5.05). Pores were classified according to the aspect ratio, orientation, and area.
The relationship between different types of pores and thermal conductivity was then evaluated using
multiple linear regression.

2. Materials and Methods

2.1. Materials and Preparation

The coatings were sprayed by employing the Metco A-2000 atmospheric plasma spray equipment
with an attached F4-MB plasma gun (Sulzer Metco AG, Winterthur, Switzerland). The raw material for
the ceramic layer on aluminum substrates was commercially available ZrO2-8 wt.% Y2O3 (Shenyang
Shihua Weifen Materials Co. Ltd., Shenyang, China). The plasma spray gun parameters are shown in
Table 1.

Before measurements and characterizations, free-standing coatings were obtained by grinding
the aluminum substrates away. Every coating was cut, mounted, and polished to get a cross-section.
The specimens were impregnated in epoxy resin to avoid artifacts induced during the polishing.
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Table 1. Spray parameters.

Spray Parameters. M1 M2 M3 M4 M5

Current (A) 550 550 600 600 650
Ar (L/min) 35 40 35 36 40
H2 (L/min) 7 10 7 12 10

2.2. Specimens Characterization

The phase composition of coatings was determined using XRD with a high-resolution X-ray
diffractometer with Cu Kα radiation (D8-Advance, Bruker, Hamburg, Germany) and continuous
scanning at 0.2◦/min. The phase contents of different phases were calculated by Rietveld refinement
using TOPAS software (V5.0). To ensure the accuracy of structure refinement, a powder was obtained by
grinding part of the free-standing coatings and then sifting over sieves with an aperture size of 48 µm.
The microstructure of coatings was characterized using a field-emission scanning electron microscope
(Magellan400, FEI, Brno, Czech Republic). The thermal diffusivity (α) of coatings was measured
using a laser flash method (TD-79A, SIC, Shanghai, China) and the measurement temperature ranges
from room temperature to 500 ◦C. The specific heat (Cp) of coatings was determined according to
the ASTM E1269-05 standard [21], by employing a diamond differential scanning calorimetry (DSC)
(SIC; Perkin Elmer, Waktham, MA, USA) in the temperature range from 25 to 500 ◦C. The specific heat
was calculated from the Equation (1) based from the equation based on the three DSC curves of empty
crucible, reference material, and sample:

Cp = Cpc
mc(As − Ab)

ms(Ac − Ab)
(1)

where Cp is the specific heat of sample in J/g·K, Cpc is the specific heat of reference material in J/g·K,
ms and mc are the masses of sample and standard reference material respectively in mg, As, Ac, and
Ab are the heat flows of sample, reference material, and empty crucible, respectively, in µV.

The density of coatings was tested in the basis of the Archimedes’ principle. The densities of
coatings were determined by Equation (2) according to ISO 18754 standard [22].

ρb =
m1

m1 −m2
× ρ1 (2)

where ρb is the density in kg/cm3, m1 is the mass of dry sample in kg, m2 is the buoyant weight
(the weight of specimen while immersed in liquid) in kg, ρ1 is the density of liquid at test temperature
in g/cm3.

Then, the thermal conductivity λ was calculated using the following Equation (3):

λ = αρCp (3)

where α, ρ, and Cp are the thermal diffusivity, density, and specific heat of the coatings, respectively.

2.3. Porosity Statistics

Panoramic statistics on porosity were obtained using the cross-section of coatings. A rectangular
region of 2 mm2 with its thickness corresponding to the full coating thickness was selected for each
coating. The energy dispersive spectrum (EDS) software INCA Feature was used to automatically
analyze the SEM image, and every pore could be distinguished according to the grey value. The SEM
parameters were kept constant. The SEM magnification was set at 1000× so that an area of
approximately 120 µm × 80 µm could be covered. The accelerating voltage was set at 20 kV and the
beam was 1.6 nA.



Coatings 2019, 9, 138 4 of 10

2.4. Multiple Linear Regression

Multiple linear regression (MLR), a classical statistical regression method based on least squares
regression, was adopted to analyze the relationship between different types of pores and the decrease in
the thermal conductivity. Porosity data obtained by automatic scanning and thermal conductivity data
of each coating were analyzed using the software Statistical Product and Service Solutions (SPSS, V23).

