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Abstract: NiAl matrix composite coatings were prepared using atmospheric plasma spraying (APS).
The mechanical and tribocorrosion properties of the NiAl matrix composite coatings, incorporated
with Cr2O3 and Mo, were investigated, and the synergistic effect between corrosion and wear was
studied in detail. The microhardness of the composite coating improved from 195.1 to 362.2 HV
through the addition of Cr2O3 and Mo. Meanwhile, the Cr2O3 and Mo phases were distributed
uniformly in the composite coatings. The X-ray diffraction (XRD) peaks of Ni-based solid solution
slightly shifted to the right after adding the Mo. This was probably due to the solid solution of Mo into
the matrix. The NiAl–Cr2O3–Mo composite coating had the lowest corrosion current density, wear
rate and friction coefficient of 9.487 × 10−6 A/cm2, 3.63 × 10−6 mm3/Nm, and 0.18, in all composite
coatings as well as showing excellent tribocorrosion properties.

Keywords: tribocorrosion properties; synergistic effect; corrosion current density; worn surface;
tribocorrosion properties

1. Introduction

With the forward depletion of land sources, it is very hard to satisfy the development needs of
industry [1,2]. In recent years, the abundance of ocean resources has attracted researchers’ attention [3,4].
Marine equipment has had an important effect on marine exploration, such as ocean wind turbines,
vessels and offshore oil platforms. However, ocean equipment easily suffers, not only from direct
corrosion, but also the onset of wear, and their combined damage greatly affects the service lives of these
kinds of engineering equipment [5–9]. The synergism effect of wear and corrosion is very destructive
and usually decided by the reciprocity of chemistry, electrochemistry, mechanics and physics [10,11].
Therefore, corrosion will influence the microstructure, hardness and roughness of worn surfaces,
further affecting the wear behavior [12]. In most tribocorrosion situations, the material loss is usually
bigger than the simple sum of corrosion and wear [13,14]. The synergetic effects of corrosion and
wear reduce the service life, safety and reliability of mechanical parts in seawater environments [15].
Therefore, it is imperative to optimize the corrosion and wear properties of mechanical parts in this
environment, and to apply coatings with satisfactory mechanical properties. Tribocorrosion is a
promising technology, which may provide good protection in ocean environments.

NiAl intermetallic compounds are considered to be promising materials in marine environments,
due to their low density of 5.86 g/cm3, their high thermal conductivity, their high Young’s module
of 240 GPa, and their high melting point of 1638 ◦C, as well as excellent corrosion and oxidation
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resistance [16–20]. Nevertheless, the practical application of NiAl has been restricted by its inherent
poor ductility at ambient temperatures [21–23]. Acting as a solution-strengthening phase, Mo could
improve the strength of materials effectively [24–26]. Meanwhile, Mo could improve the ductility of
NiAl intermetallic compounds at ambient temperatures [27,28]. Our previous study on NiAl–Mo2C
nanocomposites indicated that the hardness and density of NiAl–Mo2C nanocomposites increased
with increasing Mo contents. Meanwhile, the maximum stress and yield strength were all higher than
that of NiAl intermetallics [28]. Nevertheless, the NiAl coating has low hardness and suffers severe
wear at room temperature [29]. Hence, excellent wear resistant hard phases should be added in the
NiAl protective coating [30]. Cr2O3, acting as a strengthening hard phase, could, effectively, improve
the wear resistance properties and hardness of materials [31–33].

In this work, the mechanical and tribocorrosion properties of NiAl matrix plasma-sprayed
composite coatings, incorporated with Cr2O3 and Mo in artificial seawater, were investigated, and the
synergistic effect between corrosion and wear was studied in detail.

2. Materials and Methods

2.1. Material Preparation

The NiAl matrix coatings were produced using atmospheric plasma spraying (APS), and the
schematic for the preparation of composite coatings is shown in Figure 1. The spray powders of NiAl,
Cr2O3 and Mo were purchased from Sulzer Metco (Winterthur, Switzerland). The mixed feedstock
powders were mingled mechanically before spraying. The Inconel 718 substrate was sand-blasted using
a sand-blasting machine (Beijing Changkong Sand Blasting Equipment Company Ltd., Beijing, China)
with corundum grit before spraying, and then an ultrasonic cleaner (Kunshan Ultrasonic Instruments
Company Ltd., Kunshan, China) was used with acetone to clean the residual sand from the composite
coating surface. The composition of each composite coating is presented in Table 1. The thickness of
the composite coatings was 300 ± 20 µm. The thickness of the composite coatings was measured by
the method of microscopically examining the cross-sections. Table 2 presents the spraying parameters.
Scanning electron microscopy (FE-SEM, Tescan Mira 3, Bron, Kohoutovice, Czech Republic) was used
to characterize the morphologies of the powders and composite coatings. The chemical composition
of composite coatings was analyzed using an X’Pert-MRD X-ray diffractometer (Philips, Eindhoven,
the Netherlands). A microhardness tester (MH-5-VM, Shanghai Hengyi Science and Technology,
Shanghai, China) was used to measure the microhardness of composite coatings. The load was 300 g.
The dwell time was 5 s.
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Table 2. Spraying parameters.

