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Abstract: This study investigated the time transient effect of zinc (Zn) in the porous titanium dioxide
formed by micro-arc oxidation (MAO) treatment routinely performed for Zn-containing electrolytes.
The aim of our analysis was to understand the changes in both the chemical and biological properties
of Zn in physiological saline. The morphology of the Zn-incorporated MAO surface did not change,
and a small amount of Zn ions were released at early stages of incubation in saline. We observed a
decrease in Zn concentration in the oxide layer because its release and chemical state (Zn2+ compound
to ZnO) changed over time during incubation in saline. In addition, the antibacterial property of
the Zn-incorporated MAO surface developed at late periods after the incubation process over a
course of 28 days. Furthermore, osteogenic cells were able to proliferate and were calcified on the
specimens with Zn. The changes related to Zn in saline had non-toxic effects on the osteogenic cells.
In conclusion, the time transient effect of Zn in a porous titanium dioxide layer was beneficial to realize
dual functions, namely the antibacterial property and osteogenic cell compatibility. Our study suggests
the importance of the chemical state changes of Zn to control its chemical and biological properties.
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1. Introduction

Recent studies have reported that biomaterial-associated infections caused by the formation of
biofilms on biomaterial surfaces were a major cause of failure in implant surgeries [1–6]. The biofilms
are generally formed as a result of bacterial adhesion, growth, colony formation, extracellular
polysaccharides, quorum sensing signals, and formation of nutrition channels. Biofilms can weaken
the effect of antibiotic agents due to the presence of a wide variety of bacterial species and the barrier
effect of the extracellular polysaccharide [7–12]. After the formation of biofilms, it becomes almost
impossible to remove the matured biofilms from implanted devices in the human body. The only
way of preventing sepsis is by retrieval of the device on which the biofilm was formed from the
patient. To avoid this, it is necessary to inhibit biofilm formation during implantation of devices in
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advance. Prosthetic joint infection is divided into early infection (within three weeks after surgery)
and late-onset infection (around three to eight weeks after surgery); this period is considered the
incubation stage [13]. Moreover, infections associated with hip implants have been reported in the
case of dental treatments [14,15]. Thus, the long-term antibacterial activity of the implant material
is strongly desired. An ideal biomaterial surface with antibacterial activity can not only prevent the
initial stages of infection such as bacterial adhesion, but also inhibit subsequent bacterial growth at
later stages.

Recent studies on antibacterial surfaces have used various surface treatments with silver (Ag)
species [16–23]. Ag is a well-known antibacterial agent and its effects on various bacteria have been
studied extensively. Many researchers have reported that Ag can strongly influence various kinds of
fungal and bacterial strains, including multidrug-resistant bacteria [23–27]. In addition to the efficacy of
Ag for bacteria, copper, zinc (Zn), gallium, selenium and silicon have been recently used as antibacterial
elements owing to their good antibacterial activity [23,28–35]. Among them, Zn is one of the most
important trace elements in living organisms and an effective antibacterial element [30,31,36–42].
Therefore, we expected that the application of Zn for the surface modification of implant devices might
offer antibacterial activity as effective as that of Ag.

Titanium (Ti) and its alloys are widely used as major implant materials owing to their excellent
mechanical properties and biocompatibility [43]. Recent studies related to the bio-functionalization of
a Ti surface has been widely reported and well-summarized elsewhere [44]. Among them, Micro-arc
oxidation (MAO) is an electrochemical surface treatment technique performed in a specific electrolyte
under high voltage. After MAO, the surface of the substrate metal is covered by a connective-porous
oxide layer. The resultant oxide layer formed by MAO treatment contained additional elements that
were contained in the electrolyte solution. Therefore, MAO treatment improved the osteogenic cell
compatibility of titanium (Ti) when the electrolyte contained calcium and phosphate ions [45–51].
The biocompatibility of MAO coatings has been demonstrated by numerous in vitro and in vivo
tests [52–57].

