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Abstract: Thick thermal barrier coatings (TBCs) are the main choice in the aviation industry
due to their ability to handle elevated temperature exposure in turbines. However, the efficacy
of thick TBCs has not been adequate. This study presents a highly durable, thick top-coat
(TC) of Lanthanum–gadolinium–yttria stabilized zirconia (La–Gd–YSZ) on high-velocity oxygen
fuel (HVOF)-bond coat (HVOF-BC). Crack propagation was quantitatively assessed using a
three-dimensional (3D) measuring laser microscope due to higher reliability in calculating the
actual crack length of TBC. The findings revealed the HVOF-BC is highly durable with intact
structural composition, while the conventional TBC of atmospheric plasma spraying (APS) bond coat
(APS-BC) of the same composition and thickness with identical TC was detached at a crack-susceptible
zone. The significant enhancement in HVOF-BC is due to the low mixed-oxides growth rate in
thermally grown oxide (TGO) with a uniform and dense protective layer of stable Al2O3 which
reduces crack propagation. Meanwhile, the failure in APS-BC can be attributed to the high TGO
growth rate and thickness with segmented and unstable Al2O3. Furthermore, detrimental mixed
oxides such as spinel Ni(Cr,Al)2O4 and NiO lead to disastrous horizontal and compressive cracks.
To that end, we study the effect of TGO growth and crack propagation on HVOF-BC TBCs using
APS-BC TBCs as a reference.

Keywords: crack propagation; mixed oxides; thermally grown oxide; thermal oxidation; thick thermal
barrier coating

1. Introduction

Thermally sprayed coatings are often used to protect metallic components that suffer breakdown
from wear, corrosion or excessive heat load during service in thermally drastic environments [1]. These
coatings are widely used as a thermal barrier coating (TBC) applied on gas turbines and also in the
aeronautical and automotive industries [2]. Performance of gas turbines is enhanced significantly by
reducing the cooling or increasing the gas temperature during service. Hence, a thick protection layer
of top-coat (TC) for TBC is able to drop the temperature by up to 170 ◦C in a gas turbine system [3].
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The low-thermal conductivity in TBC causes low heat transfer from TC and achieves effective cooling
and reduces the surface temperature. A thickness of above 0.25 mm is considered as thick TC [4].

However, there is a trade-off between low substrate distress and high TBC distress [4]. Thick
TC promotes low substrate temperature on a big scale and prolongs substrate life. At the same time,
thicker TC may increase surface temperature during operation and exceeds the ceramic materials limit
at elevated temperatures [5], owing to the excessive growth of thermally grown oxide (TGO) at the
interface of the TC/bond coat and leading to detached TC from the bond coat (BC) [6]. In addition to
that, conventional, partially yttria stabilized zirconia (YSZ) TC has limited phase stability, reducing the
high-temperature capability leading to TBC early failure [7]. Therefore, TC and BC are identified as
important constituents in developing an effective TBC.

These shortcomings have initiated plenty of research on alternate ceramics to YSZ [7,8].
In particular, doping with rare earth zirconates in TC was found to control porosity and improve the
microstructure [7,9]. Lanthanum (La) is a rare earth material which has been introduced as dopant in
the TC shows a stable phase up to its melting temperature of 2295 ± 10 ◦C [10]. Mauer et al. reported
that La2O3·ZrO2 is best processed by atmospheric plasma spraying (APS) at a low power, where it
exhibited high durability due to the high fusion enthalpy of ~350 kJ mol−1 of La2O3 [10]. Composition
of La and gadolinium (Gd) shows great promise for TBC materials with low thermal conductivity, low
sintering rate and high thermal stability reaching around the melting point (2300 ◦C) [11]. Besides that,
rare earth phosphates such as LaPO4 in TC reported by Zhang et al. are highly resistant to corrosion
and possessed only a little detrimental effect on the coating microstructure [12].

