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Abstract: Novel bionanocomposite films of chitosan/montmorillonite (CS/MMT) activated with ginger
essential oil (GEO) were produced and characterized in terms of their physical and morphological
properties. The homogenization process led to a good interaction between the chitosan and the
nanoparticles, however the exfoliation was diminished when GEO was incorporated. Film glass
transition temperature did not statistically change with the incorporation of either MMT or GEO,
however the value was slightly reduced, representing a relaxation in the polymer chain which
corroborated with the mechanical and barrier properties results. Pristine chitosan films showed
excellent barrier properties to oxygen with a permeability of 0.184 × 10−16 mol/m·s·Pa being reduced
to half (0.098 × 10−16 mol/m·s·Pa) when MMT was incorporated. Although the incorporation of
GEO increased the permeability values to 0.325 × 10−16 mol/m·s·Pa when 2% of GEO was integrated,
this increment was smaller with both MMT and GEO (0.285 × 10−16 mol/m·s·Pa). Bionanocomposites
also increased the UV light barrier. Thus, the produced bioplastics demonstrated their ability to
retard oxidative processes due to their good barrier properties, corroborating previous results that
have shown their potential in the preservation of foods with high unsaturated fat content.

Keywords: biobased polymers; chitosan; nanotechnology

1. Introduction

The development of food packaging is currently focused on the use of polymers usually
derived from plants, i.e., bioplastics with an eco-friendly and sustainable approach, an alternative
to non-biodegradable materials from non-renewable sources (petroleum-based materials) [1–4].
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These materials can be divided into four main classes, namely: proteins, polysaccharides, lipids
and composites [1]. Polysaccharides are highlighted due to their good oxygen barrier related to
their well-ordered hydrogen bonded network shape, which may enhance the protection conferred to
food packaged against the oxidation process [1,5,6]. However, the weaker mechanical properties and
water vapor barrier limit their use, and through the combination with other polymers (i.e., bilayers)
or the incorporation of nanofillers, such as montmorillonite, this limitation can be overcome [5,7,8].
Chitosan (poly-β(1,4)-2-amino-2-deoxy-D-glucose), the second most abundant polysaccharide in
nature, obtained from the deacetylation of chitin, is a biodegradable biopolymer with potential to be
use as food-grade films and coatings [9–16].

Aiming to reduce the use of synthetic chemical additives, the food industry has increased its
interest in the research of natural preservatives, i.e., food components or extracts with antimicrobial
and antioxidant properties, with less harmful effect to human health [17–20]. Moreover, food-borne
microbial outbreaks have driven the industry and the scientific community to search for innovative
ways to inhibit microbial growth in foods while maintaining quality, freshness, and safety [21]. The use
of packaging is an option to provide an increased margin of safety and quality, as the next generation of
food packaging will include materials with antimicrobial and antioxidant properties that are capable of
protecting the food packaged, extending its shelf life [7,21,22]. Essential oils (EOs) are a good example
of such materials suitable to be used in the production of this next generation of food packaging [23].
EOs are natural substances extracted from different parts (i.e., roots, bark, or leaves) of a variety of plants,
many of them already used in traditional culinary (e.g., rosemary, thyme, sage, ginger, citronella) [18].
Despite the remarkable preservative properties of these components, their use as food additives is
discouraged by the strong aroma they confer to the foodstuff when directly incorporated into the
food matrix [17,18,22,24]. Thus, the incorporation of EOs into food packaging material may solve this
organoleptic problem, enabling their application to the preservation of food [24]. When incorporated
into polymeric matrices, the amount necessary is diminished as the migration occurs gradually towards
the food surface, where the food spoilage takes place [25,26].

In our previous works, different natural extracts, either essential oils or hydro-alcoholic extracts
from a variety of plants, were incorporated into chitosan [17,27]. The films produced were characterized
in terms of their antioxidant activity [17] and physical properties [27]. Within the different essential oils
tested, it was concluded that rosemary essential oil (REO) and ginger essential oil (GEO) presented the
best active properties [17], thus, novel bionanocomposites incorporated with such EOs were produced
and nanoreinforced with montmorillonite (MMT). As novel materials, it is crucial to understand
how the incorporation of MMT and the essential oil would interfere in the functional and bioactive
properties of the film. In vitro and in situ activity of CS/MMT activated with different levels of GEO
have been investigated [28] and those bionanocomposites have proven to have good antimicrobial
and antioxidant activity, being able to extend the shelf-life of fresh poultry meat, a foodstuff with
high unsaturated fat content. As the ultimate purpose of the film is to be used as primary packaging
for food products, information on its mechanical and barrier properties, not studied yet for these
novel materials, should also be understood. Thus, this work is focused on the characterization
of bionanocomposites incorporated with GEO reinforced with MMT in terms of their physical,
morphological, and barrier properties.

2. Materials and Methods

2.1. Materials and Reagents

Commercial high molecular weight (31–37 kDa) chitosan (poly(D-glucosamine)) with 75% of
deacetylation and ethanol absolute were purchased from Sigma Aldrich (Germany). Sodium montmorillonite
(Cloisite®Na+) was kindly supplied by BYK Additives & Instruments (USA). Ginger essential oil (EO),
with food grade classification, was acquired from Biover (Belgium). Glacial acetic acid, glycerol, calcium
nitrate (Ca(NO3)2), sodium bromide (NaBr), potassium acetate (CH3COOK, 99% purity), and tween 80
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(polyethylene glycol sorbitan monolaurate) were purchased from Alfa Aesar (Germany). Sodium chloride
(NaCl) was obtained from PanReac (Spain). All chemicals were of analytical reagent grade and were used
as purchased. The water was purified using the Milli-Q system (Millipore, USA).