Several studies have focused on the incorporation of Zn onto a Ti surface by MAO treatment [58–64].
Hu et al. [59], Zhang et al. [61], Zhang et al. [62] and Du et al. [63] reported that Zn-incorporated TiO2

coatings showed good antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus
aureus. Moreover, Zhao et al. [60] reported that a Zn coating on a Ti surface showed bacteriostatic
activity against Streptococcus mutans. These experiments provide adequate evidence to demonstrate
that MAO-treated Ti in the electrolyte with Zn inhibited both bacterial adhesion as well as growth.
In addition, Hu et al. [59], Zhao et al. [60] and Zhang et al. [64] reported that suitable amounts of Zn
could promote adhesion, proliferation, and differentiation of osteogenic cells (e.g., rat bone marrow
stem cells, MG63 cells and MC3T3-E1 cells). Thus, Zn plays a key role in the development of both
antibacterial activity and osteogenic cell compatibility, and the incorporation of Zn by MAO treatment
is a promising approach for surface treatment to achieve antibacterial activity in orthopedic and dental
implants. Nevertheless, little attention has been given to the chemical and biological changes of Zn in
the MAO coatings on their bio-function. Therefore, for the prevention of late-onset infections and the
application of Zn to medical and dental implants, it is important to evaluate the long-term behavior of
Zn in the body.

The purpose of this study was to investigate the long-term behavior of Zn-incorporated surface
oxide produced by MAO for the prevention of late-onset infections. We investigated the time transient
effect of Zn on chemical property, antibacterial activity, and osteogenic cell compatibility. The detailed
chemical state of Zn in physiological saline was characterized by X-ray photoelectron spectroscopy
(XPS). The change in antibacterial activity of the specimens before and after incubation for four weeks
in saline was evaluated by the ISO method using E. coli as typical gram-negative facultative anaerobic
bacteria. In addition, calcification by the cells on the specimens were evaluated at 14 and 28 days after
seeding. In this study, we considered different time points and investigated changes in the chemical
and biological properties of the Zn-incorporated MAO surface in a simulated body fluid environment.
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2. Materials and Methods

2.1. Specimen Preparation

Commercially pure Ti (CP Ti; Rare Metallic, Tokyo, Japan) with grade 2 was used as a substrate
material in this study. Two kinds of CP Ti disks with diameters 8 mm and 25 mm were obtained by
cutting from a rod of CP Ti. The surfaces of these disks were mechanically polished using #150, #320,
#600, and #800 grid SiC abrasive papers, followed by ultra-sonication in acetone and ethanol for 10 min.
The disks were then stored in an auto-dry desiccator till further use. Each Ti disk was then fixed onto a
polytetrafluoroethylene holder with an O-ring. The area in contact with the electrolyte was 39 mm2

(7.0 mm in diameter) or 398 mm2 (22.5 mm in diameter). Details of the working electrode were as
described earlier [65]. An AISI304 type stainless steel plate was used as a counter electrode. The base
composition of the electrolyte for MAO treatment was 100 mM calcium glycerophosphate and 150 mM
calcium acetate. Varying concentrations of ZnCl2 (0, 0.5, 1.0, and 2.5 mM) were added to the base
electrolyte. After pouring the electrolyte into the electrochemical cell, both electrodes were connected
to a DC power supply (PL-650-0.1, Matsusada Precision Inc., Shiga, Japan) and a positive voltage with
a constant current density of 251 Am−2 was applied for 10 min. The resultant voltage during the MAO
treatment was 400 V at all conditions. After the MAO treatment, the surfaces were thoroughly washed
in ultrapure water in order to remove any electrolyte solution remaining in the porous oxide layer.
A major part of the Ti disk was MAO-treated; an annular untreated area was 0.5 mm from the margin.
All surface characterization described below was performed in a MAO-treated area.

2.2. Incubation in Saline

The specimens treated in the electrolyte that had various concentrations of Zn were immersed
in physiological saline (0.9% NaCl) for 28 days. Saline is the simplest simulated body fluid, which is
suitable for long-period measurement. Moreover, chloride ion (Cl−) is unexceptionally contained in all
simulated body fluids. The specimens were fixed onto a polyethylene container to allow the release of
Zn ions from the surface into physiological saline. Incubation was performed at 37 ◦C in a humidified
chamber under constant shaking (100 rpm). Every 7th day, the pooled solution was changed with
fresh physiological saline. After immersion, the immersed specimens were used further for surface
characterization, evaluation of antibacterial activity, and quantification of Zn ions.