BC is the most vital constituent in TBC as it strengthens the adhesion of the TC to the substrate and
acts as an oxidation and corrosion barrier to the superalloy. At elevated temperatures, oxygen diffusion
from TC towards BC through micro-cracks inside the TC oxidizes the BC and forms an oxidized scale
known as TGO [13–15]. TGO plays an important role in spallation and the lifetime of TBC. It acts
as a diffusion barrier to suppress the growth of other detrimental oxides during further oxidation in
service if a continuous scale of Al2O3 is formed on the BC. However, if an inconsistent layer of TGO
was grown on the BC, a cluster of oxides such as chromia ((Cr,Al)2O3), spinel (Ni(Cr,Al)2O4) and nickel
oxide (NiO) may grow along with it, leading to TBC failure. This is due to the separation of the ceramic
TC from the substrate [16–18]. The deposition method of MCrAlY on the BC is outlined as the main
reason behind the TBC failure.

MCrAlY coatings are typically deposited by electron beam physical vapor deposition, air plasma
spray (APS) and high-velocity oxygen fuel (HVOF) [19–21]. Li et al. stated that the durability of
TBC can be improved by changing the microstructure in the BC [22]. Greater thickness in TGO
of the traditional APS-BC was observed due to the presence of mixed oxides such as chromia,
spinel and nickel oxide. The results revealed that these mixed oxides deteriorate the durability
of TBCs. They also mentioned that the critical thickness of TGO corresponding to the change of
failure mode is around 5–6 µm [22]. Moreover, strength difference (compression and tension) in
TBC was studied in the previous literature [23]. The strength difference property was defined as
the significant difference between compressions and tensile strengths. They mentioned that TGO
thickening generates compressive growth stress and weakens the out-of-plane displacement of the
TGO layer [23]. Meanwhile, the tensile stress was distributed at the TC valley and BC peak regions,
which is near the interface defects [23].

However, despite the HVOF technique being costly, it has high adherence and corrosion resistance
with a continuous growth of the Al2O3 layer [24]. Thus, HVOF coating is dense, adherent and contains
less oxide with fewer voids and considerably reduces the penetration of oxygen into the TBC from
the existing micro-cracks at elevated temperatures. That the BC deposition technique has a strong
influence in producing an efficient TBC system is speculated.

Moreover, Nafsin et al. have studied the stability of Lanthanum–gadolinium–yttria stabilized
zirconia (La–Gd–YSZ) complex coating [25]. They found further increases in thermal stability, with
retaining the sphere shape and nanoscale crystallite size up to 1000 ◦C for at least 3 h, while at 1100 ◦C
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the spheres started necking but the spheres were still in shape [25]. In this work, we used higher
temperatures of 1200 and 1300 ◦C for the isothermal oxidation test on La–Gd–YSZ (Y-5 wt.%, Zr-65 wt.%
and a little amount of other rare earth elements; La-0.15 wt.% and Gd-0.1 wt.%) coating. This coating is
expected to increase thermal stability and reduce the formation cracks in the coating, hypothetically
allowing robust resistance to spallation even at extremely high temperatures in TBCs by taking into
account the method used for preparing the BC. To understand the effect of crack propagation in the
coating, two different spraying methods for BC, APS and HVOF were selected and used under different
temperatures. The present work demonstrates the feasibility of depositing highly durable HVOF-BC
and compares it with the conventional APS-BC on thick TBC. The identical thick TC is added with rare
earth elements such as La and Gd. Thus, the influence of TGO growth with mixed oxides and crack
propagation on HVOF-BC incorporating APS-BC as a reference in thick La–Gd–YSZ TBCs is studied.

