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Abstract: Vertically aligned carbon nanotube arrays (VACNTs) have many excellent properties and
show great potential for various applications. Recently, there has been a desire to grow VACNTs on
nonplanar surfaces and synthesize core-sheath-structured VACNT–inorganic hybrids. To achieve this
aim, atomic layer deposition (ALD) has been extensively applied, especially due to its atomic-scale
thickness controllability and excellent conformality of films on three-dimensional (3D) structures
with high aspect ratios. In this paper, the ALD of catalyst thin films for the growth of VACNTs, such
as Co3O4, Al2O3, and Fe2O3, was first mentioned. After that, the ALD of thin films for the synthesis
of VACNT–inorganic hybrids was also discussed. To highlight the importance of these hybrids, their
potential applications in supercapacitors, solar cells, fuel cells, and sensors have also been reviewed.
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1. Introduction

Vertically aligned carbon nanotube arrays (VACNTs) have good alignment, high specific surface
areas, excellent electrical and thermal conductivity, superior mechanical properties, high purity, low
expansion coefficients, low weights, and antiaging and antioxidation properties [1–5]. Due to their
outstanding properties, VACNTs show great potential for a wide variety of applications, such as field
emitters for display, biological sensors, energy storage devices, and thermal interface materials [6–13].
Generally, VACNTs are usually made by carbon-arc discharge, laser ablation of carbon, or chemical
vapor deposition (CVD) typically on catalytic particles [14]. Compared with the others, CVD is
low-cost, controllable, and suitable for mass preparation, so it has been the most important and
common method to synthesize the VACNTs [15]. Currently, many researchers focus on the synthesis of
high-quality VACNTs with the optimization of different parameters of catalyst and buffer layers, such
as roughness and stoichiometry [16]. Furthermore, the growth of VACNTs on nonplanar substrates
is increasingly important due to their particular applications, such as fuel cell electrodes. Generally,
they consist of a carbon nanofiber or porous matrix, and it is desirable to make hierarchical structures
by growing VACNTs onto the nanofibers or porous structures [17–20]. In addition, compared with a
planar surface, a nonplanar surface can largely increase the specific surface area, which would be very
beneficial for the preparation and further applications of VACNTs [21–23]. To synthesize high-quality
VACNTs on nonplanar surfaces, it is very important to deposit uniform catalysts on them, especially
for three-dimensional (3D) structures with high aspect ratios.
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In recent years, core-sheath-structured VACNT–inorganic hybrids have become critical due to
their potential applications in supercapacitors, solar cells, fuel cells, and sensors [24–30]. Combining
VACNTs with multifunctional inorganic nanomaterials can take advantage of the synergistic effects
between the VACNT–inorganic interface, and it is expected to bring superior combined properties
to the hybrids [31]. Generally, for many applications of VACNT–inorganic hybrids, the performance
of the devices crucially depends on the thickness and conformality of the inorganic thin films of the
VACNTs [32]. However, due to the high aspect ratio of VACNTs, it is a challenge to obtain conformal
and uniform coatings on them.

To deposit uniform thin films on nonplanar substrates, especially for 3D structures and VACNTs
with high aspect ratios, the traditional physical vapor deposition (PVD) and CVD methods are not
very suitable due to their relatively limited step coverage [33]. Unlike these methods, atomic layer
deposition (ALD) can achieve pinhole-free, dense, and conformal thin films on 3D structures with high
aspect ratios with atomic scale precision due to its self-limited behavior, as shown in Figure 1a,b [34–37].
Therefore, ALD is a promising technology for the uniform deposition of catalysts on 3D structures
with a high aspect ratio and the conformal inorganic coating of VACNTs. Recently, some researchers
have widely used ALD to deposit inorganic films on some 3D structures with the high aspect ratio,
such as membranes [38,39]. Compared with membranes, VACNTs also have the high aspect ratio, but
they are theoretically more difficult to be coated by ALD, due to chemically inert graphitic surfaces
of the pristine VACNTs [32]. Figure 2 illustrates the number of publications involving the ALD of
inorganic films for the synthesis of VACNTs and their hybrids in the last 10 years. Despite there have
some reviews about ALD of inorganic films on carbon nanotubes (CNTs), comprehensive reviews
are not available about ALD of inorganic films on VACNTs and for their growth [40]. The main
goal of this work is to provide a brief overview of fundamentals of ALD, and discuss the current
research progress about ALD of inorganic films for the synthesis of VACNTs and their hybrids through
existing publications.
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Figure 1. (Color online) Properties of atomic layer deposition (ALD)-grown films: (a) Uniform thickness
inside narrow holes [41]. (Copyright 2007 Electrochemical Society, Inc.) Adapted with permission from
Electrochemical Society. Permission to reuse must be obtained from the copyright holder. (b) Atomic
level control composition [42]. Adapted with permission from Elsevier. Copyright 2005 Elsevier.