2.3. Surface Characterization and Evaluation of Zinc Ion Release

Scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDS; S-3400NX,
Hitachi High-Technologies Corp., Tokyo, Japan) was used to observe the surface morphology and
composition before and after incubation. X-ray diffraction (XRD, BRUKER D8 DISCOVER, Bruker
AXS KK, Yokohama, Japan) was performed to characterize the crystal structure of the specimens
before and after incubation. The diffractometer was used with Cu-Kα radiation (40 keV, 40 mA).
XPS was performed using a spectrometer (JPS-9010MC, JEOL, Tokyo, Japan) with Mg Kα X-ray source
(energy: 1253.6 eV; acceleration voltage: 10 kV; current: 10 mA). The pressure of the measurement
chamber was 1 × 10−7 Pa. All binding energies mentioned in this paper are relative to the Fermi level.
The spectrometer was calibrated against Au 4f7/2 of pure gold, Ag 3d5/2 of pure silver, and Cu 2p3/2

of pure copper. Spectra were obtained using an analysis area of 1 mmφ with a pass energy of 20 eV.
The detection angle to the specimen surface was 90◦. The binding energies were calibrated with C
1s photoelectron energy region peak derived from contaminating carbon (285.0 eV). To calculate the
integrated intensity of peaks, the background was subtracted from the measured spectrum according
to Shirley’s method [66]. The chemical state changes of Zn were determined by the modified Auger
parameter (α’) on the Wagner plot with those of typical Zn compounds. The α’ of each specimen was
calculated using the following Equation (1).

α’ = EK(Zn L3M45M45) + EB(Zn 2p3/2) (1)
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Equation (1) contains both kinetic energy of Zn L3M45M45, EK(Zn L3M45M45) and binding energy
of Zn 2p3/2, EB(Zn 2p3/2). The composition of the specimens were calculated according to a method
described previously [67]. The photoionization cross-section of empirical data [68,69] and theoretically
calculated data [70] were used for quantification. Inductively coupled plasma-atomic emission
spectrometry (ICP-AES, ICPS-7000 ver. 2, Shimadzu Corp., Kyoto, Japan) was used to quantify Zn ion
release from the Zn incorporated surface. The amounts of Zn ions released into the pooled solution
were quantified each week.

2.4. Evaluation of Antibacterial Activity

The antibacterial activity was evaluated according to ISO 22196: 2007 method. To examine the
antibacterial activity of the specimens, we employed E. coli (NBRC3972). The experiment was approved
by the Pathogenic Organisms Safety Management Committee of the Tokyo Medical and Dental
University (22012-025c). E. coli is a representative gram-negative rod-shaped bacterium commonly
found in the gut. E. coli was cultured in Luria-Bertani (LB) broth (LB-Medium, MP Biomedicals, CA,
USA) at 37 ◦C for 24 h. The optical density of the bacterial suspensions were measured at 600 nm
using an ultraviolet-visible (UV–vis) spectrometer (V-550, JASCO, Tokyo, Japan) and diluted to obtain
concentrations of 4.9 × 106 colony-forming units (CFUs) mL−1. Prior to the antibacterial activity testing,
all specimens were sterilized with 70% ethanol, washed with distilled water, and dried. Drops of
bacterial suspension were added on all specimens, which were subsequently covered with a sterilized
plastic film and incubated at 37 ◦C for 24 h (n = 3). Bacterial cells were then collected from all the
incubated specimens; the obtained suspensions were diluted, pipetted onto nutrient agar plates,
and incubated overnight at 37 ◦C. The number of viable bacteria was determined by counting the
number of colonies formed.