2. Experimental Procedure

The samples were prepared by applying different deposition techniques for bond coats, whereas
an identical deposition technique was used for top-coats in each case. The ceramic TC consists of
Y-5 wt.%, Zr-65 wt.% and a little amount of other rare earth elements; La-0.15 wt.% and Gd-0.1
wt.% and is deposited via APS technique (Flame Spray Technologies B.V., Duiven, The Netherlands).
The parameters used in TC deposition using the APS method is shown in Table 1. The BC consists of
Ni–Cr–Al–Y elements produced by using APS and HVOF spraying systems (Flame Spray Technologies
B.V., Duiven, The Netherlands). The coatings were deposited on a Ni base superalloy, Nimonic 263
(Nim263). Both APS and HVOF used MP-100 with robot manioulation of 6-axes ABB IRB2400/16. The
gun used for APS technique is F4-MB Plasma Gun with 6 mm nozzle diameter. Meanwhile, HVOF
technique used JP5000 Liquid Fuel Gun.

Table 1. Parameters used for depositing top coat (TC) (Lanthanum–gadolinium–yttria stabilized
zirconia (La–Gd–YSZ)) via the atmospheric plasma spraying (APS) technique.

Parameter Unit La–Gd–YSZ TC

Arc Current Amps 575
Primary plasma gas, Nitrogen NLPM 35

Secondary plasma gas, Hydrogen NLPM 10
Carrier gas, Argon NLPM 3.0
Powder feed rate g/min 55
Spraying distance mm 90

Stirrer % of max speed 80
Spraying distance mm 250

A thermal oxidation test was performed at 1200 and 1300 ◦C for 1, 10, 100 and 300 h of oxidation
time with 150 ◦C of cooling air. These temperatures were selected to withstand higher temperatures
than the normal since the TC includes rare earth-YSZ. The samples were abbreviated as C1 (1200 ◦C; 1
h), C2 (1200 ◦C; 10 h), C3 (1200 ◦C; 100 h), C4 (1200 ◦C; 300 h), C5 (1300 ◦C; 1 h), C6 (1300 ◦C; 10 h), C7
(1300 ◦C; 100 h) and C8 (1300 ◦C; 300 h) for APS-BC. Meanwhile, D1 (1200 ◦C; 1 h), D2 (1200 ◦C; 10 h),
D3 (1200 ◦C; 100 h), D4 (1200 ◦C; 300 h), D5 (1300 ◦C; 1 h), D6 (1300 ◦C; 10 h), D7 (1300 ◦C; 100 h) and D8
(1300 ◦C; 300 h) for HVOF-BC. Table 2 lists the abbreviations of the TBC samples used in this work. The
specimens were then furnace-cooled and removed only after cooling was completed to prevent thermal
shocks. The samples with dimensions of 60 mm × 60 mm × 6 mm were cross-sectioned to 20 mm × 5
mm × 5 mm for characterizing purposes by using a manual milling machine and surface finishing
process. The samples were then mounted on a mounting cup using a resin-mixture. Once the molding
process was done, rough grinding and polishing took place as the final stage of sample preparation.
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Table 2. Thermal barrier coating (TBC) sample abbreviations according to temperature and
oxidation hours.

Temperature
(◦C)

Oxidation Hours
(h) APS-BC HVOF-BC

1200

1 C1 D1
10 C2 D2

100 C3 D3
300 C4 D4

1300

1 C5 D5
10 C6 D6

100 C7 D7
300 C8 D8

Surface and cross-section of the prepared samples were characterized by using scanning electron
microscope (SEM; JEOL JSM 6010 LA/LV, Kajang, Malaysia) equipped with energy dispersive
spectrometer (EDS). The porosity analysis was conducted using ASTME 2109-01(201) standards [26]
to determine the percentage area of porosity in the BC. The BC porosity was characterized using the
percentage of pore surface content on the surface of the whole BC area (%). The BC porosity was
evaluated using image-J software (version v1.52a) to threshold black areas of SEM image (pores) and
the percentage area porosity was calculated automatically by image-J. The percentage area represents
the percent of pores in the selected area of BC. For the mixed oxides content analysis, backscattered
electron imaging mode (compo) was used to find oxide clusters at the TGO. Both the area percentage
of porosity and mixed oxides content and also thickness was measured by coupling SEM and image
analysis using image-J software. Al2O3 thickness ratio means the percentage of alumina thickness
versus mixed oxide thickness within an entire TGO thickness.