2.2. Bionanocomposites Production

The composite films were prepared according to Souza et al. (2018) [28]. Briefly, to prepare the
film-forming dispersion (FFD), 1.5% (w/v) of chitosan was dissolved in 1% (v/v) of glacial acetic acid
solution under continuous agitation for 24 h at room temperature. Then, 30% (w/w chitosan) of glycerol
was added as a plasticizer in all treatments. At this stage, GEO in the levels tested (0%; 0.5%; 1%
or 2% v/v FFD) and 0.2% (w/v in essential oil) of the emulsifier tween 80 were added to the system.
Subsequently, an agitation cycle consisting of 5 min agitation with ultraturrax (15,000 rpm) (IKA®T18,
Staufen, Germany) followed by 15 min degasification in an ultrasound bath (360 W) (Selecta, Spain)
was carried out. The resulting dispersion was then casted in glass molds (18 × 25 cm) and let to dry
naturally for approximately 48–72 h. This was the procedure used to produce chitosan films without the
incorporation of the nanoreinforcement (MMT). To produce the bionanocomposites, 2.5% (w/w chitosan)
of MMT was added to the FFD already containing the glycerol, and two extra agitation steps (same as
described before) were added before the incorporation of GEO and tween 80, and the third and final
agitation cycle was carried out, followed by the casting. These extras steps were added to supply
energy to the system and promote the exfoliation of the MMT. Dried films were peeled and stored
protected from light in a desiccator containing saturated calcium nitrate solution at 25 ◦C and 50%
relative humidity, monitored with a thermohygrometer, until evaluation.

2.3. Film Characterization

2.3.1. X-ray Diffraction (XRD)

X-ray diffraction is one of the techniques used to study the structure of MMT within the polymer,
being indicative of a succeeded exfoliation process, thus a tool to understand whether the nanomaterial
reinforced the biopolymer or not. Diffractograms of the films were obtained using a DMAX-IIIC
diffractometer (Rigaku Industrial Corporation, Tokyo, Japan), equipped with CuKα (λ = 1.5418 Å)
radiation (40 kV, 30 mA), 2θ angle range 5◦ to 40◦, a scanning rate of 2◦/min and a sampling interval of
0.02◦ (2θ). The interlamellar distances (d001) were calculated using Bragg’s Law (Equation (1)) [22].

sen θ =
nλ
2d

(1)

where λ is the radiation wavelength, d is the interlamellar distance in Å, n is diffraction number (n = 1),
and θ is the measured diffraction angle.

2.3.2. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

Attenuated total reflectance Fourier transform infrared spectra of the bionanocomposites were
collected using a FTIR spectrometer (model PerkinElmer spectrum Two, Perkin Elmer, Waltham, MA,
USA) from 4000 to 650 cm−1 at a 1 cm−1 resolution [17].

2.3.3. Morphological Characterization: Scanning Electron Microscopy (SEM)

To analyze the bionanocomposite morphology, scanning electron microscopy micrographs were
performed from the surface and cross-section of the following samples: pristine chitosan film, chitosan
+ MMT; chitosan + 2% GEO, and chitosan + MMT + 2% GEO. The images were obtained from a Zeiss
instrument (Model DSM 962, Oberkochen, Germany) under vacuum, accelerated at 3 kV. The samples
were fixed with a double adhesive coated carbon tape on aluminium stubs and covered with gold
palladium using a sputter coater. Cross-section images were carried out in samples previously
submitted to fractions after contact with liquid nitrogen.
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2.3.4. Thermal Properties

Thermal properties were studied through differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA).

The glass transition temperature (Tg) of the samples was determined using DSC model 204 F1
Phoenix® (Netzsch, Selb, Germany). Approximately 10 mg of each sample were sealed in a standard
aluminum pan and thermal cycle was performed from 20 ◦C to 350 ◦C at a constant heating rate of
20 ◦C/min under nitrogen atmosphere (flow rate of 50 mL/min) [29].

The thermal stability of bionanocomposites was characterized using a simultaneous thermal
analyzer (PerkinElmer, Model STA 6000, Germany). A sample from each treatment (approximately
10 mg) was heated to 900 ◦C at a rate of 10 ◦C/min and maintained in isotherm during 3 min under
nitrogen atmosphere [30]. Compound degradation temperatures and percentages were determined
from the first derivative of the weight loss curve percent (DTGA) versus temperature.

2.3.5. Thickness and Mechanical Properties

Film thickness was measured using a Mitutoyo digital micrometer (Mitutoyo, Kawasaki, Japan),
with 0.001 mm precision, on ten randomly points of each sample [22].

Mechanical properties were determined according to ASTM D882–12 (2012) [31]. Elastic modulus
(EM), tensile strength (TS), and percentage of elongation at break (EAB) were measured from the
tensile testing of five strips of each film with dimensions 150 mm wide and 25.4 mm long. The samples
were mounted in the tensile grips with a 0.5 kN load cell (Autograph Shimadzu, Sydney, Australia),
with 50 mm initial gauge length and stretched at a cross-head speed of 50 mm/min until breakage.

2.3.6. Optical Properties

To calculate optical parameters chroma (c*) and Hue angle (hue), CIE-L*a*b* coordinates
(L* indicates black (0) to white (100); a* indicates red (+) to green (−) and b* indicates yellow
(+) to blue (−)) were measured from the bionanocomposites using a colorimeter CR 410 (Minolta Co.,
Tokyo, Japan) with a 10 mm diameter window and D65 illuminant/10◦ observer. The measurements
were taken on a white background standard and the equations used are the following [32]:

c∗ =
(
a∗2 + b∗2

)1/2
(2)

hue = arctan
(

b∗

a∗

)
x

180
π

, for a∗ > 0 and b∗ > 0 (3)

hue = arctan
(

b∗

a∗

)
x

180
π

+ 180, for a∗ < 0 (4)

hue = arctan
(

b∗

a∗

)
x

180
π

+ 360, for a∗ > 0 and b∗ < 0 (5)

Film opacity was also determined by direct reading of the absorbance of rectangular samples at
600 nm using a UV–vis spectrophotometer (Model Spekol 1500, Analytikjena, Germany) and calculated
according to Equation (6) [33].