2.5. Calcification by Osteogenic Cells

As described in our previous work [71], MC3T3-E1 cells (RIKEN BioResource Center, Tsukuba,
Japan) were maintained in a cell culture medium: alpha modification of Eagle’s minimum essential
medium (α-MEM; GIBCO, Grand island, CA, USA) supplemented with 10% fetal bovine serum (FBS;
GIBCO), 10 U mL−1 penicillin, 100 mg mL−1 streptomycin, and 0.25 mg mL−1 amphotericin B (GIBCO).
All specimens were sterilized in 70% ethanol for 20 min and thoroughly rinsed with deionized water
before in vitro testing. The cells were seeded on to the sterilized specimens with an approximate
initial density of 10,000 cells cm−2. As a control, cells were also seeded on MAO-treated Ti without
Zn. The cells were incubated at 37 ◦C in a fully humidified atmosphere under 5% CO2. For induction
of osteogenic differentiation, a cell culture medium supplemented with 2 mM β-glycerophosphate
(Calbiochem, Darmstadt, Germany) and 50 mg mL−1 L-ascorbic acid (Wako Pure Chemical Industries,
Osaka, Japan) was used when 100% confluence was reached for all the specimens. The medium
used for induction was named as the differentiation-inducing medium. The differentiation-inducing
medium was changed every three days.

After the seeding for the 1st, 2nd, and 3rd day, the cells attached to each specimen were harvested
with trypsin/EDTA, re-suspended in a cell culture medium, and transferred to 96-well microplates.
Then, the Cell Counting Kit-8 assay (CCK-8, Dojindo Laboratories, Kumamoto, Japan) was added to
each 96-well microplate, which contained cell suspension, and the reaction was continued for 4 h at
37 ◦C. The absorbance of the samples was measured at 450 nm using a microplate reader (ChroMate
Microplate Reader, Awareness Technology, Palm, FL, USA). The reference wavelength was set at
630 nm. In this evaluation, the tissue culture polystyrene (TCPS) was used as a control specimen
for quantification of the number of attached cells on each specimen. The cells that were attached
to the TCPS were harvested by treatment with Trypsin/EDTA followed by re-suspension of cells
in the cell culture medium. Cell suspensions were diluted serially. The number of cells in the cell
suspension harvested from TCPS were counted by Trypan blue (Trypan Blue Stain 0.4%; Gibco) using
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a hemocytometer. Then, standard curves for cell number calibration and for light absorbance were
constructed and were used for quantification of the number of attached cells on each specimen.

The calcification of MC3T3-E1 cells on each specimen was evaluated by the calcified deposits
by a color change reaction after alizarin red S staining. After the removal of media from all the
specimens, cells were rinsed three times with phosphate-buffered saline. Cells were then fixed with 4%
formalin for 1 h and rinsed three times with ultra-pure water. Each specimen was stained with 1%
alizarin red S solution (adjusted to pH 4.2 with ammonium hydroxide) at room temperature for 30 min.
After removing the alizarin red S solution, cells were repeatedly rinsed with ultrapure water. When the
specimens were fully dry, the surface of each specimen was studied using an optical microscope
(OLYMPUS SZX12, Olympus, Tokyo, Japan).

2.6. Statistical Analysis

Data obtained by surface characterization were calculated from three independent specimens.
The results of biological tests are shown from at least two independent tests. Each test was performed
using at least three independent specimens. All values are presented as means ± SD, and commercial
statistical software KaleidaGraph (Version 4.1.1, Synergy Software, Reading, PA) was used for
statistical analysis. One-way analysis of variance (ANOVA) was used following multiple comparisons
with Student–Newman–Keuls method to assess the data, and P < 0.05 was considered to indicate
statistical significance.