The structure of this review is organized in the following manner. Firstly, the significance of ALD is
introduced for the growth of VACNTs on nonplanar surface and the synthesis of core-sheath-structured
VACNT–inorganic hybrids in Section 1. In Section 2, the fundamentals of ALD are mentioned,
such as “ALD window”. In Section 3, ALD of catalyst thin films for the synthesis of VACNTs is
discussed. Finally, ALD for the inorganic coating of VACNTs is also discussed for the applications of
supercapacitors, solar cells, fuel cells, and sensors in Section 4.
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fraction of a monolayer may be achieved in each cycle, which is related to some factors, including 

Figure 2. (Color online) Number of publications per year with respect to ALD of inorganic films for the
synthesis of vertically aligned carbon nanotube arrays (VACNTs) and their hybrids in the last ten years.

2. Fundamentals of ALD

ALD can be defined as a film deposition technique that is based on the sequential use of
self-terminating reactions [43]. The basic principle of the ALD cycle is shown in Figure 3. First, the
precursors are adsorbed on the surface in the precursor feeding period, and the adsorption process is
theoretically self-limited. Second, the unadsorbed precursors are removed by a purge period using
N2 or Ar. After that, the reactants, such as H2, O2, and NH3, react with the adsorbed precursors
in the reactant feeding period, and a self-terminating reaction happens between them. Finally, the
remaining reactants and gaseous reaction by-products are removed by another purge period. Each
ALD cycle adds a given amount of material to the surface, which is referred to as the growth per
cycle (GPC) [43,44]. Generally, ALD cycles need be optimized to achieve deposition of a film with the
desired thickness [43]. The self-limiting adsorption and reaction show that ALD is a surface-controlled
process, and the GPC is usually measured to confirm its self-limiting growth as a function of precursor
and reactant feeding period. Because of the self-limiting behavior, ALD-grown films are pinhole-free,
have excellent conformality, and are uniform with atomic scale precision [41,42].
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Theoretically, the alternating purging is almost distinctive as the self-limiting growth mechanism
of one monolayer in the ALD process [43]. However, in the vast majority of cases, only a fraction of a
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monolayer may be achieved in each cycle, which is related to some factors, including physisorbed
precursors, steric hindrance between the ligands, limitations of the activation energy of surface reactions,
and decomposition and desorption of surface species [45–51]. Among the parameters available in
controlling these factors as mentioned above, the deposition temperature is most important in the
ALD process. Generally, “ALD window” can be defined as a temperature range where the GPC is
nearly constant, allowing for reliable and repeatable results despite slight temperature variation, as
shown in Figure 4 [43,52–54]. As shown in region 1 of Figure 4, GPC decreases as the deposition
temperature increases due to the physisorption of precursors. As a result, precursors condense, and
their adsorption forms multilayers [55,56]. Generally, adsorption can be divided into two general
classes based on the strength of the interaction between the adsorbing molecules and the solid surface.
One class is physisorption (i.e., physical adsorption), and the other is chemisorption (i.e., chemical
adsorption) [57,58]. In general, chemisorption involves the making and optional breaking of chemical
bonds between the adsorbing molecules and the surface [59]. Therefore, the surface only accepts
one layer, and adsorption forms a monolayer of the adsorbed molecules. However, physisorption
originates from weak interactions (van der Waals force), and minimal changes typically occur in the
structure of the adsorbing molecules [60]. With physisorption, the interactions are not specific to
the molecule/surface pair, so adsorption may form multilayers. Because of physisorption, ALD is
sometimes not self-limited to form a monolayer, but a multilayer forms in each cycle. In region 2,
GPC increases with increasing temperature, which can be explained by the reducing effect of the
steric hindrance of the precursor ligands or the activation of the reaction between precursors and
reactants [61–64]. Steric hindrance of the ligands can cause the ligands of the adsorbed molecules
(precursors) to shield part of the surface from being accessible to the other precursor molecules, which
limits the surface density of adsorbed precursors [65]. It may restrict the total number of adsorbed
precursors on the surface and limit the GPC of ALD films [45]. On the other hand, surface reactions may
not be activated between the adsorbed precursors and the reactants at the low deposition temperature,
which also limits the GPC [41]. In region 3, GPC increases as the temperature increases due to the
decomposition of precursors on their own during the ALD cycle. Decomposition of the surface species
may occur even at the minimum temperature required for the surface reactions, which makes the ALD
process not self-limiting and the process tends to CVD mode [43,66]. In region 4, GPC decreases with
increasing temperature due to desorption of the precursors on the surface [45]. Due to these effects,
the ideal model for ALD, the self-limiting growth mechanism of one monolayer, cannot always be
achieved in some ALD processes.
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3. ALD of Catalyst Thin Films for the Synthesis of VACNTs