Parameter Value

Plasma gas flow Ar, L/min 40
Secondary gas flow H2, L/min 5

Spraying angle 90◦

Powder feed rate, g/min 40
Current, A 500
Voltage, V 60

Spray distance, mm 110

2.2. Tribocorrosion Tests

A reciprocating ball-on-disk tribometer (UMT, Karlsruhe, Germany) was used to measure the
tribocorrosion properties of the composite coatings in artificial seawater. The artificial seawater
was prepared according the ASTM D114-98 standard [8]. To adjust the artificial seawater pH value
to 8.2, 0.1 M NaOH was used. Table 3 presents the artificial seawater’s chemical composition.
Figure 2 showed the reciprocating ball-on-disc tribometer’s schematic. The solution cell material was
polytetrafluoroethylene (PTFE), which presented excellent corrosion resistance and effectively avoided
the environmental effect, according to the experiment results. The Al2O3 ceramic ball was used as the
counter ball. The diameter of the Al2O3 ceramic ball was 5 mm. Firstly, the composite coatings were
polished until the composite coating surface roughness was below 0.5 µm. The tribocorrosion tests
have been described in detail elsewhere [34].

Table 3. Artificial seawater’s chemical composition.

Constituent Concentration (g/L)

NaCl 24.530
Na2SO4 4.090
CaCl2 1.160

MgCl2·6H2O 11.110
KCl 0.695

NaHCO3 0.201
KBr 0.100

H3BO3 0.027
SrCl2·6H2O 0.042

NaF 0.003
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3. Results and Discussion

3.1. Microstructure and Microhardness of Composite Coatings

Figure 3 shows the SEM morphologies of spray powders. The NiAl and Mo powders were
fabricated by gas-atomization and present the spherical shape. The size of the powders was around
50–100 µm. The feedstock powder of Cr2O3 is fabricated by sintering and crushing and shows an
angular shape. The size of the Cr2O3 was 5–53 µm. All feedstock powders are mingled mechanically
before spraying, in order to make sure the powders distribute uniformly [35].
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Figure 4 gives SEM images of a polished cross-section of NiAl matrix composite coatings.
The composite coatings contain many defects (cracks and pores) (Figure 4a), and present the typical
lamellar structure. Combining energy disperse spectroscopy (EDS) and X-ray diffraction (XRD)
(Figure 5), the black phase is Cr2O3 and the gray phase is Mo in the composite coatings. The Cr2O3

and Mo phases distribute uniformly, and the interface of these two phases has no evident cracks.
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Figure 5 presents the XRD patterns of NiAl matrix composite coatings. All composite coatings
contain the Ni-based solid solution (JCPDS file no. 04-0850) and NiAl (JCPDS file no. 20-0019). The
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XRD spectrum of NA1 and NA2 composite coatings contains the diffraction peaks of Cr2O3 (JCPDS file
no. 38-1479) and single-phase Mo (JCPDS file no. 42-1120). It is surprising that the diffraction peaks of
Ni-based solid solution slightly shift to the right after addition of the Mo, which may be due to the
partial solid solution of Mo in the matrix [36].

Table 4 gives the microhardness of composite coatings. The microhardness of composite coatings
increased with the addition of Cr2O3 and Mo. The addition of Cr2O3 makes the microhardness of
the composite coating increase from 195.1 to 290.5 HV. The Cr2O3 often acts as a strengthening hard
phase, which could effectively enhance the hardness of materials [37,38]. So, the microhardness of the
composite coating is obviously improved. The NA2 composite coating has the highest microhardness,
of 362.2 HV in all composite coatings. The Mo could act as the solution-strengthening phase, to greatly
increase the microhardness of the composite coatings [39].

Table 4. Microhardness of composite coatings.