3. Results

3.1. Surface Characterization and Evaluation of Zinc Ion Release

Figure 1 shows SEM images of the MAO-treated Ti surface treated in the electrolyte with 2.5 mM
Zn before (A) and after (B) incubation in saline. Typical connective porous morphology after MAO
treatment was observed. There was no difference in the surface morphology among the specimens
before and after incubation in saline for 28 days according to our SEM data under the indicated
magnification. In addition, the pore size on the specimens before incubation was 5.3 ± 2.3 µm and on
the specimens after incubation during 28 days was 4.8 ± 2.1 µm. There were no significant differences
in the pore size among the specimens before and after incubation.
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Figure 1. Scanning electron microscopy (SEM) images of specimens before (A) and after (B) incubation
in saline during 28 days. These images show the connective porous oxide layer on a Titanium (Ti)
surface formed by micro-arc oxidation (MAO) treatment using Zinc-containing electrolyte.

XRD spectra obtained from the MAO-treated Ti surface treated in the electrolyte with 2.5-mM Zn
before and after incubation has been shown in Figure 2. The peaks originating from α-Ti and anatase
TiO2 were detected from each specimen. Moreover, the peaks originating from Zn were undetected.
There was no difference in the crystal structure among the specimens before and after incubation in
saline for 28 days.
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Figure 2. X-ray diffraction (XRD) spectra of the Zn-incorporated specimens before and after incubation
in saline during 28 days.

XPS survey spectra of the MAO-treated Ti surface in the electrolyte with 2.5 mM Zn before and
after incubation in saline has been shown in Figure 3A. In addition to peaks originating from C, O,
P, Ca, and Ti, those originating from Zn and Na were detected. Narrow scan spectra around Zn 2p
electron energy region is shown in Figure 3B. The binding energies of Zn 2p3/2 peaks obtained from all
specimens were 1022.2–1022.6 eV, indicating that Zn existed as Zn2+. Phosphorus was found to exist as
phosphate species and calcium existed as a divalent ion, because binding energies of the corresponding
peaks of P 2p and Ca 2p3/2 were 134.1 ± 0.2 eV and 347.8 ± 0.2 eV, respectively. The binding energy of
Ti 2p3/2 peak was 459.0 ± 0.1 eV, indicating that Ti existed as TiO2.
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Figure 3. X-ray photoelectron spectroscopy (XPS) spectra of survey (A) and Zn 2p photoelectron energy
region (B) from specimens immersed in saline for 0–28 days.

Figure 4 depicts the Wagner plot of Zn in the oxide layer incubated for 0–28 days based on Zn
2p3/2 peaks and Zn L3M45M45 Auger peaks and reference plots from Zn2+ compounds as reported
by previous studies [72–75]. The chemical state of an element was determined by comparison of its
binding energy with modified Auger parameter values on the Wagner plot. According to the Wagner
plot of Zn, the binding energy decreased, and the Auger parameter increased with incubation time.
Moreover, since the value of the Auger parameter finally converged to 2010.2 eV, it became clear that
the chemical state of Zn incorporated in titanium dioxide by MAO approached to that of ZnO with
increasing incubation times.
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Figure 4. Wagner plot of Zn in the oxide layer incubated for 0–28 days based on Zn 2p3/2 photoelectron
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Figure 5 shows the change in the Zn concentration in the oxide layer at each incubation time,
as determined by XPS. The concentration of Zn was relatively small even before the incubation; thus,
the amount of Zn incorporated during MAO treatment was small. The amount of Zn dramatically
decreased to about 0.8% by the incubation in saline from 0 to 7 days and was maintained for 28 days.
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Figure 5. Change in the concentration of Zn in the oxide layer with incubation time determined by XPS
(n = 3).

Figure 6 shows the amount of Zn ions released from the oxide layer into saline, as determined by
ICP-AES. The amount of Zn ions released within the first 7 days was the highest and thereafter Zn was
not detected. In summary, there was no observed release of Zn ions after 7 days.
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3.2. Evaluation of Antibacterial Activity

Figure 7 shows the normalized CFU count for E. coli or antibacterial effects of MAO-treated Ti in
the electrolyte containing various concentrations of Zn. The vertical axis represents the normalized
bacterial number, defined as the bacterial number on each of the specimens divided by that of the
control, MAO-treated Ti in the electrolyte without Zn. The normalized bacterial number that was
below 1 (shown as dashed line in the figure) implied that the tested specimens had antibacterial activity.
Before incubation, there was no significant difference in E. coli counts among the specimens. On the
other hand, after incubation for 28 days, antibacterial effects against E. coli were observed. This effect
was independent of the concentration of Zn in the electrolyte for MAO treatment, indicating that
antibacterial activity of Zn developed after incubation in saline.
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3.3. Calcification by Osteogenic Cells