Opacity
(
mm−1

)
=

absorbance 600 nm
sample thickness (mm)

(6)

Finally, film transparency was obtained from spectrum scans (from 190 to 900 nm) using a UV–vis
spectrophotometer of each film specimen. Air was used as reference and the results were expressed as
a percentage of transmittance [34].
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2.3.7. Contact Angle (CA)

Contact angle (CA) was measured using a goniometer (KSV Instruments Ltd., CAM 100, Finland)
with the software KSV CAM 100 at room temperature (25 ± 2 ◦C) on the bionanocomposites produced.
Film hydrophilic character was evaluated from water drop contact angles with their upper surface [5].

2.3.8. Solubility and Swelling Degree

The solubility in water (g/100 g of film) and the swelling degree (g/100 g of film) were determined
according to Souza et al. (2017) [27]. Briefly, film specimens were cut into a rectangle (2 × 2 cm) and
weighted (precision 0.0001 g) in an analytical balance (Mettler Toledo AB204, Switzerland), obtaining
the initial weight (M1); then samples were dried at 70 ◦C for 24 h in a natural conventional oven
(WTB binder, Germany), and were weighted to obtain the initial dry mass (M2). Subsequently, samples
were placed in Petri dishes containing 30 mL of Milli-Q water and stored for 24 h at room temperature
(25 ± 2 ◦C), in order to allow the swelling process. After this contact period, the specimens were
superficially dried with filter paper and weighted (M3) again. The residual film specimens were dried
in an oven at 70 ◦C for 24 h to determine the final dry mass (M4). Two measurements from each film
sample were taken, and the parameters calculate according to Equations (7) and (8).

% Solubility
(

g
100g

o f f ilm
)
=

(M2 −M4)

M2
× 100 (7)

% Swelling degree
(

g
100g

o f f ilm
)
=

(M3 −M2)

M2
× 100 (8)

2.3.9. Water Vapor Permeability (WVP)

The WVP (mol/m·s·Pa) was determined gravimetrically at 30 ◦C, based on the method described
by Ferreira et al. (2016) [5]. The tested films were sealed on the top of 45 mm diameter glass cells
containing 8 mL of saturated NaCl solution (relative humidity (RH) = 76.9%) and placed in a desiccator
with saturated potassium acetate solution (RH = 22.5 %) equipped with a fan to promote air circulation
and maintain constant driving force. Temperature and the relative humidity were monitored with a
thermohygrometer (Vaisala, Finland). The water transferred through the film and absorbed by the
desiccant was determined from weight loss of the permeation cell (measured every 1 h during 10 h),
and the WVP calculated by following equation (Equation (9)):

WVP =
NW × δ

∆Pw.e f f
(9)

where Nw (mol/m2
·s) is the water vapour flux, δ (m) is the film thickness and ∆Pw.e f f (Pa) is the

effective driving force. Results are the average ± standard deviation of the three replicates analyzed.

2.3.10. Oxygen Permeability (OP)

The OP was determined in a stainless steel cell with two identical chambers separated by the
tested film [5,35]. Tested films were previously equilibrated at 30 ◦C and relative humidity of 55% ± 5%
(desiccator containing saturated sodium bromide solution). The OP was assessed by pressurizing one
of the chambers (feed) up to 0.7 bar with pure oxygen (99.999% purity) (Praxair, Spain), followed by
the measurement of the pressure change in both chambers over time, using two pressure transducers
(Jumo, Model 404327, Germany). The system was kept inside a thermostatic water bath at 30 ºC
(Julabo, Model EH, Germany). The permeability was calculated using Equation (10):

1
β

ln
(

∆p0

∆p

)
= P

t
δ

(10)
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where ∆p (mbar) is the pressure difference between the feed and permeate compartment,
P (mol·m/m2

·s·Pa) is the gas permeability, t (s) is the time, δ (m) is the film thickness and β is
the geometric parameter of the cell [35].

2.4. Data Statistical Treatment

All experiments were conducted using a completely randomized design with three replications.
A statistical analysis of data was performed through a one-way analysis of variance using

OriginLab software version 8.5, and differences among mean values were processed by the Tukey test.
Significance was defined at p < 0.05.

3. Results and Discussion

3.1. X-ray Diffraction

The diffractograms of pristine MMT and pure chitosan films or films incorporated with sodium
montmorillonite and/or with ginger essential oil are shown in Figure 1. Montmorillonite exhibited
a characteristic reflection peak at about 2θ = 7.512◦, corresponding to a basal spacing between the
individual MMT layers of d001 = 1.18 nm. In the film incorporated only with MMT, the nanoclay
characteristic reflection peak has disappeared, probably as the result of a disordered configuration of
the lamellar structure not detectable by XRD, providing strong evidence that the clay nanolayers are
exfoliated [36,37]. The incorporation of GEO resulted in the shift of the characteristic montmorillonite
crystalline peak to smaller angles around 2θ = 5.02◦ (0.5% GEO), 5.18◦ (1% GEO) and 5.22◦ (2% GEO),
corresponding to a basal spacing between the individual MMT layers of d001 = 1.76; 1.71, and 1.69 nm
respectively. Similar values (2θ between 5.04◦ and 5.20◦), were found for the interplanar distance in
chitosan films incorporated with rosemary essential oil [16]. The increase of the distances between the
lamellae of the clay is an indication that the chitosan was able to intercalate between the MMT layers,
obtaining an intercalated structure [36,38]. However, ginger essential oil reduced chitosan dispersion
in the MMT galleries, probably due to structural changes in the polymer due to the interactions of the
phenolic compounds with the chitosan reactive groups [37].
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3.2. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