Coatings NA NA1 NA2

Vickers hardness (HV) 195.1 ± 13.6 290.5 ± 15.8 362.2 ± 16.9

3.2. Electrochemical Behavior of Composite Coatings

Figure 6 shows the open circuit potential (OCP) evolution before, during and after the tribocorrosion
of composite coatings in artificial seawater. During the first half hour, the composite coatings were
immersed in artificial seawater before sliding. The initial highest OCP value, before sliding, was for
NA1. When the counter ball of Al2O3 started sliding on the sample surface, the OCP of all composite
coatings shifted rapidly to the negative. The OCP of the NA coating is more negative than that of
the NA1 and NA2 coatings. After adding the element Mo, the Mo partially dissolved in the matrix,
resulting the effect of solid solution-strengthening in the composite coating. It is very helpful if
the coating forms a dense rust layer on the composite coating surface during the first half hour of
immersion in artificial seawater [12]. This dense rust layer is very difficult to destroy in the sliding
process. So, the OCP of the NA2 coating is the most positive in the process of sliding. The OCP values
of all the composite coatings start to gradually increase when the sliding stops, which plays the main
role in deciding the OCP value. The addition of Mo makes it easier for NA2 to form a dense, passive
film, leading the OCP of this sample having the highest value after sliding.
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Figure 7 presents the potentiodynamic polarization curves of composite coatings sliding in
artificial seawater. Basic parameters (corrosion current density (icorr), corrosion potential (Ecorr), anodic
and cathodic Tafel slopes (βa and βc) of the composite coatings are listed in Table 5, measured from
Figure 7, using the Tafel extrapolation method. The polarization resistance value (Rp) is calculated
using the Stern–Geary equation:

RP =
βa ×βc

2.303icorr(βa + βc)
(1)

The results show that the corrosion potential (Ecorr) of the NA2 composite coating is −0.490 V
(vs. saturated calomel electrode (SCE)) and obviously higher than that of the NA and NA1 composite
coatings of −0.583 V (vs. SCE) and −0.552 V (vs. SCE). The NA2 composite coating has the highest
corrosion potential value of all composite coatings. Still, the corrosion current density (icorr) of the
NA2 composite coating, at 9.487 × 10−6 A/cm2, is lower than that of NA and NA1 composite coatings,
at 8.896× 10−5 and 4.624× 10−5 A/cm2, respectively, indicating that the NA2 composite coating presents
the best corrosion resistance and is very difficult to corrode. Generally speaking, corrosion current
density is an important criterion in valuing the corrosion resistance of materials [8,40]. So, the NA2
composite coating presents lower corrosion rates than those of the NA and NA1 composite coatings,
and may be very hard to corrode. At the same time, the NA2 composite coating has the highest Rp of
9.003 × 102 Ω, which further illustrates that the NA2 composite coating presents very strong corrosion
resistance under artificial seawater. In general, the βa is higher than βc of the material [4,7,11,41].
In this test result, the βa of all composite coatings are higher than the βc. This kind of phenomenon
is related to the fact that the cathodic part exchange-current density value is higher than that of the
anodic part. The entire kinetics of the corrosion of all composite coatings are decided by the anodic
part [11]. That is to say, the anodic dissolution rate is slower than that of the cathodic reaction.

Coatings 2019, 9, 822 6 of 10 

 

coatings of −0.583 V (vs. SCE) and −0.552 V (vs. SCE). The NA2 composite coating has the highest 
corrosion potential value of all composite coatings. Still, the corrosion current density (icorr) of the 
NA2 composite coating, at 9.487 × 10−6 A/cm2, is lower than that of NA and NA1 composite coatings, 
at 8.896 × 10−5 and 4.624 × 10−5 A/cm2, respectively, indicating that the NA2 composite coating presents 
the best corrosion resistance and is very difficult to corrode. Generally speaking, corrosion current 
density is an important criterion in valuing the corrosion resistance of materials [8,40]. So, the NA2 
composite coating presents lower corrosion rates than those of the NA and NA1 composite coatings, 
and may be very hard to corrode. At the same time, the NA2 composite coating has the highest Rp of 
9.003 × 102 Ω, which further illustrates that the NA2 composite coating presents very strong corrosion 
resistance under artificial seawater. In general, the βa is higher than βc of the material [4,7,11,41]. In 
this test result, the βa of all composite coatings are higher than the βc. This kind of phenomenon is 
related to the fact that the cathodic part exchange-current density value is higher than that of the 
anodic part. The entire kinetics of the corrosion of all composite coatings are decided by the anodic 
part [11]. That is to say, the anodic dissolution rate is slower than that of the cathodic reaction. 

 
Figure 7. Potentiodynamic polarization curves of composite coatings sliding in artificial seawater. 

Table 5. Corrosion parameters of composite coatings from potentiodynamic polarization curves. 

