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Abstract: The chemical routes of metal oxidation in presence of hydrogen peroxide solutions are
tailor-made for the synthesis of biocompatible metal oxide surfaces with clean intermediate and end
products, such as oxides, hydroxides, hydrogen and water. The hydrolysis of titanium in hydrogen
peroxide solutions is particularly interesting for medical applications, forming micro- and nanoscale
titania surfaces. In this paper, the content of the hydrolysis solution is revised, allowing the fabrication
of gas sensor devices based on nanoporous titania. Nanopore and microcrack formations were
discussed in detail by monitoring the structural changes on the thin film surface with field-emission
scanning electron microscopy (FE-SEM). A stable rutile crystalline phase was detected by glancing
incidence X-ray diffraction (GI-XRD) measurement after repetitive hydrothermal processes. Electrical
conductance measurements were carried out at high temperatures (400–600 ◦C) under humid airflow
(40% RH@20 ◦C) with the injection of various concentrations of a wide set of test compounds (C2H3N,
CO, H2, NO2, C2H6O), to observe the sensing capabilities of the material. Furthermore, the humidity
effects on the sensing properties toward H2, CO, and C2H6O have been discussed.
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1. Introduction

Metal oxides (MOXs) have played a big role in the development of technologies in various industrial
applications. The huge progress in nanofabrication methods has boosted their use by introducing
various cost-effective and reliable synthesis routes, especially with bottom-up approaches [1].
Nanofabrication has not only exploited their surface properties, but also allowed them to be integrated
in small and portable devices. Among these MOX nanostructures, intrinsically multi-functional ones
have attracted much more attention than others. For instance, titanium dioxide (TiO2) nanostructures
are one of these extremely useful materials. Titanium dioxide nanostructures have found various
applications, as photocatalysts [2], biosensors [3], optoelectronics [4] and many more [5–8]. In most
cases, the synthesis method for these structures is the hydrothermal process, because it is a low-cost,
low-temperature and environmentally friendly process [9]. In particular, the hydrolysis of Ti in alkaline
solutions and the hydrations of Ti salts are common ways for the hydrothermal synthesis of TiO2

nanostructures [10]. The availability of various alkaline solutions (NaOH, KOH, etc.) and Ti salts
(TiCl4, etc.) offers the possibility of obtaining TiO2 nanostructures with various morphologies, exhibiting
different crystalline structures and surface properties, making them perfect candidates for gas sensor
applications. On the other hand, the single-step hydrolysis of Ti in hydrogen peroxide (H2O2) solution
has been drawing attention, especially in biomedical applications, since having multi-step processes
involving various chemicals always carries some contamination risks. Tengvall et al. have worked
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extensively on the interaction between Ti and peroxide solutions for biomedical implants [11–16].
In other studies, nanostructured titania gels and their crystallization processes have been investigated
according to the effects of the solvent [17,18], additional chemicals [19–21], and temperature [22].
Radtke et al. studied in detail the photocatalytic properties and the biocompatibility of titania and
titania alloy surfaces synthesized by hydrogen peroxide solutions and its derivatives [23–26]. Wu and
Qi reported the synthesis of titania nanorods with the help of precursors [27]. Recent studies have
shown that it is possible to detect some organic molecules by using the photocatalytic properties of
nanostructured titania, synthesized in hydrogen peroxide [28,29]. All these findings have revealed
the possibility of fabricating biocompatible titania-based organic sensors in near future. In this study,
conductometric gas sensor application has been presented as a pioneer example of the use of these
biocompatible sensing surfaces. The amounts of hydrogen peroxide solution and the titanium film
thickness have been optimized to fabricate nanoporous TiO2 directly on the active area of the sensors.
This optimization is essential for obtaining proper device integration, avoiding the transfer of the
nanoporous layer, and thus increasing the mechanical stability of the devices.