Figure 2 depicts the FT-IR spectra of the bionanocomposites produced. Chitosan characteristic
absorption bands were observed in all spectra, namely: at 3325 cm−1 (axial stretch of –OH); at
3265–3277 cm-1 (asymmetric stretch of the –NH group); at 2877–2925 cm−1 (C–H bond of the methyl group
–NHCOCH3); at 1638–1642 cm−1 (amide I); at 1551–1558 cm−1 (amide II); at 1342 cm−1 (skeletal vibration
involving the stretching of the C–N bond of amide III); at 1375–1412 cm−1 (–CH2 folding); at 906–1024
cm−1 (skeletal vibration involving the stretching of the C–O group); and at 1134 cm−1 (asymmetric
stretching of the C–O–C bridges) [29,39,40]. Overall, the incorporation of GEO or MMT did not result
in great differences in the spectra when compared to pristine chitosan film, probably due to the small
quantity incorporated, i.e., chitosan characteristic peaks have prevailed in all samples. However, small
changes in the intensities of the absorption peaks were recorded, which are attributed to the overlap of
chemical bonds, and thus an indication of the presence of strong interaction between the molecules of the
different components of the material (chitosan, MMT, and the active compounds present in GEO) [41].
The spectra of the films incorporated with GEO show a new peak between 1702–1703 cm−1 which
corresponds to the vibration of the C=O bond stretch, the increase in this peak intensity with increasing
oil concentration is an indication that there were interactions between the phenolic compounds present
in the essential oil and the hydroxyl and amine groups of chitosan [42]. The appearance of this new
peak as well as the displacement of peaks at different wavelengths (as observed between 860–880 cm−1

or 1250–1300 cm−1, for example) with the incorporation of GEO are indicative that new covalent bonds
between the chitosan and active compounds from GEO or MMT occurred [43]. These results corroborate
the observations obtained in the analyses of XRD and SEM as well as the modifications in the functional
properties of the films produced.
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Figure 2. ATR-FTIR spectra of chitosan (Ch)-based films (A) incorporated with: (B) MMT; (C) MMT +

0.5% GEO; (D) MMT + 1% GEO; and (E) MMT + 2% GEO.

3.3. Morphological Characterization

Scanning electron microscopy images in Figure 3 correspond to the surface (Figure 3A,C,E,G) and
cross-section (Figure 3B,D,F,G) of chitosan films and those containing MMT, 2% GEO, or 2% GEO + MMT.

The surface of the film showed high uniformity (Figure 3). However, the addition of GEO (2%)
caused a certain discontinuity in the topography of the films (Figure 3E), which was more evident
when MMT was also incorporated (Figure 3G). This less homogeneous surface (greater irregularity/less
smooth) may have been the result of the presence of droplets under the surface of the film (internal
aggregates) that changed the topography of the film.
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The cross-sections of the pristine chitosan film (Figure 3B) and chitosan + MMT (Figure 3D) show
high homogeneity of the polymer structure was obtained. The incorporation of MMT seems to have
contributed to make the network even more compact, being an indicative of achievement of high
interaction between chitosan and the nanoclay, which corroborates the XRD results. The incorporation
of 2% of GEO resulted in an internal structure with a “spongy like” pattern (Figure 3F), probably due to
the presence of internal oil droplets that also increases the surface coarseness [44]. When both oil and
MMT were incorporated (Figure 3H), there was a complete change in the network structure (with an
increase in the internal spacing), however with indications of greater interaction than in the film only
incorporated with GEO.

Figure 3F,H shows the cross section of chitosan + 2% GEO and chitosan + 2% GEO + MMT,
respectively; they are in the same amplification used for the images of pristine chitosan film (Figure 3B)
and chitosan + MMT (Figure 3D); however, it is noticeable that the formers have wider cross sections
(larger images). This observation is related to the increase in the thickness resulting from the
incorporation of the essential oil, which corroborates the results discussed in Section 3.5.
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3.4. Thermal Properties

The glass transition temperatures as well as the mass losses with their respective maximum
degradation temperatures were determined by the DSC and TGA assays, respectively.

The Tg of the films did not statistically change with the incorporation of MMT nor GEO (p > 0.05)
(Table 1), with an average value of 199 ± 14 ◦C. However, there was a tendency for Tg to decrease
with the incorporation of GEO and MMT, which is an indication of a greater relaxation of the
polymer chains, probably due to the plasticizing effect of the essential oil [45]. Similar results were
found for chitosan films incorporated with sodium montmorillonite and rosemary essential oil [16].
Moreover, this tendency also corroborates the mechanical results discussed in Section 3.5.

Thermogravimetric analysis is a technique where the mass of a substance is monitored as a function
of temperature increase under controlled conditions of temperature and atmosphere (usually under an
inert gas flow such as nitrogen) [46]. The thermal degradation temperatures (Td), mass losses (% ∆M)
and the sample residues (%) are shown in Table 1.

Regarding the thermal degradation process, two different behaviors were observed, namely: for
the films without incorporation of GEO, three thermal degradation events were registered, whereas for
biopolymers incorporated with GEO, four stages were found. Similar behavior was observed in
chitosan films incorporated with Satureja hortensis essential oil [14].

The first thermal event occurred in average temperatures between 59.6 ◦C and 70.9 ◦C with mass
losses between 4.1% and 6.5%. The mass loss in this first stage is related to the evaporation of the water and
residual acetic acid present in the polymer matrix. The lower mass loss observed for the films incorporated
with GEO was probably due to the lower water content resulting from the incorporation of the hydrophobic
compounds present in the essential oil [47]. The second thermal degradation stage (135.5 ◦C–183.4 ◦C)
corresponded to a loss of mass between 11.1% and 16.6% and is related to the decomposition of low
molecular weight or structurally bonded components to water in the chitosan network [14].

The third, and largest mass loss (19.9%–33%) occurred at temperatures between 283.5 ◦C–290.8 ◦C
and is associated with the degradation of chitosan (the main component of the bionanocomposites),
i.e., it is associated with the dehydration of the saccharide ring, depolymerization, and pyrolytic
decomposition of acetylated or deacetylated chitosan units [14,36]. The incorporation of GEO slightly
increased the thermal stability of the film since the maximum degradation temperature at this stage
was higher in films incorporated with the essential oil. These results are in good agreement with
those observed in chitosan-carboxymethyl cellulose films which were also incorporated with ginger
essential oil [48]. Those authors attributed the increase in thermal stability to the increase in the
organization of the polymer matrix (i.e., to a more homogeneous structure) with the incorporation of
GEO, which resulted in higher temperatures of thermal degradation [48].