Figure 8 shows the number of MC3T3-E1 cells on MAO-treated Ti in the electrolyte containing
various concentrations of Zn with varying culture times. The number of viable cells on all specimens
increased with culture time. The Zn concentrations in the electrolyte did not differ significantly
among specimens.
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Figure 9 shows photographs of alizarin red S staining of calcified deposits by MC3T3-E1 cells on
each specimen cultured for 14 and 28 days. In case of MAO-treated specimens, we observed that only
the central part (7 mm in diameter) was covered with the oxide layer formed by MAO treatment while
the margins (0.5 mm) were not treated. Calcified cells were observed in all the specimens. However,
untreated Ti showed bare metal-colored parts that indicated the presence of incompletely calcified
cells. On the other hand, all MAO-treated specimens showed completely stained surfaces. There was
no segregation seen for calcified and non-calcified areas on the MAO-treated surface. In addition,
there were no visual differences among the MAO-treated specimens with and without Zn.Coatings 2019, 9, x FOR PEER REVIEW 10 of 16 
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4. Discussion

The morphology and crystal structure of the porous oxide layer formed by MAO treatment did not
show any changes during incubation in saline (Figures 1 and 2); this property is highly advantageous
for implant surfaces.

The peaks originating from Zn were not detected from the specimens by XRD. The amount of Zn
incorporated during MAO treatment was 3.5%, and decreased with incubation (Figure 5). Therefore,
we believe that XRD peaks originating from Zn were relatively small compared with Ti, which was not
detected by XRD.

The chemical state and concentration of Zn in the oxide layer changed during incubation in saline
(Figures 3–5). In addition, the Zn ions were released into saline during the 7-day incubation period;
thereafter, no Zn ions were eluted (Figure 6). These phenomena indicate that Zn incorporated into
specimens would be released only during the initial stages of implantation in vivo. The concentration
of Zn in the oxide layer decreased with the release of Zn ions during the first 7 days and was maintained
at 0.8 at % in the subsequent period. In other words, despite the presence of Zn in the oxide layer,
no Zn ions were released from the surface from 7 to 28 days. This indicated that the released Zn ion
was adsorbed on the surface of the oxide layer to form zinc oxide as an insoluble corrosion product of
Zn. The insoluble corrosion product of Zn was converted to ZnO to achieve chemical stabilization of
Zn in saline. In other words, Zn incorporated into the oxide layer by MAO treatment changed the
chemical state by interaction with saline and was finally stabilized by conversion into ZnO. Moreover,
ZnO was already generated on the surface of oxide layer in the 14-day incubation (Figure 4). Therefore,
it was considered that Zn ions did not elute during the 14–28 days period due to both the conversion
into ZnO and stabilization in saline.

The specimens incubated in saline exhibited antibacterial activity against E. coli, while the
specimens before incubation did not (Figure 7). Ti incorporated with Zn in the surface oxide layer
formed by MAO treatment exhibited late-onset antibacterial activity against E. coli. The release of Zn
ions were observed only during the initial stages of the incubation process (0–7 days). This indicated that
Zn ions itself did not have any antibacterial activity. Du et al. [76] reported that the minimum inhibitory
concentration (MIC) for Zn ions against E. coli was 768 µg·mL−1. The maximum concentration of Zn
ions released from the specimens in this study was smaller than the previously reported MIC of Zn ions.
For this reason, development of antibacterial activity by other factors needs to be considered. Prasanna
et al. [77] reported that ZnO could produce reactive oxygen species (ROS) in the dark, owing to singly
ionized oxygen vacancy in the crystal lattice of ZnO, and that generation of ROS contributed to its
antibacterial properties. This study clearly revealed that Zn was finally converted to ZnO and was
stabilized by interactions in saline. Therefore, the development of the late-onset antibacterial activity
of Zn was due to the generation of ZnO in saline. In other words, this study proved that the chemical
state of Zn incorporated in the oxide layer played a key role in the development of its antibacterial
activity. Therefore, we believed that antibacterial activity was developed when ZnO was generated.
According to Figure 4, we considered that the specimens incubated in saline during 14–21 days could
exhibit the antibacterial activity, while the specimens incubated in saline during 0–7 days may not
affect to bacteria. On the other hand, it is believed that bacteria interact with titanium dioxide through
surface siderophores, and the oxides provide a template for biofilm formation [78,79]. For this reason,
it is expected that bacteria can be captured by the interaction between the porous titanium dioxide
and the siderophore on the cell surface, and killed by ZnO. We believe that Zn-incorporation for a Ti
surface by MAO treatment may be suitable for realizing both bacterial capture ability and antibacterial
activity, namely a ‘trap-killing’ system [80].