The high electrical resistance of bare TiO2 nanostructures has restricted their applications in the gas
sensing field [30]. In some studies, the use of pure nitrogen or argon as carrier gases, instead of synthetic
air, has been a practical solution to keep electrical resistance in a favorable range for the investigation
of the sensing properties. On the contrary, high percentages of oxygen, which are normally present in
air, increase the electrical resistance of bare titania nanostructures to very high values, which requires
complex and accurate electronics [30–34]. These studies have definitely contributed in explaining
the gas sensing properties of titania, and may also have found some interesting application areas,
but it is essential to understand how these sensors work in real-life conditions for practical usage.
In other studies, TiO2 nano-heterostructured materials (by doping, surface modifications, etc.) have
been attracting attention, since most of them have been successful in reducing their high intrinsic
electrical resistance to feasible values for device integration [31,35–39]. Despite these developments,
the gas sensing properties of bare TiO2 nanostructures have not been studied properly for practical
use, and there are still some missing parts that prevent real-life applications. Herein, we report the
intrinsic sensing properties of nanoporous titania, which have been investigated by conductometric
measurements at high temperatures (400–600 ◦C) in dry and humid (40% RH@20 ◦C) air flows towards
a wide set of target compounds (C2H3N, CO, H2, NO2, C2H6O).

2. Materials and Methods

2.1. Synthesis of Nanoporous TiO2

Polycrystalline alumina substrates (2 mm × 2 mm, 99% purity, Kyocera, Japan) were used for
the deposition of Ti films and the fabrication of chemical sensing devices. Substrates were cleaned in
an ultrasonic bath using acetone, ethanol and deionized water, for 5 min each one. Ti films of two
different thicknesses (100 nm and 1 µm) were deposited on the substrates by RF magnetron sputtering
(Kenotec, Italy). The depositions were carried out at 300 ◦C and a pressure of 6.6 × 10−3 mbar, with 75 W
RF magnetron power (Ar plasma). The synthesis of the nanoporous surface was performed by soaking
the samples into a 15 mL H2O2 solution, systematically diluted from 15% to 2% at 80 ◦C for 20 h in
a home-made hydrothermal reactor. Oxidation processes on each sample were repeated three times to
get totally bleached surfaces. The samples were finally annealed in a furnace, working at atmospheric
pressure, at 450 ◦C for 4 h, to enhance their crystallization and stability. The experimental process is
summarized in Table 1.

Table 1. Hydrothermal treatment process for each sample.

Samples Hydrothermal Solution Hydrothermal Temperature Hydrothermal Time Repeated Cycle Calcination

Ti film 1 µm 15% H2O2 (aq) 80 ◦C 20 h 3 450 ◦C 4 h
Ti film 100 nm 2% H2O2 (aq) 80 ◦C 20 h 3 450 ◦C 4 h
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2.2. Sample Characterization

The surface morphologies were examined using a FE-SEM (Leo 1525 Gemini model; Carl Zeiss
AG, Oberkochen, Germany) connected to an energy dispersive X-ray spectrometer (EDX, Oxford, UK),
operated in the potential range of 0–10 kV. The crystalline phase was identified by XRD measurements
(Empyrean diffractometer, PANalytical, Netherlands) carried out using Cu-LFF tube (λ = 1.5406 Å)
operated at 40 kV/40 mA. The incident angle in glancing angle mode was 1.5◦ and the spectra were
recorded by using a proportional Xe detector in the range of 20◦–50◦.

2.3. Preparation and Testing of Gas Sensors

To perform the gas functional measurements, the samples were equipped with electrical contacts
on the top of the titania layer, while heaters were deposited on the backside of the alumina substrates
by magnetron sputtering technique. Firstly, TiW and Pt contact pads were deposited to increase
the adhesion, at 75 W DC power (Ar plasma), 6.6 × 10−3 mbar working pressure at 300 ◦C for
3 min, respectively. Afterwards, Pt interdigitated transducers (IDT) were deposited under the same
temperature, pressure and DC power conditions for 20 min (≈1 µm thickness). The same procedure
was used for the deposition of the heating element on the backside of the samples.