The fourth and final stage of degradation occurred between 397.1 ◦C and 409.5 ◦C, and only
for the films incorporated with GEO. This stage is related to the degradation of the thermally stable
compounds present in the GEO, as also observed by Alizadeh et al. (2018) [14].

The incorporation of MMT acted as a thermal barrier, providing lower mass losses, as can be
observed in the final residue of the thermal process. The increase in thermal stability induced by the
addition of clays to polymer composites is commonly observed and is related to the level of dispersion
and the aspect ratio obtained [13]. Exfoliation/intercalation of the clay layers between the polymer
matrix increases the tortuosity of the combustion gases diffusion pathway, favoring the formation
of a protection on the surface of the material (thermal insulation), contributing to the increase in
degradation temperatures [11,13]. This finding is in agreement with a previous study [49].

The thermal decomposition residues of biopolymers at the end of the heating cycle (up to 900 ◦C)
incorporated with GEO were lower compared to the control, whereas the composites with MMT increased
the amount of ash. Similar behaviors were reported in the literature—Alizadeh et al. (2018) [14] observed the
decrease of mineral residue with the incorporation of essential oil in chitosan films, whereas Rimdusit et al.
(2008) [50] reported a slight increase in the amount of ash in the methylcellulose biopolymers incorporated
with montmorillonite and attributed this increase to the inorganic clay characteristic.
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Table 1. Summary of the thermal analyses results of active bionanocomposites.

Film Tg (◦C) ∆1 ∆2 ∆3 ∆4
Residue (%)

Td (◦C) ∆M (%) Td (◦C) ∆M (%) Td (◦C) ∆M (%) Td (◦C) ∆M (%)

Ch 206.7 ± 3.7 ns** 70.9 ± 2.5 6.5 ± 0.0 170.1 ± 1.5 12.6 ± 0.8 283.6 ± 0.7 24.3 ± 0.6 − − 23.6 ± 0.4
Ch + MMT 188.9 ± 6.7 ns 63.6 ± 2.4 6.4 ± 0.8 173.2 ± 0.8 14.0 ± 0.8 283.5 ± 0.5 23.2 ± 0.2 − − 25.8 ± 0.1

Ch + 0.5% GEO 202.2 ± 2.7 ns 65.6 ± 2.4 6.1 ± 0.2 174.1 ± 2.1 13.7 ± 0.1 284.0 ± 1.0 20.4 ± 0.4 407.4 ± 5.6 26.6 ± 0.6 18.0 ± 0.1
Ch+MMT + 0.5% GEO 202.8 ± 5.4 ns 64.0 ± 0.0 6.2 ± 0.3 168.4 ± 3.2 11.5 ± 0.6 284.0 ± 0.9 20.4 ± 0.0 407.8 ± 0.4 26.9 ± 0.4 20.2 ± 0.4

Ch + 1% GEO 194.4 ± 7.1 ns 63.2 ± 1.5 4.9 ± 0.2 167.4 ± 1.3 11.1 ± 2.7 284.1 ± 2.5 19.9 ± 1.7 397.1 ± 6.2 27.1 ± 5.7 16.9 ± 0.8
Ch + MMT + 1% GEO 196.2 ± 3.4 ns 64.8 ± 1.9 4.7 ± 0.1 172.6 ± 3.7 16.1 ± 0.3 290.8 ± 1.1 25.2 ± 0.4 409.5 ± 2.6 26.9 ± 0.8 17.7 ± 0.3

Ch + 2% GEO 195.5 ± 4.8 ns 59.6 ± 6.3 4.1 ± 0.2 135.5 ± 3.2 13.1 ± 1.3 284.8 ± 0.7 33.0 ± 0.5 407.1 ± 3.2 25.0 ± 0.6 14.2 ± 1.0
Ch + MMT + 2% GEO 194.3 ± 6.8 ns 63.7 ± 0.9 5.0 ± 0.2 183.4 ± 2.5 16.6 ± 0.6 287.7 ± 0.5 23.2 ± 0.9 408.7 ± 3.1 25.9 ± 0.6 18.0 ± 0.4

Chitosan (Ch); sodium montmorillonite (MMT); ginger essential oil (GEO); glass transition temperature (Tg); decomposition temperature (Td); mass loss (∆M). ** ns: non-significance
statistical difference (p > 0.05).
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3.5. Thickness and Mechanical Properties

The incorporation of MMT did not statistically change the film thickness (p > 0.05; Table 2).
However, in general, the thickness of the films incorporated with MMT were slightly lower than those
found for the films without nanoreinforcement, and in some cases this difference was statistically
significant (chitosan + MMT + 0.5% GEO or 2% GEO) (p < 0.05). As verified in the XRD assay, the films
incorporated with MMT and GEO showed evidence of obtaining an intercalated (partially exfoliated)
configuration, characterized by the formation of strong bonds between the polymer and the clay due to
penetration of the chitosan chains [51], allowing the formation of a compact structure which minimized
the increase in thickness due to the incorporation of GEO.

On the other hand, the incorporation of GEO resulted in a significant increase in the film thickness;
moreover, a concentration effect was also observed, i.e., the greater the GEO content incorporated, the greater
the thickness of the samples (p < 0.05; Table 2). This behavior can be explained by the higher content of
solids per unit area [52], or due to the interactions between the chitosan and the active compounds present in
the bioactive extracts that may have reduced the alignment of the polymer chains, reducing the compression
of the formed network [47] and consequently increasing the thickness of the films.

Peng and Li (2014) [53] observed an increase in the thickness of chitosan films due to the
incorporation of 1% of three different essential oils. Pure chitosan film had an average thickness
of 77 µm whereas in treatments incorporated with citronella, thyme, or cinnamon essential oils,
the recorded thicknesses were 97, 101, and 99 µm, respectively. That is, an increase of about 30%
compared to the control. In our results, for the same essential oil content, the films showed an increase
in thickness of about 62%. In another study, also with chitosan films incorporated with a mixture of
ginger and cinnamon essential oils (1:1) in different concentrations (0.05%, 0.2%, or 1%), the thickness
of the films produced varied significantly due to the addition of EOs (between 68 and 105 µm) [54].
This variation represents a 54% increase in the thickness with the addition of 1% of the mixture of the
oils used, which is a result close to the 62% found in the present work.