The crack morphology evaluation was done using fractographic analysis with direct observation
of the coating surface. This method is feasible for crack initiation and crack growth study. However,
this method is not feasible for complex coating. Thus, a three-dimensional (3D) measuring laser
microscope was used in the present work for real-time observations and measurements for complex
coatings. In contrast to conventional direct observation methods, it provides a non-planar surface
topography image in 3D subjected to topographic maps. 3D measuring laser microscope (Olympus
LEXT OLS4100, Kuala Lumpur, Malaysia) was conducted to quantify crack length in the TC and BC.
Differential interference contrast (DIC) was applied for improved crack morphology. The crack length
was obtained according to the following equation:

Average Crack Length =
Total Sum of Crack Length
Number of Crack Length

(1)

3. Results

3.1. Microstructure

The microstructure of the APS-BC and HVOF-BC cross sections are illustrated in Figure 1.
HVOF-BC exhibits a denser coating than APS-BC due to a large amount of kinetic energy provided
that it propels the molten material at greater speeds, whereas APS-BC has low particle velocity.
The APS-BC contained globular pores and voids which reduced at longer exposures, while HVOF-BC
contained fine-scale pores. The high-speed impact by HVOF deforms and spreads the particles to form
a lamellar structure.

The porosity of APS and HVOF bond coats is shown in Figure 2. The results show that the porosity
of the bond coat is influenced by temperature and oxidation time. The APS BC showed higher porosity
than HVOF for each temperature, which is also observed in Figure 1. The higher porosity is due to the
open-air atmospheric production of APS. Meanwhile, HVOF exhibits low porosity due to the direct
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stream of hot gas and powder towards the surface of the substrate that is to be coated [26]. The powder
is partially melted in the stream and is deposited upon the Ni-substrate. In addition to that, a favorable
bond coat has lower porosity where it increases the bond strength between the ceramic TC and BC by
providing good adhesion and consequently preventing it from spallation.

However, the porosity of BC decreases as the temperature and oxidation time increases, as observed
in Figure 2. The reduction in porosity is due to the process of sintering upon prolonged exposure to
high temperatures [27]. As observed in Figure 1, a low cumulative pore volume fraction is formed
at the exposure time of 300 h for both APS and HVOF bond coats, resulting in closure of pores and
formation of internal oxides at longer oxidation time that leads to a decrease in porosity. Internal oxides
are formed in the BC during oxidation caused by oxygen infiltration via the porosities and micro-cracks
of the TGO layer [28]. It is to be noted that internal oxides are more prominent and thicker in APS-BC
than in HVOF-BC. Moreover, the pores have been filled with internal oxides such as Al2O3 and mixed
oxides at longer oxidation hours in the APS-BC, as observed in Figure 1a,g. Meanwhile, HVOF-BC
exhibited a dense internal oxide, indicating a slow growth of oxide in BC due to BC oxidation.
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Figure 1. Scanning electron microscope (SEM) micrograph of bond coat thermally oxidized at 1200 ◦C for
(a) APS-1 h, (b) high-velocity oxygen fuel (HVOF)-1 h, (c) APS-300 h and (d) HVOF-300 h, and 1300 ◦C
for (e) APS-1 h, (f) HVOF-1 h, (g) APS-300 h and (h) HVOF-300 h.
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Figure 2. Porosity APS and HVOF bond coats for 1200 ◦C and 1300 ◦C with various oxidation time.

3.2. Thermally Grown Oxide (TGO) Growth

Figure 3 illustrates a TGO consisting of an oxide layer of predominantly Al2O3 formed at the
interface of TC/BC along with the EDS results. The segmented TGO layer is observed at the interface for
APS-BC, whereas a continuous uniform layer of dense TGO was formed for HVOF-BC. A continuous
TGO layer could not be maintained after long-term thermal exposure in APS-BC due to Al depletion in
the BC (formation of more mixed oxides) [29]. The continuous layer of TGO would act as a diffusion
barrier to inhibit the formation of detrimental mixed oxides, thus providing protection from further
oxidation and improving durability [30].