The functional testing system is characterized by a climatic chamber (Angelantoni, Italy, model
MTC 120), whose role is to keep the stainless-steel test chamber at a constant ambient temperature
(20 ◦C). To control the working temperatures of the sensors, the heating element of each device is
powered by Thurlbly Thandar PL330DP power supplies. A Dreschel bottle, placed in a thermostatic
bath set at 25 ◦C, generates a saturated humid airflow, which is then mixed with synthetic dry air to
achieve the desired level of relative humidity (RH). The measurements were carried out at a humidity
level of 40% with a flow of 200 sccm. The devices were exposed to several injections of different
concentrations of hydrogen (H2), ethanol (C2H6O), carbon monoxide (CO), nitrogen dioxide (NO2)
and acetonitrile (C2H3N), at working temperatures between 400 to 600 ◦C. Each gas was kept flowing
inside the chamber for 30 min and then, to recover the baseline, the airflow was restored for 60 min.
A schematic configuration of experimental process and measurement set up is given in Figure 1.
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A voltage of 1 V was applied to the active layer using an Agilent E3631A power supply.
The electrical conductance value of each device, crucial to determine the sensors response, was
recorded by dedicated picoammeters (Keithley 486). The following equations (Equations (1) and (2))
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highlight the relationship between the response of the sensors and the variations of the electrical
conductance caused by the presence of oxidizing or reducing gas, respectively (for n-type):

Response (R) =
Gair −Ggas

Ggas
(for oxidizing gases) (1)

Response (R) =
Ggas −Gair

Gair
(for reducing gases) (2)

Gair and Ggas represent the conductance values of devices under synthetic airflow and in the presence
of injected gas, respectively. Sensor response time (tres) is defined as the time interval needed to reach
a conductance value of 90% of [Ggas − Gair] after the gas injection. Similarly, recovery time (trec) is the
time interval needed to reach a conductance value reach of 90% of [Ggas − Gair] after restoring the
airflow. The calculations for R, tres, and trec were performed by an analysis program written according
to the above equations and methods.

3. Results and Discussions

3.1. Characterization Results

Hydrogen peroxide (H2O2) solutions were diluted more than in previous studies in order to
protect the structural integrity of the Ti thin films [40]. A dense and homogeneous formation of
nanoporous TiO2 was observed on the surface of the samples prepared using a 1 µm Ti thin film in
15% H2O2 solution, as reported in Figure 2a. Similar results were obtained using a 100 nm Ti thin film
in 2% H2O2 solution, as reported in Figure 2b. Micro-cracks on the surface were observed in thicker
thin films with higher peroxide concentrations. The use of thinner films and a lower concentration
of hydrogen peroxide solution seemed to be effective on reducing the size of the cracks. Moreover,
more dollops were attained on the surface with higher concentrations and thicker Ti films, as shown in
Figure 2a. Therefore, nanoporous TiO2 layers synthesized by the oxidation of 100 nm Ti thin films in
2% H2O2 solution were selected as the optimal morphology for gas sensor devices. The hydrothermal
process was repeated three times (20 h each) until the nanoporous TiO2 films were totally bleached.
Sun and Wang described the possible chemical reactions (Equations (3)–(8)) that could occur during
H2O2 oxidation [40]. Those reactions are reported below:

Ti + H2O2 → TiO2 + H2 (3)

2H2O2 → 2H2O + O2 (4)

TiO2 + 2H2O→ Ti(OH)4 (5)

TiO2 + nH2O→ TiO2nH2O (6)

(Ti−OH) + H2O→ [Ti−O]− + H3O+ (7)

TiO2nH2O + OH− → HTiO−3 nH2O (8)

At low temperature, Ti reacts with hydrogen peroxide, forming titania phases (Equation (3)).
At higher temperatures, some TiO2 is hydrolyzed due to the effects of hot water and H2O2 (Equations
(4)–(5)). Hydration reaction with TiO2 takes place simultaneously, forming Ti–OH functional groups
(Equation (6)). Hydrated and hydrolyzed TiO2 cause the formation of negatively charged surfaces
(Equations (7)–(8)), which are involved in the formation of nanoporous structures.

