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Abstract: In present learning, surface protection layer progression of a third-grade fluid (TGF) is
examined. Fluid transport within the micro passage made by the firm bladehas beenpresented.
Main system of equations of fluidity have been narrated and streamlined by means of lubrication
approximation theory (LAT). Here, approximate solutions of velocity, pressure gradient, and coating
depth have been presented. Results of coating and layer forming have been tabulated and discussed
as well. It is observed that the transport properties of third-order fluid delivers an instrument to
regulate flow velocity, pressure, and affect the final coated region.

Keywords: optimal homotopy asymptotic method; non-newtonian fluid; coating; lubrication
approximation

1. Introduction

Third-grade fluids fit into the category of well-ordered flowing-particles. These have thermo-
viscoelastic properties and are amongst the non-Newtonian fluids (NNF) originated from the viscous
constituents and elastic materials. Some of their specimens are polymeric-paints, DNA fluids,
bio-organic solutions, and other synthetic materials. Polymeric fluids are practically ubiquitously
exist and are used as thin layer deposition materials. Although these organic solutions and colloids
demonstrate thermo-viscoelastic behavior. For these coating systems, applied stress takes into the
mathematical relationship that is not simply existing in a single equation as described in [1–5].
In this work, Carapau et al. [2] based constitutive model for a third-order fluids is presented. In the
present order, beta (β) is taken as a third-order type material factor. Phenomenaof shear thickening
or shear thinning are largely governed by its mathematical assessment. If material factor beta is
larger than zero, the physical system performs similar to a shear thickening substance. In caseswhere
thematerial factor beta is a smaller than zero, the physical system acts similar to shear thinning
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substance. Liquid properties of blade surface protection coatings are mesmerizing, mainly owing
to significant engineering solicitations. Application of coating to blade is a progression through
which polymeric-particle is coated uninterruptedly to the non-stationery web, and micro-coating
thickness is applied on the inflexible part. Blade coatings are largely castoff in broadsheet coats,
as it delivers promising evenness to the broadsheets. Other solicitations contain metal oxide based
coatings on magnetic recording or adhesive tape, in addition to, suspension glaze on photo layers.
Many researchers [2–7] investigated coating flows of Newtonian fluids. Most liquids castoff in
manufacturing and mechanical applications have non-linear mathematical behaviors between applied
pressure and induced deformation. Most of surface protection coatings belong to NNF. Non-Newtonian
category liquids are categorized bestowing to their constitutive models. Applied pressure or stress in
case of these liquids is a non-linear strain, and proceeding for the answers of these models isnot so
straightforward. This is applicable and correct for both exact and for approximate results. It has been
found that a second-order liquids do not exhibit the shear thinning or thickening tendency, TGF can
exhbit such occurrences. TGF model characterizes inconclusively effort for all-inclusive explanation as
NNF presentationowing to the prominence, here we deliberate the TGF based surafce coating model.
Basics of thermionics and stability of TGF have been given in [8].

Some readings about research work in coating efficaciously indulge the non-linear work and
their comparisons in leading TGF [8–18]. Sullivan et al [12] premeditated the coating depth in surface
coating size/width of TGF by implementing lubrication estimates with numerical and investigational
outcomes for NNF. The influence of elasto-plastic material of blade surface protector with weaker
viscoelastic fluids has been investigated as well in [13]. The performance of power-law for liquid in
surface protector thin film-geometry has been studied with its behaviorfor pressure dissemination [14].

Hwang [15] and Dien et al. [16] also premeditated NNF in the blade thin film and projected
estimated stream studies, Maxwellian flow model in surface protection layer, and studied the fragile
viscoelastic performance. This investigation articulates the statement that viscoelastic characteristics of
TGF may affect pressure [17,18] so they espoused LAT and associated the modelling and investigational
outcomes. Current efforts on layer examination draw on [18–21]. Studies of Sajid et al. [19] has
motivated to study the TGF with non-Newtonian factors. Moreover, Ali et al. [21] figured the transport
properties for a diverse coating flow-design, and by comparable composite liquids. Here, the resolution
and objective of contemporary investigation is to originate the thin film making device for TGF and
to examine in what way the liquid characteristics influence the blade coating process. In this work,
optimal homotopy asymptotic method (OHAM) [20–28] based solution is presented. The manuscript
is categorized in four sections. In Section 2,the governing equation based upon the heat transfer
equation is formulated. In Section 3, computational remarks for solution based on OHAM are given.
The results are discussed in Section 4, narrating some cases as examples. Finally, in Section 5, the paper
is summarized.