Apart from Al2O3, growth of some mixed oxide clusters was also observed in the TGO layer
in Figure 3. These mixed oxide clusters consist of chromia ((Cr,Al)2O3), spinel (Ni(Cr,Al)2O4) and
nickel oxide (NiO) [16]. These clusters were identified according to the compositions from previous
literature [31,32], where, the chromia + spinel layer consists of Ni (5–16 at.%), Al + Cr (28–43 at.%).
Moreover, to differentiate (Cr,Al)2O3 and NiAl2O4 from Ni(Cr,Al)2O4, the composition of Ni is <8 at%
and Al + Cr is >35 at.%, and Ni (13–16 at.%) and Al (27–30 at.%), respectively [33]. The TGO content
including Al2O3 and types of mixed oxides with the presence of pores at TGO in APS and HVOF bond
coats are listed in Table 3.

The inward diffusion of oxidants from the TC and outward diffusion of elements presented in
BC (Al, Ni, Cr) leads to a reaction zone on the TC/BC interface which is known as TGO. Chromia
was already formed at 1200 ◦C for 1 h of oxidation (C1 and D1) due to the oxygen atom from TC that
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easily diffuses across the TC/BC interface region and arrives at BC by the process of discrete hopping,
it even arrives at the BC/substrate interface [33]. This process is accelerated with the assistance of
interconnected segmented cracks and voids in the TC (Figure 3). Bengtsson et al. [33] mentioned
that the segmentation crack network is usually found in thick lamellar TC. At high temperatures, the
oxygen atom (O) or molecule (O2) that confront metallic phases will react to form stable oxides, on
account of high affinities of oxygen with Al and Cr, and form Al2O3 and Cr2O3, as in the following
equation [34]:

2[Al] + 3[O]→ Al2O3 (2)

2[Cr] + 3[O]→ Cr2O3 (3)

The high concentration of Al and Cr forms a protective layer of Al2O3 and Cr2O3 that improves
high-temperature property and slow consumption of Al and Cr. Al2O3 is formed before Cr2O3 due
to the Gibs free-energy of Al2O3 and Cr2O3 with −1270.5 kJ/mol and −803.0 kJ/mol, respectively [35].
This is where Al diffuses to the surface of BC and forms Al2O3. Even though it is a short oxidation time
of 1 h (C5 and D5), chromia mixed with spinel was seen at 1300 ◦C. This is due to the high temperature
that facilitates a quicker reaction between diffused Ni and Cr from BC with oxygen, owing to greater
kinetic energy between the particles [36]. At this time, Ni reacted with Al2O3, Cr2O3 and O2 and
formed Ni(Cr,Al)2O4, as in the following equation [34]:

[Ni] + Al2O3+Cr2O3+[O]→ Ni(Al, Cr)2O4 (4)
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Table 3. Thermally Grown Oxide (TGO) content, types of crack and presence of pores in APS and
HVOF bond coats.

Properties
APS-BC HVOF-BC

1200 ◦C 1300 ◦C 1200 ◦C 1300 ◦C

1 h 300 h 1 h 300 h 1 h 300 h 1 h 300 h

TGO

Al2O3
√ √ √ √ √ √ √ √

Chromia
√

×
√

×
√

×
√

×

NiAl2O4 ×
√ √ √

×
√ √ √

NiO ×
√

×
√

× × × ×

Crack

Vertical
√ √ √

×
√

× × ×

Interface × ×
√ √ √ √ √ √

Compressive ×
√

×
√

× × × ×

Horizontal ×
√

×
√

× × × ×

Pore ×
√

×
√

× × × ×

After 300 h of oxidation (C4, C8, D4 and D8), the presence of Cr3+ was not observed along the
TGO layer and spinel nickel aluminate (NiAl2O4) was formed as Al and Cr have been consumed
continuously to below the detection threshold. At lower Cr concentration, Ni reacts with Al2O3 and
O2 to produce NiAl2O4, as seen in Equation (5) [37]. Formation of spinel in APS-BC is faster than
HVOF-BC where the growth of NiAl2O4 was already observed in C5, whereas D5 still contains Cr
with growth of Ni(Cr,Al)2O4. This indicates slower growth rate of mixed oxide in HVOF-BC than
in APS-BC.
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Al2O3+[O] + Ni→ NiAl2O4 (5)