In addition to morphological analysis, EDX measurements were carried out on the samples
to determine elemental composition and to detect possible contaminants. Figure 3 displays the
quantitative elemental analysis results and the dispersion field of prepared samples using a 2% H2O2

solution. The inset table (Figure 3) gives the atomic percentages of existing elements. The rest of atomic
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content (5.92%) belongs to carbon, which originated from natural carbon contamination and from
carbon tape used to mount the substrate on the holder. Carbon was not shown in EDX analysis in order
to prevent misunderstandings. Oxygen, aluminum, and titanium peaks are consistent with titania
(TiO2) and alumina (Al2O3) presence. The high amount of O (83.16%) could be linked to hydroxide
(OH) species on the surface (Equations (7) and (8)).Coatings 2019, 9, x FOR PEER REVIEW 5 of 13 
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Figure 3. Energy dispersive of X-Ray spectrum of the nanoporous TiO2 layer, synthesized in 2%
H2O2 solution.

The crystalline structure of the synthesized nanoporous TiO2 layer was determined by GI-XRD
measurement. There are two overlapping measurement profiles in Figure 4, which belong to a wet
oxidation sample before and after a thermal annealing in the furnace. In addition to alumina substrate
peaks (+), the main characteristic peaks of TiO2 rutile phase (R) belong to (110) plane, visible at
27.3◦, as well as other rutile crystalline planes (101), (111) visible at 36◦ and 41.3◦ (JCPDS 21-1276).
No peaks belonging to other phases were detected. Overlapping spectral peaks prove the stability of
rutile-TiO2 after the thermal process. In the literature, single rutile [27], single anatase [40], or dual rutile
and anatase [41] phases were observed in samples fabricated by using similar solutions. Moreover,
Wu observed single anatase or dual-phase in titania films when using a 30% H2O2 solution made
by the oxidation of Ti powder and plates [21]. It was proposed that low Ti(IV) ion concentrations in
the solution and an acidic environment (low pH value) could boost rutile phase formation [27,41,42].
In the present case, hydrogen peroxide has a weak acidity characteristic, so a natural growth of rutile
phase could be derived with low degree of supersaturation because of small amount of H2O2 (2%)
concentration and Ti thin film layer (100 nm) [41].
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3.2. Gas Sensing

The isothermal dynamic responses of the nanoporous TiO2 layer towards hydrogen gas injections
demonstrate the n-type semiconducting behavior of the material (Figure 5a). A visualization of the
response and recovery times is presented in Figure 5b with the zoomed conduction curve of titania
at 600 ◦C towards 500 ppm H2. The electrical conductance increases upon interaction with reducing
hydrogen gas. Due to the increased temperature, the oxygen molecules are dissociated and adsorbed
on the titania surface in different forms (Equations (9) and (10)), depending on the sample temperature.
For example, in the temperature range of 400–600 ◦C there are two different possible adsorption phases
of oxygen ions [43]:

O2(g) + 2e− ↔ 2O−
(ads) (9)

O−
(ads) + e− ↔ O2−

(ads) (10)
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The trapped electrons are released with the interaction of the reducing gas with chemisorbed
oxygen ions. The possible reactions (Equations (11)–(15)) for reducing H2 [44], C2H6O [45,46],
C2H3N [47,48], CO [49] gases and oxidizing NO2 [31] are given by the following equations:

H2(g) + O−
(ads) ↔ H2O(g) + e− (11)
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CH3CH2OH(g) + 6O−
(ads) ↔ 2CO2(g) + 3H2O(g) + 6e− (12)

CO(g) + O−
(ads) ↔ CO2(g) + e− (13)

CH3CN(g) + 3O−
(ads) ↔ CN− + xCO + xCO2(g) + (x + 1)H2O(g) + 2e− (14)

NO2(g) + e− ↔ NO(g) + O−(ads) (15)