Coatings Ecorr (V, vs. SCE) icorr (A/cm2) βa (V/dec) −βc (V/dec) Rp (Ω) 
NA −0.583 8.896 × 10−5 0.059 0.046 1.262 × 102 
NA1 −0.552 4.624 × 10−5 0.050 0.042 2.143 × 102 
NA2 −0.490 9.487 × 10−6 0.042 0.037 9.003 × 102 

3.3. Tribological Behavior of NiAl Matrix Composite Coatings 

Figure 8 shows the friction curves and wear rate of the NiAl matrix composite coatings in 
artificial seawater. Obviously, the friction coefficient and wear rate of the NA2 composite coating, of 
0.18 and 3.63 × 10−6 mm3/Nm, respectively, are the lowest of all the composite coatings. This result is 
probably due to the way Cr2O3 acts as a strengthening hard phase, to enhance the hardness and wear 
resistance properties of composite coatings effectively. Meanwhile, the Mo could dissolve in the 
matrix and has a solid solution-strengthening effect in the NA2 composite coating. These are very 
useful in helping form the dense rust layer on the worn surface of the NA2 composite coating, which 
effectively reduces the corrosion rate, friction coefficient and wear rate of the NA2 composite coating. 

Figure 7. Potentiodynamic polarization curves of composite coatings sliding in artificial seawater.

Table 5. Corrosion parameters of composite coatings from potentiodynamic polarization curves.

Coatings Ecorr (V, vs. SCE) icorr (A/cm2) βa (V/dec) −βc (V/dec) Rp (Ω)

NA −0.583 8.896 × 10−5 0.059 0.046 1.262 × 102

NA1 −0.552 4.624 × 10−5 0.050 0.042 2.143 × 102

NA2 −0.490 9.487 × 10−6 0.042 0.037 9.003 × 102

3.3. Tribological Behavior of NiAl Matrix Composite Coatings

Figure 8 shows the friction curves and wear rate of the NiAl matrix composite coatings in artificial
seawater. Obviously, the friction coefficient and wear rate of the NA2 composite coating, of 0.18 and
3.63 × 10−6 mm3/Nm, respectively, are the lowest of all the composite coatings. This result is probably
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due to the way Cr2O3 acts as a strengthening hard phase, to enhance the hardness and wear resistance
properties of composite coatings effectively. Meanwhile, the Mo could dissolve in the matrix and has a
solid solution-strengthening effect in the NA2 composite coating. These are very useful in helping
form the dense rust layer on the worn surface of the NA2 composite coating, which effectively reduces
the corrosion rate, friction coefficient and wear rate of the NA2 composite coating.Coatings 2019, 9, 822 7 of 10 
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In order to further investigate the tribocorrosion behavior of NiAl matrix composite coatings in
artificial seawater, a color 3D laser scanning microscope was used. Figure 9 gives the 3D profiles of
worn surfaces of NiAl matrix composite coatings after being tested in artificial seawater. The NA2
composite coating worn track is, at 118.9 µm, narrower than the NA and NA1 composite coatings,
at 189.6 and 136.3 µm, respectively. This observation is in accordance with the friction coefficient and
wear rate results of NiAl matrix composite coatings (Figure 8). Meanwhile, the worn surface of the
NA coating suffered very severe corrosion. However, the worn surfaces of NA1 and NA2 composite
coatings display slight corrosion. This result is similar with that of the corrosion current densities of the
composite coatings (Table 5). Corrosion could aggravate the wear rate of the NiAl matrix composite
coatings. So, the NA coating presents the highest wear rate and the NA2 coating has the lowest wear
rate (Figure 8). It further illustrates that, in artificial seawater, the NA2 composite coating presents
excellent tribocorrosion properties.
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Figure 10 presents the SEM morphologies of composite coating worn surfaces during sliding.
The NA coating displayed poor corrosion performance at cracks and pores (Figure 10a). The coating
with the addition of Cr2O3 and Mo had visibly less corrosion than those of any other coatings
(Figure 10c). It is probably due to the way Mo acts as a solution-strengthening phase, which could
enhance the strength of materials [24–26].
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4. Conclusions

In this study, composite coatings were fabricated using APS. The mechanical and tribocorrosion
properties of composite coatings incorporated with Cr2O3 and Mo in artificial seawater were
investigated, and the synergistic effect between corrosion and wear were investigated in detail.
The main conclusions are given as follows:

• Upon adding Cr2O3 and Mo, the microhardness of the composite coatings improves from 195.1 to
362.2 HV. Meanwhile, the Cr2O3 and Mo phases distribute uniformly and the interface of these
two phases has no evident cracks.

• The Ni-based solid solution diffraction peaks slightly shift to the right after the addition of Mo,
which is maybe due to the partial solid solution of the element Mo into the matrix.

• The NiAl–Cr2O3–Mo composite coating has the lowest corrosion current density, friction coefficient
and wear rate of 9.487 × 10−6 A/cm2, 0.18 and 3.63 × 10−6 mm3/Nm in all composite coatings.

• The NiAl–Cr2O3–Mo composite coating shows excellent tribocorrosion properties in artificial
seawater.
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