2. Materials and Methods

A two-dimensional blade coater model is taken which is isothermal and steady-state, as expressed
in the Figure 1. The geometry comprises of a plane substrate at the level of s = 0, which travels with
fixed speed Ub in r−direction and a stiff blade with the blade suface asdescribed by s = hb(r). The stiff
blade with length Lb and the edges with heights A0 and A1 at r = 0 and r = Lb respectively, are held
fixed at an angle φ such that tan φ = A1−A0

Lb
. A gap originatedthrough a narrow channel within the

blade and non-stationary lower-surface to apply coating material on it, would be filled by dragging an
incompressible TGF due to non-Newtonian propoerty of fluid and that formulates a thin coating on
non stationary substrate.
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Figure 1. Blade coater geometry. 

LAT is manilydesignated for this flow based field. An NNF and incompressible TGF with 
elastic properties crawed in voids originated within narrow route with in unmovable blade and the 
movable substrate, and hence carved a homogeneous coating of width A on non-stationary surface. 
Principal models which administrate fluidity of NNF. Principle models which administrate stream 
of NNF involve the velocity profile 𝑉 = [𝑢(𝑟, 𝑠), 𝑣(𝑟, 𝑠)]  

where 𝑉  is the velocity vector. This study begins with the LAT based approach. Least gap at the nip 
from the web and the surface is insignificant as matched to web measurement. it would be expedient 
to presume a parallel flow. All-purpose liquid drive is principally in 𝑟 −track, although the liquid 
speed in s-direction is minor. Here, it is rational to adopt 𝑣 << 𝑢 and << . The fact that the 
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The Equation (1) clues to momentum equation in constituent formula as  dτd𝑠 − ∂𝑝𝜕𝑟 = 0, (2) 

Figure 1. Blade coater geometry.

LAT is manilydesignated for this flow based field. An NNF and incompressible TGF with elastic
properties crawed in voids originated within narrow route with in unmovable blade and the movable
substrate, and hence carved a homogeneous coating of width A on non-stationary surface. Principal
models which administrate fluidity of NNF. Principle models which administrate stream of NNF
involve the velocity profile

Vb = [u(r, s), v(r, s)]

where Vb is the velocity vector. This study begins with the LAT based approach. Least gap at the nip
from the web and the surface is insignificant as matched to web measurement. it would be expedient to
presume a parallel flow. All-purpose liquid drive is principally in r−track, although the liquid speed in
s-direction is minor. Here, it is rational to adopt v << u and ∂

∂r <<
∂
∂s . The fact that the divergence of Vb,

i.e., 5 ·Vb = 0 implies ∂u
∂r = 0 which implies Vb = [u(s), 0], fulfilling continuity equation, acceleration

portion of the momentum

ρ
dv
dt

= −5 p + divτ,

and new form is
5 p + divτ = 0, (1)

where ρ denotes the density, p is the pressure, and τ represents the extra tensor for the third grade fluid
which is

τ = µB1 + α1B2 + α2B2
2 + β1B3 + β2(B1B2 + B2B1) + β3

(
tr
(
B2

1

))
B1,

where µ is viscosity and α1 is the plasiticity, α2 is cross viscosity and β1, β2, β3 are material constants.
Also B1, B2, and B3 are Rivilin Erickson tensors. Here

B1 = (5Vb) + (5Vb)
T,

B2 =
d
dt

B1 + B1(5Vb) + (5Vb)
TB1,

B3 =
d
dt

B2 + B2(5Vb) + (5Vb)
TB2

The Equation (1) clues to momentum equation in constituent formula as

dτrs

ds
−
∂p
∂r

= 0, (2)



Coatings 2019, 9, 741 4 of 15

dτss

ds
−
∂p
∂s

= 0, (3)

where

τrs = τsr =
du
ds

+ 2(β2 + β3)
(du

ds

)3
, (4)

and

τss = (2α1 + α2)
(du

ds

)2
(5)