The most common parameters that describe the mechanical properties of edible films are the
maximum tensile strength at break (TS), the elongation at break (%EAB) and the elastic or Young’s
modulus (EM), which are strongly related to the chemical structure of the material. The TS indicates
the film strength, %EAB corresponds to the material’s deformation capacity, while EM evaluates the
film rigidity [44,55]. Improved mechanical properties, structural integrity, and better flexibility are
expected in polymer-based composite materials [56].

The results of the mechanical parameters evaluated (TS, %EAB and EM) are shown in Table 2. In the
films where the natural extract was not incorporated (chitosan and chitosan + MMT) the nanoclay increased
the tensile strength of the biopolymers as well as their plasticity (p < 0.05), without, however, interfering
with the stiffness of the samples (p > 0.05; Table 2). This can be attributed to the uniform dispersion of
MMT in the chitosan matrix (i.e., achievement of an exfoliated or intercalated conformation) and the strong
interaction between the polymer and montmorillonite, as previously discussed.

The incorporation of ginger essential oil resulted in films that were less resistant to traction, more
elastic, and less rigid. Regarding TS, there was a reduction between 0.6% and 31.6% (for films containing
between 0.5% and 2% GEO; Table 2). The incorporation of MMT did not result in difference in the
TS of the films also incorporated with GEO (p > 0.05). The incorporation of lipids into the polymeric
matrix of films induces the formation of heterogeneous and discontinuous structures, which affect the
mechanical resistance of the polymers by the partial replacement of the strong polar chemical bonds
chitosan–chitosan (between the chitosan molecules) by weaker interactions between chitosan–GEO
(active molecules present in GEO) [23].
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Table 2. Summary of thickness, mechanical properties, contact angle, water solubility and swelling degree of active bionanocomposites.

GEO (%)
Thickness (µm) Tensile Strength (MPa) EAB (%) Elastic Modulus (GPa)

0% MMT 2.5% MMT 0% MMT 2.5% MMT 0% MMT 2.5% MMT 0% MMT 2.5% MMT

0 41.7 ± 2.9 Da* 39.5 ± 2.0 Ca 46.7 ± 1.7 Ab 66.6 ± 3.1 Aa 17.9 ± 1.2 Bb 33.5 ± 2.5 Aa 2.05 ± 0.19 Aa 1.86 ± 0.14 Aa

0.5 55.5 ± 1.3 Ca 52.5 ± 0.6 Bb 46.3 ± 5.1 Aa 42.0 ± 4.2 Ba 23.8 ± 5.3 ABa 22.3 ± 2.9 Ba 1.66 ± .012 Aa 1.30 ± 0.30 Ba

1.0 68.2 ± 3.1 Ba 67.4 ± 1.1 Aa 27.2 ± 5.8 Ba 34.6 ± 1.0 BCa 36.0 ± 9.4 Aa 33.1 ± 2.3 Aa 0.30 ± 0.09 Cb 0.88 ± 0.13 BCa

2.0 81.3 ± 4.5 Aa 68.6 ± 0.9 Ab 32.1 ± 3.9 Ba 30.3 ± 0.7 Ca 33.6 ± 6.6 ABa 35.8 ± 1.3 Aa 0.71 ± 0.15 Ba 0.47 ± 0.05 Ca

GEO (%)
Water Solubility (%) Swelling Degree (%) Contact Angle (Degrees)

0% MMT 2.5% MMT 0% MMT 2.5% MMT 0% MMT 2.5% MMT

0 23.1 ± 1.6 Aa 20.4 ± 0.6 Bb 132.3 ± 10.0 Ab* 192.2 ± 13.3 Aa 70.9 ± 4.0 Ab 90.6 ± 5.5 Aa

0.5 20.3 ± 0.4 Ab 21.9 ± 0.6 Ba 124.6 ± 3.5 Aa 35.1 ± 20.7 Cb 70.3 ± 7.5 Aa 68.6 ± 1.6 Ba

1.0 16.4 ± 0.4 Bb 18.7 ± 0.2 Ba 97.8 ± 18.2 Ba 97.0 ± 13.4 Ba 66.6 ± 5.5 Aa 70.9 ± 3.2 Ba

2.0 19.6 ± 2.1 ABa 23.5 ± 2.4 Aa 87.0 ± 2.5 Ba 54.7 ± 20.5 BCa 57.2 ± 1.9 Ba 63.8 ± 7.6 Ba

(A–D): Within each parameter, values in the same column not sharing upper case superscript letters indicate statistically significant differences among formulations (p < 0.05). (a–b): Within
each parameter, values in the same line not sharing lower case superscript letters indicate statistically significant differences among formulations (p < 0.05). Ginger Essential Oil (GEO);
Sodium Montmorillonite (MMT); Elongation at break (EAB).
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Several authors reported a reduction in TS of different biopolymers due to the incorporation of
essential oils into their structure (ginger and cinnamon EOs in sodium caseinate films [57]; oregano EO
in triticale protein films [58]; thyme, rosemary, and oregano EOs in polylactic acid (PLA) films [59],
or essential oils extracted from roots (gingers and saffron) incorporated into gelatin films extracted
from fish skin [47]). This behavior was also observed, however with less intensity in chitosan films
incorporated with REO [16], probably due to the different chemical compositions of the oils [23].

Regarding the elongation at break, the incorporation of GEO resulted in films with increased
extensibility (p < 0.05), probably due to the discontinuity of the polymer matrix due to the weaker
interactions between chitosan molecules and essential oil components, such as discussed above.
The incorporation of MMT, again, did not result in changes in this property (p > 0.05), as the %EAB of
the films with the same concentrations of GEO, incorporated with MMT or not, did not differ from
each other (Table 2).

Therefore, the ginger essential oil probably acted as a plasticizer, as it decreased the strength
of the films while increasing their plasticity (ability to stretch before tearing/breaking). In addition,
this plasticizing effect of EOs in biopolymers is influenced by the contents of the extracts incorporated
in the polymer matrix [47]; as observed in the results (Table 2), greater changes in the mechanical
properties were observed with the higher GEO concentrations incorporated.