At the same time, 300 h of exposure in the air adds the presence of the NiO in APS-BC (C4 and
C8) where it was not found in HVOF-BC. This observation is due to the Al and Cr depletion, where
Ni reacts with the continuous invasive oxygen to form NiO after the large growth of Al2O3, Cr2O3,
Ni(Cr,Al)2O4 and NiAl2O4, as seen in the following Equation (6) [34]. Pores are observed in C4 and C8
near NiO, which points out the invasive oxygen diffusion at the TGO layer.

[Ni] + [O]→ NiO (6)

The mixed oxide thickness ratio of APS-BC and HVOF-BC are illustrated in Figure 4. APS-BC
shows a greater thickness ratio of mixed oxide compared to HVOF-BC. The discontinuity of the TGO
layer grown within the ceramic near the TC/BC region in APS-BC contains more spinel with crack
nucleation, mostly associated with the mixed oxides. The greater thickness of mixed oxide in APS-BC
promoted the crack propagation. Cracks are observed at the mixed oxides/TC region for both APS and
HVOF bond coats. The formation of pores near NiO for APS-BC (C4 and C8) worsens the condition by
acting as a fast track for oxygen diffusion into the interface region and leading to horizontal cracks.
The porous layer of TGO (C4 and C8) makes the layer less resistant to crack propagation.
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The HVOF-BC has less mixed oxide thickness ratio with slower growth of mixed oxide. Although
the formation of spinel existed in HVOF-BC, all the samples were intact and did not fail due to the
limited amount of mixed oxide ratio without the detrimental NiO. The TGO layer in HVOF-BC was
very stable, remaining uniform and dense for up to 300 h of oxidation for both 1200 and 1300 ◦C.

3.3. Crack Propagation

Crack propagation occurs due to thermal stress in the substrate and coating being mismatched
and growth of mixed oxides in the TGO layer by invasive BC oxidation that may lead to the failure of
TBC. Since the crack length observed through SEM images does not always reveal the actual length
of the crack, the 3D measuring laser microscope was more reliable in measuring the crack length of
TBC. The multiple-point measurements with clearer DIC-supported images made the crack length
measurement process easy and feasible.

Figure 5 illustrates the average crack length and TGO thickness in the TBCs at the oxidation time
intervals, indicating the higher rate of crack propagation in APS-BC than in HVOF-BC. TGO thickness
of HVOF-BC demonstrates a steady-state growth from 1200 to 1300 ◦C. Whereas APS-BC showed short
steady-state growth up to 100 h of exposure and an accelerated steady-state growth thereafter. Thus,
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TGO in APS-BC formed much faster than in the HVOF-BC. This greater thickness in APS-BC than in
HVOF-BC is due to the high content of the mixed oxide thickness ratio in APS-BC. The presence of
mixed oxides with the addition of NiO which was absent in HVOF-BC was one of the causes of TGO
thickening in APS-BC. Besides that, the discontinuous TGO layer with no oxidation resistance will
not suppress the formation of detrimental oxides during prolonged thermal exposure, thus leading
to TGO thickening. TGO thickening promotes stresses and accelerates generation of micro-cracks at
TGO/TC interface, and thus, leads to spallation of TBC [30].
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Figure 5. Average crack length and TGO thickness of APS-BC and HVOF-BC for 1200 and 1300 ◦C
with various oxidation times.