Generally, the CVD method can be used to synthesize VACNTs on predefined sites of a patterned
substrate and has good control of the growth parameters, so it has been extensively used for the
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growth of VACNTs [67–72]. Uniform catalysts are critical to the growth of high-quality VACNTs on
substrates using CVD, especially for the growth of single-walled VACNTs [73]. Furthermore, there
are increasing demands for the growth of VACNTs on nonplanar substrates, so it is quite important
to achieve conformal catalysts on these 3D structures [16,74]. Currently, ALD has been widely used
to form uniform catalysts on planar and nonplanar structures for the growth of VACNTs due to its
atomic-level precision and excellent conformality.

Generally, there is a key requirement for growing single-walled VACNTs using extremely
small catalyst nanoparticles, typically approximately one to several nanometers [75]. Commonly, a
few monolayers of inorganic films are first deposited and subsequently annealed to form catalyst
nanoparticles [76,77]. However, uniform and reproducible deposition of such ultrathin films using
traditional PVD is challenging, with complications such as sputtering and evaporation. Recently, many
researchers have used ALD to form uniform and ultrathin catalyst films for the growth of single-walled
VACNTs [75,78]. In 2017, Thissen et al. used plasma-enhanced ALD (PE-ALD) to deposit a Co3O4

thin film using cobaltocene (CoCp2) and O2 [75]. After annealing in the H2/Ar flow, the Co3O4 film
was reduced to metallic Co catalyst nanoparticles. Finally, atmospheric pressure CVD (APCVD) was
applied to successfully synthesize the single-walled VACNTs using ethanol and H2. Tang et al. also
reported that single-walled VACNTs could grow directly on ALD Al2O3 catalyst nanoparticles [78]. A
1 nm Al2O3 film was deposited on a sapphire substrate by ALD using trimethylaluminum (TMA) and
H2O. After annealing at 1100 ◦C in air for 10 h, the Al2O3 film was converted to catalyst nanoparticles.
Finally, APCVD was used to successfully synthesize single-walled VACNTs using ethanol and H2.

