
coatings

Article

Piezoresistive Characteristics of Nylon Thread
Resistive Memories for Wearable Strain Sensors

Ting-Kuo Kang

Department of Electronic Engineering, Cheng Shiu University, Kaohsiung 833, Taiwan;
tkkang@gcloud.csu.edu.tw; Tel.: +886-7731-0606 (ext. 3215)

Received: 30 August 2019; Accepted: 27 September 2019; Published: 28 September 2019
����������
�������

Abstract: A nylon thread (NT) resistive memory is fabricated by performing a simple dip-and-dry
solution process using graphene–poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)
(PEDOT:PSS) conductive ink. The piezoresistive characteristics of the NT resistive memory are further
evaluated for wearable strain sensors. While a stretching strain (ε) is applied to the NT resistive
memory, the relative resistance change of low-resistance state (LRS) is found to be higher than that
of high-resistance state (HRS). This result implies that the contribution of the local overlapping
interconnection change in graphene and PEDOT:PSS materials to the LRS resistance change is greater
than that to the HRS resistance change. In addition, through many cycles of repeatedly stretching
and releasing the LRS of the NT resistive memory at a fixed ε = 7.1%, a gauge factor of approximately
22 is measured and achieved for a highly sensitive and durable strain sensor. Finally, the actual
integration of the NT resistive memory into textiles can provide resistive memory and piezoresistive
sensor applications simultaneously for wearable electronic textiles.
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1. Introduction

The integration of electronic components into textiles, also called as electronic textiles (e-textiles),
can provide an ideal platform to develop emerging wearable e-textiles [1]. Some textile-based electronic
components such as sensors [2], transistors [3], and memories [4] have been reported. The conductive
polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been found to be
quite adequate for manufacturing wearable e-textiles, because of its low-temperature solution process,
low cost, and easy fabrication [3–8]. In addition, the textile-based resistive memory using the conductive
polymer PEDOT:PSS has been proposed and demonstrated to have typical write-once-read-many-times
(WORM) characteristics [4]. For wearable e-textile applications, the textile-based resistive memory that
experiences mechanical deformation during assembly and daily wear still remains a challenge and has
to be further discussed. The gauge factor (GF) can be used to characterize the piezoresistive properties of
the wearable e-textiles. However, Wallace et al. [8] reported that the textile-based strain sensor using the
same conductive polymer PEDOT:PSS has a low GF of approximately 1. To improve the piezoresistive
characteristics of the strain sensor, Ramaprabhu et al. [9] proposed the use of the graphene–polymer
composites to enhance the GF. Recently, Zhu et al. presented a review regarding some wearable strain
sensors with high sensitivity using graphene-based or PEDOT:PSS-based composites [10].

This study, therefore, employs graphene–PEDOT:PSS conductive ink to fabricate a nylon thread
(NT) resistive memory by performing a simple dip-and-dry solution process. The simple dip-and-dry
solution process, which is similar to the dyeing process used in the textile industry, is widely believed
to be one of the most promising ways to develop wearable e-textiles [11]. Furthermore, the GF is
defined as the ratio of the relative resistance change to stretching strain (ε) for the NT resistive memory.
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The piezoresistive responses of the NT resistive memory are evaluated and further investigated for
wearable strain sensors.