Now the generalized pressure P is given

P(r, s) = p(r, s) − (2α1 + α2)
(du

ds

)2
(6)

Using Equations (4)–(6), Equations (2) and (3) take the form

µ
d2u
ds2 + 2(β2 + β3)

d
ds

(du
ds

)3
=
∂P
∂r

. (7)

∂P
∂s

= 0. (8)

Equation (8) depicts that P depends on r alone. Thus, Equation (7)is written

µ
d2u
ds2 + 2β

d
ds

(du
ds

)3
=

dP
dr

(9)

where β = β2 + β3. In light of Physics, the boundary conditions are

u =

{
Ub at s = 0,

0 at s = hb(r).
(10)

For the governing equations which are dimensionless for the analysis of blade coating, consider
the following dimensionless variables

r∗ =
r

Lb
, s∗ =

s
Lb

, u∗ =
u

Ub
, P∗ =

pA2
0

µUbLb
, h̃b =

hb
A0

,

β∗ =
U2

bβ

µA0
, λ =

Qb
UbWbA0

. (11)

The dimensional form of the volumetric flow rate Qb is

Qb
Wb

=

∫ hb

0
uds,

where W is thickness of web. Dimensionless represntation is

λ =

∫ h̃b

0
uds. (12)

From above variables by neglecting the asterisks signs using Equation (11), the equation of motion
(9) with the boundary condition (10) is

d2u
ds2 + 2β

d
ds

(du
ds

)3
= Pr. (13)
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where Pr =
dP
dr .

3. OHAM Formulation

In the light of OHAM [22–30], the differential equation has the form

D(v(s)) + f (s) = 0, s ∈ Ω, (14)

where Ω refers to domain. Now in Equation (14), the operator D(v) is chosen as

D(v) = L(v) + N(v).

The construction in light of OHAM of an optimal homotopy is following

φ(s; q) : Ω × [0, 1]→ R

satisfying
(1− q)

{
L(φ(s; q)) + f (s)

}
−H(q)

{
D(φ(s; q)) + f (s)

}
= 0, (15)

where parameter q ∈ [0, 1] is called an embedding parameter, and

H(q) = qC1 + q2C2 + q3C3 + · · ·

is called an auxiliary function in optimal homotopy Equation (15), with properties that H(q) , 0 for
q , 0, H(0) = 0. Here the constants C1, C2, . . . are to be determined. Taylor’s series about parameter q
for expanding φ(s; q, Ci) to show estimated results are

φ(s; q, Ci) = v0(rb, t) +
∞∑

k=1

vk(s; Ci)qk, i = 1, 2, . . . (16)

It ca be observed that the series convergence in Equation (16) depends mainly upon the constants
C1, C2, . . .. If at q = 1, the series is convergent, then

v
∼
(s; Ci) = v0(s) +

∑
k≥1

vk(s; Ci). (17)

Substitution of Equation (17) into (14) gives following residual expression

R(s; Ci) = L( v(s; Ci)) + f (s) + N
(
v
∼
(s; Ci)

)
.

If R(s; Ci) = 0, then v
∼
(s; Ci) will give the exact solution. It does nothappen in general mostly in case

of nonlinear problems. Using the method as mentioned in [20–28]. One can determine the values of
constants Ci, i = 1, 2, . . . , m.

4. Solution and Main Results

In this section, we will apply the OHAM to nonlinear ordinary differential Equation (13). According
to the OHAM, we can construct homotopy of Equation (13) as

(1− q)
[

d2u
ds2 − Pr

]
−

(
qC1 + q2C2 + q3C3

)[d2µ

ds2 + 2β
d
ds

(du
ds

)3
− Pr

]
= 0. (18)

We consider u(s) as
u(s) = u0(s) + qu1(s) + q2u2(s) + q3u3(s). (19)
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Substituting u(s) from Equation (19) into Equation (18), and some simplifications and rearranging
based on powers of q−terms, we have

q 0 : u′′0 (s) − Pr = 0, u0(0) = 1, u0(1) = 0. (20)

q1 : C1Pr −C1u0
′′ (s) − 6βC1u0

′(s)2u0
′′ (s) + Pr − u0

′′ (s) + u1
′′ (s),

u1(0) = 0, u1(1) = 0.
(21)

q2 : C2Pr −C2u0
′′ (s) − 6βC1u′0(s)