Although the TGO composition in the APS and HVOF bond coats varies, the crack length increases
proportionally with TGO thickness in the two TGO systems. The crack lengths in the ceramic layer
vary as small as 2 µm up to 30 µm, which are considered as short cracks compared to the conventional
TBCs [38,39]. This is due to the addition of rare earth elements that induce lower thermal conductivity
and improve the adhesion between TGO and TC where it provides great temperature drop and is
resistant to cracking, thus leading to shorter crack lengths [7]. The HVOF BC has high oxidation
resistance and good bonding with the TC layer. Choquet et al. mentioned that Ytrrium (rare earth
element) in TC diffuses towards the external surface of BC at 1100 ◦C [40]. Simultaneously, the oxidation
of BC occurs by predominant inward diffusion of oxygen with the internal oxidation of rare earth
elements [40]. They found no voids or second phase at the TGO/BC interface. Hence, Choquet et al.
concluded that good adhesion occurred after adding rare earth elements in TC [40]. However, APS-BC
shows longer crack length in the coating compared to HVOF-BC, despite the same coating composition
in both APS and HVOF bond coats. This is mainly due to the thick TGO owing to a high mixed-oxide
ratio with predominantly NiO causing greater compressive stress and which is released by vertical
cracks in the coating. Furthermore, Sun et al. mentioned that complicated local stress occurs near the
irregular layer of TGO, causing micro-cracks in the coatings during high-temperature exposure [41],
and additionally, that the growth of expanding new mixed oxides leads to in-plane elongation of lateral
growth strain [42].

Figure 6 illustrates the laser images of the TC/BC interface of APS and HVOF bond coats. A few
types of cracks were observed in the samples such as vertical crack, segmented crack, through-splat
crack, inter-splat crack and horizontal crack. The type of cracks which existed in APS and HVOF bond
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coats are listed in Table 3. The TC contained more segmented and vertical cracks. Through-splat and
inter-splat cracks were found in both TC and BC. Through-splat cracks are cracks that run through the
splats and inter-splat cracks run across the splat interface. Through-splat cracks were found more in
the APS bond coat than in HVOF due to its low velocity (120–600 m/s) during impact, resulting in
partial melting of the particles. Vertical, interface and horizontal cracks dominated at the TGO region.

The majority of the cracks observed originated from the region that contains mixed oxides,
un-melted particles (Figure 6c–e) and pores (Figure 6b). Vertical cracks formed at the interface of
TGO/TC in samples exposed with lower oxidation hour (1 h). Interface cracks followed the TGO
layer from peak to valley and started to dominate at longer oxidation hours, mostly near the mixed
oxide zone. The vertical cracks did not run through vertically to the underlying interface but instead,
were terminated when they reached the interface. Only the horizontal crack propagates parallel to
the interface direction and runs through the TGO layer for C4 and C8 at extended oxidation time
(300 h). However, the horizontal crack did not reach the edge of the coating. Horizontal cracks produce
higher compressive stress and release the stress by inducing compressive cracks. Compressive cracks
are observed in C4 and C8 near the horizontal crack. Compressive cracks are cracks that occur due
to compressive stress that nucleates from a horizontal crack [43] when the thickness of TGO grows
vigorously due to a large amount of detrimental mixed oxides. Crack propagation revealed that the
severe horizontal crack and compressive crack were found only in APS-BC where the presence of a
large amount of mixed oxides was found with thick TGO growth, including spinel and NiO with pores.
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3.4. Failure Mechanism

The TBC of APS-BC for 1200 and 1300 ◦C failed between 10 and 300 h (C2, C3, C4, C6, C7 and C8).
The TC spall off within the TC slightly above the TGO layer, which is called the crack-susceptible zone
(CSZ) [44]. The spallation of TC occurred away from the TC/BC interface, within the ceramic layer and
not exactly at the interface region. The failure mechanism of TBC of sample C8 is shown in Figure 7a
in the SEM image of C8 with a long horizontal crack with spalled coating. Figure 7b zoomed the SEM
image at the CSZ layer and Figure 7c shows a diagram on the spalling failure mode in TBC.