Recently, for the synthesis of VACNTs on nonplanar substrates, floating catalyst chemical
vapor deposition (FC-CVD) has been widely used, and the catalyst nanoparticles directly formed
on 3D structures by the decomposition of catalyst precursors [21,79]. However, the sizes of
catalyst nanoparticles were difficult to control during the FC-CVD process. The nanoparticles
easily agglomerated into large particles, which generally resulted in large-diameter multiwalled
VACNTs with limited specific surface areas [21,80]. To overcome this obstacle, many researchers have
used ALD to deposit uniform and ultrathin catalyst films on nonplanar substrates. Subsequently,
uniform catalyst nanoparticles could be achieved with the annealing process for the growth of VACNTs
on these substrates [80,81]. In 2010, Zhou et al. used ALD to deposit an Fe2O3 film on 3D quartz fibers
using acetylacetonate (Fe(acac)3) and ozone (O3) [80]. After deposition, the Fe2O3 film was transferred
into the CVD chamber and reduced to Fe catalyst nanoparticles with annealing under the protection of
Ar and H2. Finally, C2H4 and CO2 were introduced into the chamber, and the multiwalled VACNTs
grew radially and self-organized into leaf-like structures on quartz fibers [80]. Recently, Chen et al.
used ALD to deposit iron oxide films on a porous alumina (Al2O3) foam using tert-butylferrocene
(C14H18Fe) and O3 [81]. Generally, Al2O3 foams were 3D structures and contained interconnected
open pores, as shown in Figure 5a. To grow the VACNTs at the top and inside surface of the pores,
ALD was used to deposit iron oxide films on both the top and inside of the foam surface. After that, the
samples were subjected to annealing under H2 atmosphere, and the iron oxide films were converted to
Fe catalyst nanoparticles. Finally, low-pressure CVD (LPCVD) was used to successfully synthesize the
VACNTs on whole surfaces of the porous Al2O3 foam using acetylene (C2H2) and H2, as shown in
Figure 5b,c. Figure 5d shows that the VACNTs were double-walled inside the foam, similar to those
grown on planar Al2O3 substrates [81].
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4. ALD for the Inorganic Coating of VACNTs

Recently, VACNT–inorganic hybrids have attracted much attention due to their potential
applications, such as supercapacitors, solar cells, fuel cells, and sensors [82,83]. Compared to
the individual constituents, the properties of VACNT–inorganic hybrids, such as the optical and
electrical properties, could apparently be enhanced [84]. However, it was challenging to deposit
inorganic thin films on VACNTs due to their complex surface and topology [32]. Theoretically, due to
chemically inert graphitic surfaces of the pristine VACNTs, no bonding sites could be supplied for the
nucleation of inorganic films, which prevented the conformal coating of VACNTs [85–90]. In practice,
however, there was a sufficient density of surface defect sites of the CVD-grown VACNTs, and these
surface defect sites allowed nucleation of the inorganic films along the surface of the VACNTs [32].
The inorganic film then grew from these nucleation sites and finally merged to form a continuous
film [91–93]. However, to reach a state of complete coverage, a relatively large number of ALD cycles
were required, which depended on the density of defect sites. Generally, 50–100 ALD cycles were
required for the deposition of a conformal inorganic film on CVD-grown VACNTs [32]. Second, the
vertically aligned nature of the VACNTs also presented a challenge for achieving conformal and
uniform inorganic films on them [32]. As shown in Figure 3, VACNTs had high aspect ratios and large
surface areas, and in high surface area structures, such a high aspect ratio requires higher precursor
dosing, for reaching the saturation of a larger surface. In parallel, high aspect ratio structures demand
(i) longer diffusion times to attain saturation of the whole surface and thus uniform coating; and (ii)
longer purging times to ensure the proper elimination from the ALD chamber of unreacted precursor
molecules and by-products to avoid any undesirable gas reaction between the precursors [41].