The MAO-treated specimens containing Zn showed no toxic effects on proliferation of osteogenic
cells (Figure 8). Moreover, the calcification of cells on MAO-treated specimens with Zn were at the
same level as that on the specimen without Zn. Therefore, the existence of a slight amount of Zn
did not affect the osteogenic property of cells and proliferation was normal. The porous oxide layer
consisted not only of titanium oxide but also incorporated Ca, P, and Zn (Figure 3). Relatively large
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amounts of Ca and P were contained in the oxide layer of MAO-treated Ti-based alloy at 7.6 and 10.0
at %, respectively [81]. Ca and P are the main mineral components in bone tissues and are present
as calcium–phosphate compounds. The presence of Ca and P in the porous oxide layer formed by
MAO treatment enhances the activity of osteogenic cells [47]. In our previous study, MAO-treated
specimens containing a small amount of Ag showed osteogenic cell compatibility, which accelerated
the calcification process by MC3T3-E1 cells without any cytotoxicity [22]. Therefore, we predicted that
Zn-containing specimens in this study might have the same calcification ability.

In addition, a specific antibacterial activity of Zn, which was incorporated in the oxide layer was
observed. Zn-incorporated oxide layer formed by MAO exhibited late-onset antibacterial activity and
osteogenic cell compatibility, namely dual function. The amount of Zn ions released during 7 days
incubation (0.02 ppm) was much less than IC50 for MC3T3-E1 cells reported by Yamamoto et al. [82].
Moreover, our results indicated that the small amount of ZnO generation did not affect osteogenic
cells. In other words, the time transient effect of a suitable amount of Zn was effective for only bacteria.
Therefore, MAO treatment of Ti using Zn made it possible to exhibit both late-onset antibacterial activity
and osteogenic cell compatibility on Zn-containing TiO2 layer. In addition, our study proposed the
importance of the chemical state of Zn in the oxide layer for the development of antibacterial properties
of Zn. Our results have suggested that due to the time transient effect of Zn in TiO2, its chemical and
biological properties could be easily changed and this property could be adapted for achieving changes
in simulated body fluids (Figure 10). In particular, we suggest the importance of the chemical state
changes of Zn in the various environments to control its chemical and biological properties. We hope
that in future, that the outcome of the present study would be useful in the design of bio-functional
implants related to Zn and contribute to the development of antibacterial biomaterials.
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5. Conclusions

This study investigated the time transient effect of Zn in titanium dioxide with incubation in
saline. Although the morphology of the porous oxide layer formed by MAO treatment did not change,
the chemical state of Zn in the oxide layer changed to ZnO during incubation in saline. Moreover,
the antibacterial activity of the specimen with Zn developed in the late stages after the incubation
process in saline for 28 days. We propose that the generation of ZnO in the oxide layer played a
key role in development of antibacterial activity. In addition, the Zn-incorporated specimen did not
exhibit any cytotoxicity in MC3T3-E1 cells and did not hinder the proliferation and calcification of
cells. Therefore, MAO treatment of Ti using Zn is suitable for realizing both late-onset antibacterial
activity and osteogenic cell compatibility.
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