3. Results and Discussion

3.1. Phase Content

As presented in Figure 1, YSZ coating consists of the monoclinic, tetragonal, and cubic phases.
The phase content of each sample is shown in Table 2. The thermal conductivity of the monoclinic
phase is higher than those of the cubic phase and tetragonal phase, so the monoclinic phase content
plays an important role in increasing the thermal conductivity of TBCs [8]. In this study, the monoclinic
phase contents of samples are very similar: all about 5%. Therefore, it can be assumed that the effect of
the monoclinic phase content on the thermal conductivity can be ignored.
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Figure 1. XRD patterns of samples.

Table 2. The Phase content of each sample.

Phase Content M1 M2 M3 M4 M5

Tetragonal phase (%) 80.79 79.2 81.93 82.21 81.43
Monoclinic phase (%) 5.04 5.55 5.49 5.55 5.71

Cubic phase (%) 14.17 15.24 12.58 12.24 12.86

3.2. Panoramic Statistics

3.2.1. Overall Porosity and Thermal Conductivity

The overall porosity, pore area, and the number of pores of each sample are presented in Table 3.
Further, the thermal conductivity of each sample at different temperatures from 25 to 500 ◦C is shown in
Figure 2. The overall porosity of samples is not very different, ranging from 6.15% to 9.58%. However,
the thermal conductivity of samples at 500 ◦C varied from about 0.8 W/(m·K) to about 1.4 W/(m·K),
meaning that different types of pores with various morphologies have different effects on the decrease
in the thermal conductivity.
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Table 3. Porosity Statistical Data.

Porosity Statistical Data M1 M2 M3 M4 M5

Pore area (µm2) 122,946 140,277 137,543 138,109 191,543
Scanning area (µm2) 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

Pore number 2,5036 32,192 23,765 28,092 32,806
Overall porosity (%) 6.15 7.01 6.88 6.91 9.58Coatings 2019, 9, x FOR PEER REVIEW 5 of 10 
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3.2.2. Porosity Classification

As often mentioned in the literature, the microstructures of as-sprayed and sintered free-standing
APS YSZ consists of lamellar pores (intra-lamellar and inter-lamellar) and globular voids [10,23,24].
In this study, pores having different morphologies and orientations have been classified depending
on their aspect ratio (a), orientation (β), and area (s). In particular, all pores having a < 3 have been
consider as “spherical”, while those with a ≥ 3 have been considered to be lamellar shaped [10];
further, lamellar pores were divided into horizontal (0 ≤ β ≤ 45◦) and vertical (45◦ < β < 90◦) pores.
In addition, pores were divided into big pores (s ≥ 2 µm2) and small pores (s < 2 µm2) for the area
of above 50% pores smaller than 2 µm2. For studying the morphology and orientation of different
pores, six types of pores listed in Table 4 were considered: big-horizontal pores, small-horizontal pores,
big-vertical pores, small-vertical pores, big-globular pores, and small-globular pores. Ratios of the
6 types of pores to scanning area of samples are presented in Table 5.

Table 4. Porosity Classification.

Porosity Classification Aspect Ratio (a) Orientation (β/◦) Area (s/µm2)

big-horizontal pores a ≥ 3 0 ≤ β ≤ 45◦ s ≥ 2
small-horizontal pores a ≥ 3 0 ≤ β ≤ 45◦ s < 2

big-vertical pores a ≥ 3 45◦ < β <90◦ s ≥ 2
small-vertical pores a ≥ 3 45◦ < β <90◦ s < 2
big-globular pores a < 3 – s ≥ 2

small-globular pores a < 3 – s < 2

Table 5. Pores Percentage of each sample.