2u1
′′ (s) − 12βC1u′0(s)u′′ 0(s)u′1(s)

−6βC2u′0(s)
2u′′ 0(s) −C1u′′ 1(s) − u′′ 1(s) + u′′ 2(s),

u2(0) = 0, u2(1) = 0.
(22)

q3 : C3Pr − 6βC1u′′ 0(s)u′1(s)
2
−C3u0

′′ (s) − 6βC2u0
′(s)2u1

′′ (s)
−12βC1u′0(s)u′1(s)u′′ 1(s) − 6βC1u′0(s)

2u′′ 2(s) − 12βC2u′0(s)u′′ 0(s)u′1(s
−12βC1u′0(s)u′′ 0(s)u′2(s) − 6βC3u′0(s)

2u′′ 0(s) −C2u′′ 1(s) −C1u′′ 2(s)
−u′′ 2(s) + u′′ 3(s), u3(0) = 0, u3(1) = 0.

(23)

Solving the Equations (20)–(23)with boundary conditions, we have

u0(r) =
1
2
(s− 1)(sPr − 2). (24)

u1 (r) =
1
4
βC1Pr(s− 1)s

(
P2

(
2s2
− 2s + 1

)
+ Pr(4− 8s) + 12

)
. (25)

u2(r) = 1
8βPr(s− 1)s[2C1

(
P2

r

(
2s2
− 2s + 1

)
+ Pr(4− 8s) + 12

)
+2C2

(
P2

r

(
2s2
− 2s + 1

)
+ Pr(4− 8s) + 12

)
+ C2

1

{
24(6β+ 1) + βP4

r(
16s4
− 32s3 + 28s2

− 12s + 3
)
− 4βP3

r

(
24s3
− 36s2 + 22s− 5

)
+P2

r

(
96β+ 4(60β+ 1)s2

− 4(60β+ 1)s + 2
)
− 8(18β+ 1)Pr(2s−)

}
].

(26)

With q = 1, Equation (19) becomes

u(s) = u0(s) + u1(s) + u2(s) + u3(s). (27)

Substituting values from Equations (24)–(26) in Equation (27), we get the first-order approximate
solution of (13) as follows

u(r) =
1
4
(s− 1)

{
βC1sPr

(
P2

r

(
2s2
− 2s + 1

)
+ Pr(4− 8s) + 12

)
+ 2sPr − 4

}
. (28)

For finding value of the constant C1 shown in Equation (28), using the method of least squares as
described in [17–19] implies that setting

∂J
∂C1

= 0 (29)

gives the values of constant C1, where

J =
∫ 1

0
R2ds (30)

and here R for the Equation (13) of motion is

R =
d2µ

ds2 + 2β
d
ds

(
du
ds

)
3
− Pr
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after substituting the values, we get

R = 1
16 Pr{3β(3βC1

(
Pr(2s− 1) − 2)2 + 2

)
{βC1Pr(P2

r (2s− 1)3

−4Pr
(
6s2
− 6s + 1

)
+ 24s− 12) + Pr(4s− 2) − 4

}2
+ 8(βC1(

P2
r

(
6s2
− 4s + 1

)
+ Pr(4− 16s) + 12

)
+ 2)

+16βC1Pr(s− 1)(Pr(3s− 1) − 4) − 16
}
.

(31)

Thus with the choice of β = 0.03 and Pr = 2, the Equation (30) gives

J = 0.0000515515C6
1 + 0.0014886C5

1 + 0.0245795C4
1 + 0.218005C3

1
+1.35459C2

1 + 1.41597C1 + 0.41472.

Finally using Equation (29), we get the following values of C1

{{C1 → −7.81945− 7.39559i}, {C1 → −7.81945 + 7.39559i},

{C1 → −3.91078− 7.09001i}, {C1 → −3.91078 + 7.09001i},

{C1 → −0.602773}}.

Choosing the real value of C1, i.e., C1 = −0.6027727875127079; similarly for different values of β,
the values of constant C1 are shown in the Table 1.