Nanoporous TiO2 gas sensors were tested towards C2H3N, CO, H2, NO2, and C2H6O in humid
air (40% RH) flows. A comparison of the sensor responses towards fixed concentrations of target gases
with working temperatures in the range 400–600 ◦C is given in Figure 6a. Sensors do not exhibit any
appreciable response (≤0.1) in the presence of 10 ppm NO2. It is worth reporting that there are no
significant conductance changes in dynamic gas measurements towards 2 and 5 ppm NO2 injections.
Rutile phase may be responsible for NO2 deafness since the crystalline phase of TiO2 can be decisive
for the detection of oxidizing gases as previously reported in literature [31,50]. Also, high working
temperatures (>250 ◦C) are not favorable for NO2 detection. The reducing gases (C2H3N, CO, H2,
and C2H6O) show similar trends: a small decrease in the response values at 450 ◦C followed by
an increasing response up to 600 ◦C. On the other hand, there is a drastic decrease in NO2 response
value at 450 ◦C. It is plausible that not only temperature, but also humidity should be taken into
consideration to explain these changes. However, due to the complexity of the involved surface
chemical reactions, more in-depth investigations are required to fully understand the roles of humidity
and temperature and how they affect the sensing properties. In operando measurements, for example,
could provide useful information to better understand the surface chemistry.
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Figure 6b–d presents more information about the effect of humidity on the sensing of H2, C2H6O,
and CO gases, by comparing the response in dry and humid air flows at 550 ◦C. There is a decrease of
almost one order of magnitude in the response values for C2H6O and H2 when introducing a humid
airflow, while there is a small increase in response values for CO. These results again show that the
interaction depends strongly on the chemical species involved. On a different semiconducting oxide
(SnO2), Barsan and Ionescu proposed that water molecules dissociate in H+ and OH−, which are
absorbed on SnO2 surface as hydroxyl group [51]. The participation of water vapor increases the
interaction between atmospheric oxygen and n-type semiconductor surface, acting like a catalyst for
this reducing gas [51]. This may also hold for TiO2, and may explain the increase in the response value
in presence of CO, since nanoporous TiO2 shows a similar n-type behavior. In addition, the shorter
response and recovery times in humid air for all reducing gases prove the existence of a catalytic effect
for nanoporous TiO2. On the other hand, the effect of water vapor seems to work in an opposite way for
H2 and C2H6O gases. The humidity reduced the sensor responses of H2 and C2H6O. In contradiction
with our observations, Moon et al. presented that H2 sensing of mesoporous titania was not effected by
humidity variations (5%, 15%, 42%RH) at 140 ◦C [52]. Similarly, hydrothermally grown TiO2 nanorods
did not change the response values towards 1–100 ppm VOCs (ethanol, methanol, and propanol)
at 75 ◦C under humidity variations (8%, 52%, 75%RH) [53]. The most probable reason for both
of these cases is that the working temperatures were too low to initialize a strong chemisorption
of water molecules on the surface of TiO2. The physisorption of water molecules has no effect on
conduction [51]. In our case, the temperature was high enough for the chemisorption of water vapor
on nanoporous titania surface. In addition to this, the hydrogen sensing mechanisms of titania surfaces
were attributed mostly to spill-over effect [54,55]. Hydroxyl groups on the surface may behave as
an anti-catalyst for dissociation and diffusion process of H2 molecules, which is different from the
adsorption of CO molecules. Ethanol sensing seems more complex because of its intermediate products
during decomposition [56,57]. The authors indicate that similar observations for SnO2 nanobelts
were discussed and reported in a previous work [58]. The catalytic and anti-catalytic properties
of hydroxyl groups might be effective for these dehydration (Equation (16)) and dehydrogenation
(Equation (17)) reactions.