Sample
Number

Big-Horizontal
Pores (%)

Small-Horizontal
Pores (%)

Big-Vertical
Pores (%)

Small-Vertical
Pores (%)

Big-Globular
Pores (%)

Small-Globular
Pores (%)

M1 0.41 0.11 0.18 0.13 4.1 1.2
M2 0.39 0.14 0.28 0.19 5.2 0.83
M3 0.40 0.09 0.29 0.14 5.4 0.54
M4 0.41 0.12 0.20 0.11 5.3 0.73
M5 0.66 0.13 0.31 0.11 7.5 0.81
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3.3. Multiple Linear Regression Analysis

In the multiple linear regression analysis, a total of 30 sets of thermal conductivity data were input
as values of the dependent variable, and the influence of the six types of pores at different temperatures
from room temperature to 500 ◦C was considered. The calculations were done with the SPSS software.
The multiple linear regression equation is given by Equation (4):

Y = −0.01X0 − 184.020X1 − 91.831X2 − 417.159X3 − 4.499X4, R2 = 0.973 (4)

Here, X0, X1, X2, X3, and X4 represent temperature in ◦C, and the fractions of the small-horizontal
pores in %, big-horizontal pores in %, small-vertical pores in %, and big-globular pores in %,
respectively. It was worth noting that the input-independent variables, big-vertical, and small-globular
pore fractions were removed from the equation during the calculation, indicating that they have no
obvious impact on the thermal conductivity of samples.

The linear coefficient R2 is 0.973 and F-value is 173.133; both indicate that highly significant
linear relationship between the dependent variables and independent variables. The coefficients
of independent variables are all plural, meaning that temperature and the four types of pores
that remained in the equation all have a significant influence on the decrease in the coating
thermal conductivity.

Standardization coefficient Pj of independent variables are listed in Table 6. The magnitude of the
standardization coefficient Pj was used to estimate the importance of the independent variable Xi: the
larger the Pj magnitude, the greater the importance of Xi.

Table 6. Standardization Coefficient Pj.

Independent Variables Pj

Temperature (◦C) X0 0.457
small-horizontal pores (%) X1 0.142
big-horizontal pores (%) X2 0.406
small-vertical pores (%) X3 0.489
big-globular pores (%) X4 0.444

3.4. The Effect of Different Types of Pores

By comparing Pj, the four types of pores were ranked according to their effect on the thermal
conductivity; the order of effect was as follows: small-vertical pores > big-globular pores >
big-horizontal pores > small-horizontal pores.

3.4.1. Small-vertical Pores

Figure 3a,b represents the schematic of the coating containing a small-horizontal pore and a
small-vertical pore. L is the thickness of the material and A1 and A2 are the cross-sectional areas of the
small-horizontal and small-vertical pores, respectively. It is assumed that the cross-sectional area A is
proportional to the pore length, as the real area is difficult to measure. R1, R2, R1

′, and R2
′ represent the

thermal resistance of the upper and lower part of the pore in the dashed line area, while the thermal
resistance of the small-horizontal and small-vertical pores is RPT and RPL .

The thermal resistance R of a substance is given by the equation:

R =
l

Aλ
(5)

where l is the heat flux propagation length of a substance, A is the cross-sectional area, and λ is the
thermal conductivity.
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The thermal resistance within the dashed-line area in Figure 3a is given by

RT = R1 + R2 + RPT

= L−l1
A1λS

+ l1
A1λp

(6)

where λs is the thermal conductivity of the solid, and λp is the thermal conductivity of gas in pores.
The thermal resistance of the dashed-line area in Figure 3b is given by

RL = R′1 + R′2 + RPL

= L−l2
A2λS

+ l2
A2λp

(7)

So it can be concluded that the difference between the two is given by

RL − RT=
1
λP

(
l2
A2
− l1

A1

)
+

1
λS

(
L− l2

A2
− L− l1

A1

)
≈ 1

λP

(
l2
A2
− l1

A1

)
+

1
λS

(
L

A2
− L

A1

)
> 0

(8)

We can conclude that the thermal resistance of small-vertical pores is bigger than that of
small-horizontal pores when they occupy the same volume.

Coatings 2019, 9, x FOR PEER REVIEW 7 of 10 

 

So it can be concluded that the difference between the two is given by 

𝑅 − 𝑅 =
1

λ
𝑙

𝐴
−

𝑙

𝐴
+

1

λ
𝐿 − 𝑙

𝐴
−

𝐿 − 𝑙

𝐴
 

≈
1

λ
𝑙

𝐴
−

𝑙

𝐴
+

1

λ
𝐿

𝐴
−

𝐿

𝐴
  > 0 

(8) 

We can conclude that the thermal resistance of small-vertical pores is bigger than that of small-
horizontal pores when they occupy the same volume.  