The CSZ are identified as weak locations for the TBCs and failures tend to occur at this zone
during real service conditions [44]. The failure mechanism of TBCs with APS-BC comes from two
distinct angles: (1) TGO growth and (2) TC thickness. The fast TGO growth rate of APS-BC with quick
change from stable Al2O3 to a large amount of detrimental mixed oxides consisting of spinel and NiO
leads to greater porosity and thickness of TGO than HVOF-BC. Mixed oxide structures are considered
undesirable in a TBC system because it cannot form a continuous protective layer due to its poor
adhesion and being aggravated by the consumption of alloy elements that stimulates degradation [35].
This leads to higher compressive stress within the TC near the TGO/TC interface. In order to release the
stress, harmful horizontal and compressive cracks originate at exposed locations, such as un-melted
particles and pores in APS-BC.
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Figure 7. (a) SEM image of C8 (APS-BC, 1300 ◦C; 300 h) with a long horizontal crack with spalled
coating, (b) zoomed SEM image at crack-susceptible zone (CSZ) layer and (c) diagram on spalling
failure mode in TBC.

The thick (850 µm) TC also influences the failure mechanism. Thicker TCs are desirable for TBCs
as they provide low thermal conductivity [5]. However, thick TCs increase the weight of the component
and residual stress and this leads to a reduction in the heat transfer rate owing to the high conduction
distance [5]. Hence, the surface temperature increases and exceeds the limit of ceramic material [5].
This sintering effect arises due to an increase in surface temperature which induces tensile stress away
from the interface within the top coat. Mud-flat cracks along the splat boundaries appeared at the
region to release the associated tensile stress and leads to loss of discrete segments [3]. Mud-flat cracks
are only observed in Figure 3b,d (failed TBCs). According to Xie et al., the main reason for TBC failure
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is the fast growth of MO that generates severe tensile stress at the α-Al2O3/MO interface [45]. The
tensile stress induces cracking in the TGO layer and further accelerates MO growth.

The compressive stress from the thick TGO and the tensile stress from the thick TC along the
mud-flat cracks induce a disastrous horizontal crack that nucleates along the boundary of mud-flat
cracks in the interface direction and run through the CSZ in APS-BC. As the oxidation time increases,
the crack continuously propagates and reaches the edge of the coating and peels it off at CSZ.

On the other hand, all the layers of HVOF-BC remain intact from 1200 to 1300 ◦C for all oxidation
hours (1–300 h). Although HVOF-BC also contains thick TC, it was intact and did not fail. This is due
to the dense protective film of Al2O3 at the TGO layer that inhibits the diffusion of oxygen from TC
and also the homogeneous distribution of lamellar structure by the HVOF method on BC. The results
disclose that HVOF-BC tolerates thick TC while APS does not because of the effect of detrimental
oxides in TGO.

4. Conclusions

TGO growth and crack propagation were studied via the thermal oxidation test using HVOF
and APS bond coats. The APS-BC contains greater amounts of porosity than the HVOF-BC, and thus,
leads to the formation of unstable Al2O3 and detrimental mixed oxides such as spinel and NiO in the
TGO. The presence of spinel and NiO with more pores induced compressive stresses that caused the
formation of horizontal and compressive cracks in the TGO layer. The thick TC increased the sintering
effect during the higher oxidation hours (10–300 h) which caused tensile stress. The tensile stress was
subsequently released in the form of mud-flat cracking near the TGO/TC interface. The compressive
and tensile stresses prompted the formation of a long horizontal crack at the CSZ and caused spallation
in the TBC of APS-BC. To the contrary, the HVOF-BC was observed to have an intact TBC due to
its low mixed-oxide growth rate with a uniform and dense protective layer of stable Al2O3, which
is more resistant to crack propagation. The findings show an increase in TBC durability. Therefore,
HVOF-BC is more efficient in thick La–Gd–YSZ TBC. The surface roughness can be optimized and
TC with columnar structure is used in order to improve the durability of thick TBC with APS-BC as a
suggestion for further studies.
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