Materials with lower tensile strength and higher plasticity (%EAB) are also less rigid, which was
also observed for chitosan films with the incorporation of GEO (statistically reduced the elastic modulus,
p < 0.05; Table 2). Similar behavior was also observed in chitosan films incorporated with cinnamon
essential oil [52] or in PLA films incorporated with different types of essential oils [59].

According to Zeid et. al. (2019) [59], it is difficult to compare results with different types of
materials and additives under different processing conditions; thus, it is crucial to have more available
data regarding these novel materials. Furthermore, the application of other techniques to study the
rheology of the film form dispersion may contribute with valuable information for understanding the
materials’ behavior, as it will influence their final specific application [56].

3.6. Optical Properties

It is important to study the optical properties of food contact material because these may interfere
on consumer acceptance of the food packaged, as the film can affect the general appearance of the
product inside the packaging [53].

Optical properties are shown in Table 3. The incorporation of GEO or MMT decreased the hue
value (i.e., films with a more yellow color) while increasing film opacity and color saturation (i.e., greater
chromaticity, p < 0.05). Similar results were observed in bionanocomposites of chitosan/montmorillonite
incorporated with REO [16], as well as those reported for chitosan films incorporated with cinnamon
EO [52], citronella, or thyme EOs [53].

The chemical bonding of different molecules to the polymer chain also modifies the properties of
the material in terms of light absorption [60], as observed in chitosan films incorporated with natural
extracts rich in phenolic compounds [61]. According to Acevedo-Fani et al. (2015) [44], the oil droplets
present internally in the polymer matrix can increase the light scattering at the interface of the droplets,
resulting in an increase in the opacity values of the material.

Figure 4 depicts the scanning spectra of the percentage of light transmitted through the film between
wavelengths of 190–900 nm. Both the incorporation of GEO and MMT reduced the transparency of the films.
A high barrier to UV light (wavelengths less than 350 nm) is desirable in food packaging materials since these
can be applied to the preservation of oxidative processes [17]. However, in the wavelengths of visible light,
the greater the opacity of the material, the worse is its acceptance by the consumer (who always looks for
transparent films capable of exposing the packaged product) [53]. Thus, the bionanocomposites produced
have this disadvantage from the visual point of view, despite the positive aspect of greater protection of the
packaged food (against light, as a secondary antioxidant material).
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Table 3. Summary of barrier and optical properties of the active bionanocomposite.

Film WVP (10−11

mol/m·s·Pa)
OP (10−16

mol/m·s·Pa) Cromaticity Hue * Opacity

Ch 1.40 ± 0.09 C* 0.184 ± 0.052 DE 3.1 ± 0.1 D 129.0 ± 1.0 A 1.1 ± 0.2 C

Ch + MMT 1.75 ± 0.10 BC 0.098 ± 0.008 F 4.2 ± 0.4 C 118.8 ± 1.8 B 1.7 ± 0.3 C

Ch + 0.5% GEO 1.93 ± 0.36 ABC 0.182 ± 0.008 DE 5.8 ± 0.3 B 112.3 ± 0.6 C 2.6 ± 0.1 B

Ch + MMT + 0.5% GEO 1.94 ± 0.27 ABC 0.171 ± 0.001 E 6.8 ± 0.6 B 109.8 ± 1.4 CD 3.1 ± 0.7 B

Ch + 1% GEO 1.95 ± 0.21 ABC 0.255 ± 0.010 BC 7.0 ± 0.8 B 110.2 ± 1.3 CD 4.1 ± 0.1 AB

Ch + MMT + 1% GEO 2.12 ± 0.08 AB 0.246 ± 0.013 CD 8.0 ± 0.2 AB 107.9 ± 0.1 DE 5.0 ± 0.2 AB

Ch + 2% GEO 1.94 ± 0.10 ABC 0.325 ± 0.037 A 9.6 ± 1.9 A 107.1 ± 1.8 DE 4.2 ± 1.4 AB

Ch + MMT+ 2% GEO 2.41 ± 0.16 A 0.285 ± 0.015 AB 9.7 ± 1.3 A 105.1 ± 0.7 E 6.2 ± 1.8 A

(A–E): values in the same column not sharing upper case superscript letters indicate statistically significant differences
among formulations (p < 0.05). Chitosan (Ch); ginger essential oil (OEG); sodium montmorillonite (MMT); oxygen
permeability (OP); water vapor permeability (WVP).
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3.7. Solubility in Water, Swelling Degree and Contact Angle

The study of the film’s solubility in water, contact angle, and swelling degree with water plays
an important role when developing novel materials for food applications, as it provides insights on
material behavior in contact with aqueous food matrices and understanding of its resistance under this
conditions [16,62].

The water solubility of bionanocomposites was affected by both factors evaluated (the incorporation
of GEO and MMT; Table 2). Without the incorporation of MMT, only the films added with 1% of GEO
presented lower values of solubility in water (p < 0.05) in comparison with the control film, probably
due to phenolic compounds (present in GEO) cross-linking in the chitosan chain [27,63] that reduced
the release of polymer toward the water. Similar results were reported in the literature for biopolymers
incorporated with natural compounds [51,64]. When GEO and MMT were incorporated into the films,
only for samples with higher GEO content showed a significant increase in this parameter (p < 0.05).
In general, MMT when associated with GEO contributed to an increase in the water solubility of the
films, whereas in the films with GEO but without addition of the nanoclay, a tendency was observed
for the decrease in this parameter.

Regarding the films’ ability to absorb water, the incorporation of GEO resulted in a decrease
in the swelling index (p < 0.05). The addition of montmorillonite enhanced even more the effect
of diminishing the films’ water-absorbing capacity. The formation of crosslinks between the active
compounds of GEO and chitosan, as well as the good interaction of sodium montmorillonite with
chitosan (due to the intercalated conformation achieved) and GEO, are responsible for the decrease
in the ability of the films to absorb water. The chemical interactions created in the polymer matrix
block the reactive groups of the chitosan from reacting with the water, thus diminishing its capacity to
absorb it [27,36,39,64].