 

          (a)                                        (b) 

Figure 3. Schematic representation of coating with a small-horizontal pore (a) and a small-vertical pore (b). 

 

3.4.2. Horizontal Pores 

Figure 4. shows the schematic of the heat flux passing through horizontal pores, the arrowhead 
thickness represents the magnitude of heat flux passing through the area per unit time. According to 
the Equation (3), the thermal resistance is inversely proportional to the contact area and the thermal 
conductivity. For λs >> λp, it can be inferred that Rs << Rp. Coating regions with perfect contact are 
separated by horizontal pores, which have no contact arising from gas entrapped beneath spreading 
liquid droplets during coating formation. The heat flux is restricted to conduction through the regions 
of true contact, which refer to solid/solid interface, so that the heat flux is higher compared to the 
regions possessing pores, which refer to solid/gas contact. The longer the pore transverse length, the 
more significant the effect. 

It is worth noting that horizontal pores, irrespective of the size, all play a significant role in 
decreasing the thermal conductivity of coatings. Therefore, several studies have explored the effect 
of inter-lamellar pores [6,9]. 

 
Figure 4. Schematic representation of heat flux passing through horizontal pores. 

3.4.3. Excluded Variables 

In multiple linear regression, there are six types of pore inputs, however, only four types of pores 
appear in the equation. In the calculation, the variables, i.e., the big-vertical and small-globular pore 
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Figure 3. Schematic representation of coating with a small-horizontal pore (a) and a small-vertical pore (b).

3.4.2. Horizontal Pores

Figure 4. shows the schematic of the heat flux passing through horizontal pores, the arrowhead
thickness represents the magnitude of heat flux passing through the area per unit time. According to
the Equation (3), the thermal resistance is inversely proportional to the contact area and the thermal
conductivity. For λs >> λp, it can be inferred that Rs << Rp. Coating regions with perfect contact are
separated by horizontal pores, which have no contact arising from gas entrapped beneath spreading
liquid droplets during coating formation. The heat flux is restricted to conduction through the regions
of true contact, which refer to solid/solid interface, so that the heat flux is higher compared to the
regions possessing pores, which refer to solid/gas contact. The longer the pore transverse length, the
more significant the effect.
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It is worth noting that horizontal pores, irrespective of the size, all play a significant role in
decreasing the thermal conductivity of coatings. Therefore, several studies have explored the effect of
inter-lamellar pores [6,9].

3.4.3. Excluded Variables

In multiple linear regression, there are six types of pore inputs, however, only four types of
pores appear in the equation. In the calculation, the variables, i.e., the big-vertical and small-globular
pore fractions, were removed from the equation, indicating that they have no significant effect on the
thermal conductivity of coatings.

According to the thermal resistance theory, the big-vertical pores should have a greater effect
on the coating thermal conductivity than the small-vertical pores. As shown in Figure 5, parts of the
big-vertical pores are connected to the coating surface in samples. These pores connected to the surface
increased the convective heat transfer when a temperature difference existed between the coating
interior and surface, leading to a decrease in the thermal conductivity. Hence, the big-vertical pores
have no significant influence on the coating thermal conductivity.
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On the other hand, the small-globular pores, which are almost uniformly distributed in the
coating, have a width comparable with the mean free path of the molecules, so that their exitance is
almost transparent to the phonon.

4. Conclusions

In this study, samples having similar monoclinic phase contents were prepared to eliminate the
effect of phase content. Then, based on panoramic statistics on porosity, more than 141,000 pores were
scanned and distinguished using SEM with the INCA software, and porosity data, i.e., the aspect ratio,
orientation, and area, were obtained. Then, the data were analyzed by employing multiple linear
regression at SPSS. The results are summarized as follows:

• Different pores play different roles in decreasing thermal conductivity: for samples with an overall
porosity of 6%–9%, the thermal conductivity varies greatly.

• According to the multiple linear regression equation, the small-vertical pores have the biggest
effect on the decrease in the thermal conductivity.

• The horizontal pores, irrespective of their size, play a significant role in decreasing the thermal
conductivity of coatings.

The quantitative relationship between different kinds of pores and thermal conductivity offers a
new way to get low thermal conductivity by optimizing spraying parameters to perfect the pore types
and distributions.
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