In the last decade, many researchers have focused on the deposition of uniform and conformal
inorganic films on VACNTs [31,83,94]. In 2010, Li et al. directly used ALD to deposit continuous and
uniform ZnO thin films on multiwalled VACNTs using diethylzinc (Zn(C2H5)2, DEZ) and H2O [83].
The deposited ZnO films had good crystalline quality, and VACNT–inorganic hybrids were successfully
synthesized. In 2011, Min et al. also directly used ALD to form crystalline ZnO nanoparticles on
single-walled VACNTs using DEZ and H2O [94]. The nanoparticles were fairly spherical, and their
size was considerably uniform [94]. Although inorganic films could be formed directly on VACNTs in
some cases, the defect density was relatively high on the walls of VACNTs, which acted as nucleation
sites for the deposition of inorganic films [87,95–97]. However, VACNTs with large numbers of defects
are highly undesirable for many applications because the high defect density limits their physical
properties [31]. Although VACNTs with high purity and a low defect density could be synthesized,
their surfaces were nonreactive and chemically inert toward the ALD precursor molecules, which
could not readily nucleate the growth of conformal organic thin films [98,99]. This resulted in sparse
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nucleation and the development of a bead-like structure on the surface of VACNTs instead of a uniform
coating [100]. To overcome this issue, covalent and noncovalent functionalization processes have
generally been developed to promote interactions between the surface of VACNTs and precursor
molecules [31,101]. In 2014, Stano et al. successfully deposited conformal alumina (Al2O3) films on
functionalized multiwalled VACNTs by ALD using trimethylaluminum ((CH3)3Al, TMA) and H2O [31].
Before the deposition of the Al2O3 films, the surfaces of the VACNTs were modified through some
posttreatments, such as pyrolytic carbon deposition, high-temperature thermal annealing, and oxygen
plasma functionalization [31]. The post-treatments apparently increased the defect density on the walls
of the VACNTs, and core-sheath-structured VACNT-Al2O3 hybrids were achieved. Compared with the
pristine VACNTs, the hybrids had better compressive properties and thermal stability to oxidation. In
2017, Li et al. also used ALD to deposit conformal TiO2 films on functionalized multiwalled VACNTs
using tetrakis(dimethylamino)titanium (Ti(N(CH3)2)4, TDMAT) and H2O [101]. Many hydroxyl
(>COH) and carboxyl (-COOH) groups attached to the surface of VACNTs could serve as nucleation
sites for the subsequent TiO2 deposition [102,103]. The core-sheath-structured VACNT-TiO2 hybrids
were successfully achieved using ALD. Compared with pristine VACNTs, the hybrid structures had
tensile strengths that varied slightly, but their electrical conductivity was reduced by 28.3% with 715
ALD cycles [101]. Generally, besides the conformality of deposited inorganic films on VACNTs, their
electrical properties are also critical, such as electrical conductivity. To further improve the electrical
conductivity of inorganic films, some reactive gas can be used to reduce the impurities in the deposited
films, such as carbon. Therefore, ALD of high-purity and conformal inorganic films on VACNTs is
supposed to be developed in the future.

4.1. Supercapacitors

According to different charge storage mechanisms, there are mainly two kinds of supercapacitors,
electrical double layer capacitors (EDLCs) and pseudocapacitors [104]. EDLCs store electrical charges
at the electrode–electrolyte interface, and the number of ions gathering at the surface is proportional to
the surface area of the electrodes [105–107]. Therefore, the energy storage capabilities of electrodes
can be increased by increasing the electrode surface area, which were commonly achieved by using
high-surface-area materials with high intrinsic capacitances, such as VACNTs, porous carbon, and
activated carbon [108,109]. Compared with these materials, the VACNTs had better capacitive
performances, higher specific areas, higher life-cycle stability, and more uniform pore sizes that
simplified the choice of electrolyte species [110–112]. For pseudocapacitors, charge storage is based
on charge transfer between the electrode and electrolyte, and their charge storage is achieved by a
faradaic redox reaction at the surfaces of the electrodes [104,113]. If these two mechanisms occur at the
same time, the charge storage capacity of the supercapacitor could be dramatically increased, so both
large-surface-area electrodes and highly active pseudocapacitive materials have been used to achieve
high supercapacitor performance [113].

Recently, many core-sheath-structured VACNT–inorganic hybrids have already been developed
to enhance the charge storage capacity of supercapacitors [104,113–115]. In 2011, Pint et al. used
ALD to deposit conformal Al2O3 and Al-doped ZnO (AZO) films on functionalized single-walled
VACNTs for the fabrication of supercapacitors [114]. TMA and H2O were used for ALD of Al2O3 films
as the precursors and reactants, respectively. AZO films were formed by using alternating layers of
Al2O3 and ZnO that were synthesized by DEZ and H2O. Core-sheath-structured AZO/Al2O3/VACNT
hybrids were successfully achieved, and the developed supercapacitor architectures have much
higher energy densities with similar power densities, comparable to conventional solid-state capacitor
devices [114]. In 2015, Fiorentino et al. used ALD to directly form conformal Al2O3 and titanium
nitride (TiN) layers on multiwalled VACNTs, and core-sheath-structured TiN/Al2O3/VACNT hybrids
were synthesized to enhance the supercapacitor performances [104]. TMA and H2O were used for
ALD of Al2O3, and TiCl4 and NH3 were used for ALD of TiN. Compared to the capacitance of a
planar device with the same footprint, the hybrids increased the effective capacitance by a factor of