Table 1. Values of β and C1.

β and C1

β C1

0.03 −0.6027727875127079

0.04 −0.5367678225757836

0.05 0.4849617709110862

0.06 −0.44305755184121864

Corresponding these values, the values of u are calculated as shown in the Equations (32)–(35).

u(β=0.03) = 1 + s[s
{
s(0.289331− 0.0723327s) + 0.566004

}
− 1.783], (32)

u(β=0.04) = 1 + s[s
{
s(0.343531− 0.0858829s) + 0.484703

}
− 1.74235], (33)

u(β=0.05) = 1 + s[s
{
s(0.387969− 0.0969924s) + 0.418046

}
− 1.70902], (34)

u(β=0.06) = 1 + s[s
{
s(0.425335− 0.106334s) + 0.361997

}
− 1.681]. (35)

Figure 2 shows the values of u at different values of β. Also, Figure 3 gives the nature of u at
different values of β and s.
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Now using from Equation (12)

λ =

∫
u ds

gives

λ =
1

120
s[3βC1sPr{P2

r

(
4s3
− 10s2 + 10s− 5

)
− 20Pr(s− 1)2 +40s− 60}+ 10

(
2s2Pr − 3(Pr + 2)s + 12

)
].

For fixed value of β = 0.03 and for different values of Pr, the values of constant C1 are shown in
the Table 2.
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Table 2. Values of Pr and C1.

For Fixed β = 0.03

Pr C1

1 −0.7389837541589072

1.5 −0.6670404279185341

2 −0.6027727875127079

2.5 −0.5456887819699325

Corresponding to these values, the values of λ are calculated as shown in the Equations (36)–(39).

λ(Pr=1) =
1

120
s{10

(
2s2
− 9s + 12

)
− 0.0665085s(4s3

− 10s2 + 50s−20
(
s− 1)2

− 65
)}

. (36)

λ(Pr=1.5) =
1

120 s{10
(
3.s2
− 10.5s + 12

)
− 0.0900505s(2.25(4s3

− 10s2

+10s− 5) − 30
(
s− 1)2 + 40s− 60

)}
.

(37)

λ(Pr=2) =
1

120 s{10
(
4s2
− 12s + 12

)
− 0.108499s(4(4s3

− 10s2

+10s− 5) − 40
(
s− 1)2 + 40s− 60

)}
.

(38)

λ(Pr=2.5) =
1

120 s{10
(
5.s2
− 13.5s + 12

)
− 0.12278s(6.25(4s3

− 10s2

+10s− 5) − 50
(
s− 1)2 + 40s− 60

)}
.

(39)

Figure 4 shows the values of λ at different values of Pr. Also, Figure 5 gives the nature of λ at
different values of Pr and s.
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For fixed value of β = 0.03 and for different values of Pr, the values of constant C1 are shown in
the Table 2. the values of u are calculated as shown in the Equations (40)–(43).

u(Pr=1) = 1 + s[s
{
s(0.0665085− 0.0110848s) + 0.350356

}
− 1.40578], (40)

u(Pr=1.5) = 1 + s[s
{
s(0.157588− 0.0337689s) + 0.47422

}
− 1.59804], (41)

u(Pr=2) = 1 + s[s
{
s(0.289331− 0.0723327s) + 0.566004

}
− 1.783], (42)

u(Pr=2.5) = 1 + s[s
{
s(0.460425− 0.127896s) + 0.628426

}
− 1.96096]. (43)

Figure 6 shows the values of u at different values of Pr. Also, Figure 7 gives the nature of u at
different values of Pr and s.
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The Equation (6) for the stress, after some manipulation becomes in dimensionless form as

p(r, s) = Pr(r, s) + α

(du
ds

)2
(44)

which is as
p = α[ 1

4 (s− 1){βC1Pr
(
P2

r

(
2s2
− 2y + 1

)
+ Pr(4− 8s) + 12

)
+βC1sPr

(
P2

r (4s− 2) − 8Pr
)
+ 2Pr

}
+ 1

4 (βC1sPr
(
P2

r

(
2s2
− 2s + 1

)
+Pr(4− 8s) + 12) + 2sPr − 4)]2 + Pr.