CH3CH2OH→ C2H4 + H2O (16)

CH3CH2OH→ CH3CHO + H2 (17)

Table 2 summarizes the sensing performances of this work compared to some recent studies on
bare-TiO2 nanostructures, with numerical parameters. Some studies defined the sensor response value
as the ratio of the electrical resistance value in air with the resistance value in the test gas (Rair/Rgas).
These are indicated in parentheses next to their response values in the table. Our rutile nanoporous
titania sensor had better response values towards H2 and C2H6O than similar nanoporous TiO2

sensors [38,52,59], as well as most other nanostructures [53,60–62]. Sensor response towards 25 ppm
of C2H3N was 0.53 at 600 ◦C, which is an appropriate response value (≥0.1) to be used as an early
detection system for acetonitrile exposure. Acetonitrile has toxic effects on the human body, and its
odor threshold value is 42 ppm [63]. On the other hand, tres and trec were longer than those reported
in existing studies regarding H2 and C2H6O gases. Higher working temperature and lower gas
concentration values could be the reason for these long times. In general, high working temperatures
are not preferable for smart gas sensor applications due to energy considerations. Nevertheless,
high working temperatures are a natural requirement for bare semiconducting MOXs. Thanks to our
synthesis method, which allows the easy fabrication of TiO2 nanoporous sensing layers on 2 mm× 2 mm
surface area, our sensors need only 0.5 W electrical power to work at 400 ◦C. Unfortunately, there are
no available data to compare energy efficiency, although other similar nanoporous sensors have lower
working temperature [52].



Coatings 2019, 9, 681 9 of 12

Table 2. Sensing performances of previously reported bare-TiO2 nanostructure-based gas sensors in
comparison with the present work.

Materials Carrier Gas Temp. (◦C) Target Gas Response Gas Conc. (ppm) tres/trec (sec/sec) Ref.

NPorous TiO2

Dry air 550 H2 3.24 500 510/1155

This work

C2H6O 3.90 50 1050/1830
CO 0.21 500 555/810

RH 40% 400 H2 3.60 500 120/285
NO2 0.1 10 tres < 15/120

600 C2H6O 2.06 50 330/900
CO 0.43 500 405/255

C2H3N 0.53 25 270/450

MPorous TiO2
Dry air 140 H2 2.8(Rair/Rgas) 1000 5/125 [52]
RH 42% 140 H2 1.9(Rair/Rgas) 100 ~5/125

NPorous TiO2 Dry air 370 C2H6O 20(Rair/Rgas) 1500 - [38]

NPorous TiO2 Dry air 225 H2 1.2(Rair/Rgas) 1% - [59]

TiO2 NTubes

RH 40% 200 H2 ~10 1000 -

[35]C2H6O ~40 500 -
CO ~2 500 -

NO2 ~8 10 -

TiO2 NTubes Dry air 200 C2H6O 2.9 5000 - [60]

TiO2 NRods Dry air 75 C2H6O 0.69 100 13/23 [53]
RH 52% 75 C2H6O 0.67 100 -

TiO2 NRods Dry air 150 C2H6O 2.4(Rair/Rgas) 25 55/80 [61]

TiO2 Film Dry air RT H2 0.8 5000 ~100/~10 [62]

4. Conclusions

The hydrolysis process of titanium thin film in peroxide solution was optimized for fabrication of
nanoporous TiO2 gas sensors. The 2% hydrogen peroxide solution was determined to be an optimal
solution for nanoporous layer formation on 100 nm titanium thin film. The formation kinetics of
nanoporosity were discussed and demonstrated with chemical reactions. The lower hydrogen peroxide
concentration offers better mechanical strength for the sensor surface. The reduction in surface cracks
and the decrease in the formation of dollops through the titania surfaces were monitored using FE-SEM
images. In addition, one of the main motivations for this study was to use a clean synthesis method
to protect the biocompatibility of TiO2 surface. The EDX profile of the nanoporous surface proved
the purity of the synthesis process. The rutile crystal structure and its thermal stability were screened
by GI-XRD measurements of TiO2 nanoporous samples before and after thermal annealing. After
device configuration, high-temperature sensor tests were conducted in humid airflow with respect
to different concentrations of H2, C2H6O, CO, NO2, and C2H3N. Our sensor reported better sensor
response towards H2 and C2H6O than similar nanoporous surfaces. The kinetics of chemical sensing
was illustrated with reaction formulations for each gas. The catalytic and anti-catalytic effects of
humidity were discussed in detail for reducing gases (H2, C2H6O, CO) with their response value
comparisons in dry and humid air flows.
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