Coatings 2019, 9, 806 8 of 17

4.2–5 [104]. In 2015, Fisher et al. applied ALD to directly deposit conformal and uniform titanium
oxide (TiO2) on multiwalled VACNTs using TDMAT and H2O [115]. The core-sheath-structured
TiO2/VACNT hybrids introduced pseudocapacitive charge storage properties to the electrodes, which
utilized both of the charge storing mechanisms mentioned above. The hybrids apparently improved
the performances of the supercapacitors with an improvement in the specific capacitance, power,
and energy [115]. In 2015, Warren et al. used ALD to directly deposit conformal ruthenium oxide
(RuOx) on VACNTs using bis(ethylcyclopentadienyl)ruthenium(II) (Ru(EtCp)2) and oxygen (O2) [116].
Core-sheath-structured RuOx/VACNT hybrids were successfully synthesized, which had fast, reversible
redox reactions and exceptional life cycle performance. Compared with bare VACNT electrodes,
the hybrids achieved higher specific capacitances [116]. In 2016, Kao et al. used PEALD to form
conformal TiN films on mutliwalled VACNTs using TDMAT and N2, as shown in Figure 6 [113]. After
that, the surface layer of TiN oxidized and formed a native oxide layer of TiO2-xNx, which had a
high nitrogen concentration and a large number of oxygen vacancies for enhancing energy storage
capabilities through pseudocapacitance. The storage and release of electrical charges occurred by
adsorption and desorption of charges on the surface of TiN and oxidation of the surface layer [113].
The core-sheath-structured TiO2−xNx/TiN/VACNT hybrids increased the capacitance by increasing
the surface area and by the pseudocapacitive effect, and over 500% enhancement of capacitance was
achieved compared with that of the bare VACNT electrodes [113]. Therefore, the core-sheath-structured
VACNT–inorganic hybrids are promising to be the electrodes of the supercapacitors, and largely
enhance their charge storage capacity.
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4.2. Solar Cells

In the past decade, many researchers have focused on the development of devices that convert
sunlight into usable sources of energy and the improvement of solar cell performance [117,118]. 3D
architectures have been widely used to enhance the carrier collection efficiency and photo management
of solar devices [118–121]. The overall conversion efficiency of these materials could be improved by
orthogonalizing the light absorption and carrier collection processes, reducing surface reflectance, and
enhancing absorption [122]. Generally, 3D solar devices have been fabricated using textured substrates
and/or back-contacts followed by the deposition of thin films [123]. Currently, VACNTs are widely used
for the back-contacts of 3D solar devices due to their high surface area, excellent electrical properties,
and good catalytic properties [124,125]. Some researchers have also focused on the fabrication of
VACNT–inorganic hybrids to improve the performance of solar cells [126,127]. In 2011, Pint et al. used
ALD to deposit conformal TiO2 films on functionalized and texturized VACNTs using titanium(IV)
isopropoxide (Ti(OCH(CH3)2)4, TTIP) and H2O, as shown in Figure 7a [126]. Core-sheath-structured
VACNT-TiO2 hybrids were successfully fabricated. As shown in Figure 7b, the high-aspect-ratio
structurally texturized VACNT electrodes had a semiconductor absorber with a normal vector oriented
at some angle larger than 60◦. The effective thickness of the semiconductor was significantly greater
than the actual physical thickness, and more photons could be absorbed closer to a point where they
could be collected [126]. The short circuit current density (JSC) for the TiO2/VACNT solar cell was 3



Coatings 2019, 9, 806 9 of 17

times higher than that of the planar counterpart, which could be explained by a combination of reduced
reflectance, enhanced adsorption due to an increased effective optical path length, and enhanced carrier
collection efficiency [126]. In 2019, Yun et al. also used ALD to directly deposit Ru films on multiwalled
VACNTs using Ru(EtCp)2 and O2 [127]. Unlike the core-sheath structure, Ru films directly connected
VACNTs in the top-surface region by acting as their bridges without destroying their microporous
structure. The results showed that the VACNT-Ru hybrids could apparently decrease the resistance of
as-synthesized VACNTs, which improved the performance of the prepared solar cells [127]. Compared
with the traditional solar cells, VACNTs-based 3D solar devices are very likely to be used for the
improvement of the overall conversion efficiency.
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4.3. Fuel Cells