Analyzing the contact angle of the films without the nanofiller, a tendency to increase film surface
hydrophilicity (reduction of CA) with the incorporation of GEO was observed; however this difference
was only statistically significant for the films with the highest concentration of GEO (2%, p < 0.05;
Table 2). For the films incorporated with both GEO and MMT, a decrease in the contact angle was
also observed; however, in this case, the differences were statistically significant when compared to
chitosan + MMT (p < 0.05), but not within different levels of GEO (p > 0.05). These results indicate the
presence of hydrophilic substances on the surface of the films, probably phenolic compounds of GEO
that enhanced the interaction with the water droplets [65].

3.8. Barrier Properties

It is desirable that packaging materials exhibit good barrier properties (against light, gases, or
water vapor) in order to perform their function as outer physical protection against the external
environment, enabling the shelf life extension of the food products packaged [3,66].

Chitosan, a cationic polysaccharide, is a polymer with strong interactions in the polymer chain,
which often restrict/decrease its movement, resulting in good oxygen barriers [67]. However, hydrogen
bonds with water are also likely to happen, and water absorption occurs (water absorption breaks the
intermolecular interactions between the polymer chains), so under conditions of high relative humidity
the transmission rates increase, and consequently the permeability as well [68].

The film’s water vapor permeability did not vary with the incorporation of MMT or GEO (p > 0.05),
except for the film chitosan + 2% GEO + MMT that presented a lower barrier to water vapor when
compared to chitosan or chitosan + MMT films (p < 0.05); however, this difference was not significant in
relation to the other films also incorporated with GEO or GEO + MMT (p > 0.05; Table 3). Similar results
were reported in a recent study with PLA incorporated with different essential oils at 10% (w/w) [59],
the authors used thyme, rosemary, or oregano EOs to add antioxidant properties to the bio-based films
and did not found statistical differences in the composites’ WPV.

Despite the non-statistical differences in the WPV, a tendency of increase in permeability by the
incorporation of both GEO and MMT was observed (Table 3). However, the effect of the GEO concentration
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on this change was not observed when MMT was not incorporated (WPV of films without MMT but with
different levels of GEO were practically the same, around 1.94 × 10−11 mol /m·s·Pa).

Contrary to what was observed, the incorporation of hydrophobic substances (such as oils) in the
films should reduce the WPV, since the water vapor transfer process depends on the ratio between
hydrophilic/hydrophobic constituents [69]. However, similar results were found by Atarés et al.
(2011) [68], who observed an increase in WPV of hydroxymethyl cellulose films incorporated with
GEO when the tests were performed at 35 ◦C, a similar temperature to the one used in our assay.
According to these authors, the physical state in which the essential oil is found is a determinant in
the effects caused in the WPV. For low temperatures, a decrease in permeability occurs, whereas for
higher temperatures, when the oil is in the liquid state, it can favor the molecular mobility of the
polymer chain, promoting the transport of molecules through the emulsified film [68]. Perdones et al.
(2014) [52] attributed the increase in WPV of chitosan films incorporated with cinnamon essential oil to
the possible interactions between the EO and chitosan components that made the polymer matrix more
open to the transport of water molecules, and, at the same time, they plasticize the film. These results
corroborate with the present WPV observed for the bionacomposites produced.

Regarding oxygen permeability, the incorporation of GEO reduced this gas barrier (Table 3). Similar
results were observed when rosemary essential oil was incorporated in chitosan/montmorillonite
composites [16]. It is possible that GEO acted as a plasticizer to the chitosan films, as it increased
the elongation capacity of the material (%EAB, as previously discussed), thus increasing both the
permeability to oxygen and to water vapor. The plasticizers act as an internal lubricant, reducing the
frictional forces between the polymer chains, and increasing the intermolecular space, thus allowing a
greater mobility of the polymer chains and consequently facilitating the transport of gases [52,70].

A similar behavior was observed in chitosan films incorporated with cinnamon essential oil [52],
and in films of hydroxypropylmethyl cellulose incorporated with GEO [68]. The liquid state of the
essential oils as well as their hydrophobic character facilitate the transport of the oxygen through the
film due to the increase of its solubility in the polymer matrix [68]. Montmorillonite helped to reduce
the negative effect of incorporating GEO into the oxygen barrier. However, compared with commercial
EVOH film, which is considered to be one of the best oxygen barrier packages, films incorporated with
GEO exhibit OP in the same order of magnitude as EVOH (0.24 × 10−16 mol/m·s·Pa) [71], demonstrating
the potential of these films to protect against exposure to oxygen, and consequently to oxidative
processes catalyzed by this gas. These results are in line with the results obtained from fresh poultry in
an in situ study [28], in which samples wrapped with these bionanocomposites maintained their color
and pH values and the thiobarbituric acid reactive substance index (TBARS) increased at a lower rate,
helping to extend poultry meat shelf-life.

4. Conclusions

Homogeneous, transparent, yellowish, thin bionanocomposite films were successfully produced
by casting. Furthermore, the homogenization process used to produce the films has proven to be
adequate in achieving a good exfoliation of the MMT into the polymer chains. The good interaction
between the composite’s components (chitosan, MMT, and GEO constitutes) was demonstrated
by the microscopy images, XRD, and FTIR results. The incorporation of GEO resulted in some
irregularities on the film surface and changed the internal structure into a more “sponge like” shape.
Overall, the incorporation of GEO resulted in films less resistant and more plastic, with lower barrier
properties. However, the incorporation of MMT counterbalanced this effect. Thus, this work also shows
that the incorporation of EOs into food packaging polymeric matrices is an interesting approach, as it
reduces the EO amount necessary for preserving the foodstuff, therefore reducing costs and overcoming
the aroma problem generally related to the directly incorporation of EOs into food. These novel
bionanocomposites, therefore, have potential to be used as active packaging to preserve food products,
but their application should also take into consideration their physical properties.
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