For fixed values of β = 0.03, Pr = 2 in

u =
1
4
(s− 1)

{
βC1sPr

(
P2

r

(
2s2
− 2s + 1

)
+ Pr(4− 8s) + 12

)
+ 2sPr − 4

}
;

give the value of constant C1 = −0.6027727875127079, then for different values of α, the values of stress
p are calculated as shown in the Equations (45)–(48).

p(α=0.2) = 2 + 0.2[ 1
4 (s− 1){−0.0361664

(
4
(
2s2
− 2s + 1

)
+ 2(4− 8s) + 12

)
−0.0361664s(4(4s− 2) − 16) + 4}+ 1

4 {−0.0361664(4
(
2s2
− 2s + 1

)
+2(4− 8s) + 12)s + 4s− 4}]2.

(45)

p(α=0.3) = 2 + 0.3[ 1
4 (s− 1){−0.0361664

(
4
(
2s2
− 2s + 1

)
+ 2(4− 8s) + 12

)
−0.0361664s(4(4s− 2) − 16) + 4}+ 1

4 {−0.0361664
(
4
(
2s2
− 2s + 1

)
+2(4− 8s) + 12)s + 4s− 4}]2.

(46)

p(α=0.4) = 2 + 0.4[ 1
4 (s− 1){−0.0361664

(
4
(
2s2
− 2s + 1

)
+ 2(4− 8s) + 12

)
−0.0361664s(4(4s− 2) − 16) + 4}+ 1

4 {−0.0361664
(
4
(
2s2
− 2s + 1

)
+2(4− 8s) + 12)s + 4s− 4}]2.

(47)
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p(α=0.5) = 2 + 0.5[ 1
4 (s− 1){−0.0361664

(
4
(
2s2
− 2s + 1

)
+ 2(4− 8s) + 12

)
−0.0361664s(4(4s− 2) − 16) + 4}+ 1

4 {−0.0361664(4
(
2s2
− 2s + 1

)
+2(4− 8s) + 12)s + 4s− 4}]2.

(48)

Figure 8 shows the values of stress p at different values of α. Also the Figure 9 gives the nature of
p at different values of α and s. Stratagems the normal stress properties at altered locations of TGF
coating progression in dissimilar standards it is perceived that strain upsurges with growing α for
constant β. These results are in accordance with [29–38].Coatings-619674 12 of 14 
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Figure 9 shows normal stress at different values of α. Stratagems the normal stress properties at
altered locations of TGF coating process in various perspective. It is perceived that strain is increasing
through the area of coating with growing α. Figures 2–9 provide a TGF implementation of the blade
thin film and in what way the dissimilar restrictions and physical constraints. Some results are
represented in the form of graphs, though results are given in a tabularized arrangement.
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Figures 2–7 are the graphical representation of velocity for dissimilar non-Newtonian fluids’
parameters. These graphical representations designate that the velocity contours is the combination
of Poiseuille and Couette kind of flow streams. In graphical representations of Figures 2, 5 and 6,
velocity contours reduce with enhancing NNF parameter. Upsurge in the NNF factor β resembles the
shear condensing consequence that rises the liquid viscidness and declines liquid speed as supported
by [37–43]. Figure 8 shows behavior of normal stresses at dissimilar values of α. Figure 9 shows
behavior of shear stresses at varying values of α and s. Results of Figures 2–5 obviously display β

upsurges the NNF character upsurges, i.e., the shear thickening escalates that decreases the liquid
flow rate.

5. Summary and Conclusions

In this work, TGF based coating model is investigated and its tranport behavior on the blade thin
film where the stream is lying within the inflexible edge and the movable web. This effort examines the
blade surface coating procedure for TGF. Lubrication approximation theory is employed to progress
the main mathematical model for the TGF in the thin and slim conduit. Estimated results based
on OHAM for velocities, pressure, and volumetric current rate. The thin film width, maximum
pressure, and normal stresses are also been studied comprehensively. Our results strongly show that a
third-order fluid performs as the surface coatings where the TGF transport is within inflexible blade
and non-stationary system. Lubrication theory is employed to mature the major equation for the TGF
in a thin conduit.
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