Fuel cells provide an efficient route for the conversion of chemically stored energy into electrical
energy, and fuel cell electrocatalysts are critical to reduce overpotential losses due to hydrogen oxidation
or oxygen reduction reactions at the anode and cathode [128,129]. Electrocatalysts should have high
catalytic activity, large surface areas, high electrical conductivity, good corrosion resistance, and
durability [128]. Generally, VACNTs have high conductivity, high corrosion resistance, and large surface
areas with controllable aspect ratios, making them very suitable for catalyst support materials [130–132].
Recently, some VACNT–inorganic hybrids were developed to improve the performance of fuel
cells [129]. In 2012, Dameron et al. used ALD to deposit uniform platinum (Pt) nanoparticles/films on
functionalized multiwalled VACNTs using trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3)
and O2, as shown in Figure 8 [129]. Before the deposition of Pt, the surfaces of the VACNTs were
functionalized using the plasma of O2, which created new oxygen-incorporated nucleation sites that
acted as chemical footholds for surface oxidation of the Pt precursors during ALD growth [129]. As a
result, the surface functionalization apparently improved the uniformity of the Pt coating along the
length of VACNTs within the aligned arrays and finally affected the performances of fuel cells toward
the oxygen reduction reaction [129]. Therefore, the core-sheath-structured VACNT–inorganic hybrids
are promising for use in fuel cells for the reduction of their overpotential losses.Coatings 2019, 9, 806 10 of 17 
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4.4. Sensors

For the detection and identification of target chemical and biological agents, sensors have
been widely used in environmental monitoring, threat detection, and clinical diagnostics [133–137].
Generally, individual sensing units were set on a planar substrate, but two-dimensional (2D) structures
severely limited access of target molecules to the sensing elements [138]. Currently, a nanoscale
3D architecture has also been developed for the fabrication of highly sensitive and rapid sensor
responses [138]. In 2012, Zhao et al. used ALD to directly deposit Al2O3 films on VACNTs for the
fabrication of VACNT-based chemical sensors, and the Al2O3 films prevented potential shortages
between the inner and outer coax electrodes, as shown in Figure 9 [138]. The coaxial units were
mechanically polished and allowed access to the p-Al2O3 for target molecules, which included the
VACNTs, alumina coatings by ALD (a-Al2O3) and sputtering (p-Al2O3), and aluminum (Al) coating
by sputtering, and were ultimately supported by SU8 polymers. From Figure 8, we can also see that
the outer (Al) and inner (VACNTs) coax conductors formed nanocoaxial cables whose equivalent
circuit was a resistor (R) and capacitor (C) connected in parallel [138]. VACNTs were connected
to a bottom titanium (Ti) film to form electrode 1, and the outer Al coating formed electrode 2. In
contrast to a-Al2O3, p-Al2O3 could capture chemical molecules by chemiphysical adsorption, leading
to changes in the sensor impedance as well as its components, R and C [138]. Compared with 2D
planar structures, 3D structural sensors enabled rapid access of target molecules to the active sensing
elements, and the dense array yielded a multiplicative effect on the signal amplitude [138]. Thus, the
core-sheath-structured VACNT–inorganic hybrids are very suitable for the fabrication of sensors, and
can largely improve their sensitivity.
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5. Conclusions

ALD involves self-limited behavior, which can deposit uniform and conformal inorganic films
on a high-aspect-ratio 3D structure with atomic scale precision. It is very suitable for the conformal
deposition of catalysts for the growth of VACNTs on 3D structures and uniform coating of inorganic
films on VACNTs to achieve core-sheath-structured VACNT–inorganic hybrids. Due to the complex
topology and surface of VACNTs, it generally takes a long time to deposit uniform inorganic films
on them, and occasionally, surface functionalization processes are also required to make reactive
surface groups available, which could assist in chemisorbing the molecules and serve as nucleation
sites for the subsequent deposition on VACNTs. For the core-sheath-structured VACNT–inorganic
hybrids, they apparently enhance the charge storage capacity of supercapacitors, overall conversion
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efficiency of solar cells, sensitivity of sensors, and reduce the overpotential losses of fuel cells. Due
to the outstanding properties of VACNTs, the ALD-elaborated VACNT–inorganic hybrids showed
interesting performances in many potential applications, such as supercapacitors, solar cells, fuel cells,
and sensors.
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