2. Materials and Methods

The simple dip-and-dry solution process with two steps was used to fabricate the non-volatile
NT resistive memory [4]. The NT was composed of hundreds of nylon microfibers and a kind of
telescopic NT purchased from a fabric shop. First, an elastic NT of a fixed length was dipped into
the mixed solution with the graphene–PEDOT:PSS conductive ink for 6 min. In the second step, the
NT was dried at room temperatures and under ambient conditions for two days to remove all the
residual water. After the dipping and drying processes, the initial fixed length of the NT visibly
decreased, as shown in Figure 1a. Figure 1b demonstrates an actual picture of the NT sample with
the length reduction from 80 to 29.48 mm. In Figure 2, the wrapping of the graphene–PEDOT:PSS
sheets around the NT was confirmed by the scanning electron microscopy (SEM) images. This result
can be attributed to the cause of a contractive strain existing in the NT, further suggesting that a
stretchable NT resistive memory can be performed. The contractive strain in the NT resistive memory
is similar to the pre-strained elastomer effect [12]. In addition, the graphene–PEDOT:PSS conductive
ink was synthesized using the electrolytic exfoliation method with two graphite rods placed in a liquid
PEDOT:PSS electrolyte [13], and it was purchased from the Innophene Company Limited, (Pathum
Thani), Thailand. The micro-Raman system (LabRAM HR, Horiba Jobin Yvon, Longjumeau, France)
with an excitation energy of 2.33 eV (laser wavelength: 532 nm) was used to observe the spectral
features of the graphene–PEDOT:PSSS sheets. The spectral features were reported in the previous
study [4], demonstrating that lower defect states in the graphene were due to the presence of the D
peak at ~1330 cm−1 and the multilayer graphene flakes were confirmed by the presence of the 2D
peak at ~2670 cm−1 less than the G peak (not shown here). All electrical characteristics of the NT
resistive memory were measured at room temperature with a Keithley 2400 source meter. An automatic
horizontal stretching system (JSH-H1000, Japan Instrumentation System Company Limited, Kanagawa,
Japan) was utilized to evaluate the piezoresistive characteristics of the NT resistive memory. A real
setup picture of electrical and mechanical stretching measurements is shown in Figure 3.
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length reduction from 80 to 29.48 mm.
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3. Results and Discussion

3.1. WORM Characteristics

Figure 4 shows the current–voltage (I–V) characteristics of the non-volatile NT resistive memory.
By sweeping voltage from 0 to 30 V at a speed of approximately 1.88 V/s, the NT resistive memory
was switched from the low-resistance state (LRS) to the high-resistance state (HRS). The switching
behavior is called the writing process. Although the applied voltage was swept again from 0 to
30 V (first voltage sweep), the NT resistive memory remained in the HRS and demonstrated to have
typical WORM characteristics, further suggesting the permanent HRS caused by the current-induced
PEDOT:PSS phase segregation [4]. The permanent HRS was confirmed by the second sweeping
voltage from 0 to 3 V, as shown in Figure 4. To further understand the current conduction of the NT
resistive memory, the LRS and the HRS currents can be explained by ohmic conduction and a tunneling
model [14], respectively.
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Figure 4. Current–voltage (I–V) characteristics of the NT resistive switching memory from the
low-resistance state (LRS) to the high-resistance state (HRS). The I–V fitting lines of the LRS and the
HRS are also calculated to understand the possible mechanisms. The blue and pink arrows indicate the
sweeping voltage directions of the LRS and the HRS, respectively.

3.2. Piezoresistive Characteristics of the NT Resistive Memory

In order to evaluate the piezoresistive properties of the NT resistive memory, the GF is described
using the following expression:

GF =

∆R
R0

ε
(1)

where R0 is the initial memory resistance without applied ε and ∆R is the change of the memory
resistance under applied ε. While different ε values are applied to the NT resistive memory, the LRS
and the HRS current characteristics are shown in Figures 5 and 6, respectively.
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Figure 7 shows the relation between ∆R/R0 and ε for the LRS and the HRS of the NT resistive
memory. Here, the HRS resistance is defined as the reciprocal of the current measured at 1 V. The ∆R/R0

as a function of applied ε for the LRS is found to be more sensitive than that for the HRS. This result
implies that the contribution of the local overlapping interconnection change in graphene–PEDOT:PSS
composites to the LRS resistance change is greater than that to the HRS resistance change [9]. While
the applied ε is less than 10%, the relation between ∆R/R0 and ε can determine the GF value based
on Equation (1). For example, the GF for the LRS under applied ε = 8.2% can be determined to be
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approximately 24. Similarly, for the HRS under applied ε = 6.7%, a lower GF of approximately 6 can be
found. While the applied ε is greater than 10%, an obvious increase in the GF of approximately 58 for
the LRS under applied ε = 19.2% is found, further accounting for the possible cause of the overlapping
interconnection loss and/or tunneling effect existing in graphene–PEDOT:PSS composites [9]. The LRS
and the HRS data corresponding to Figure 7 are listed in Tables 1 and 2, respectively.
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Table 1. Listed LRS data of ∆R/R0 versus ε for the gauge factior (GF) calculation.

ε ∆R/R0 GF

0.000 0.00 0.00
0.027 0.16 5.97
0.055 0.68 12.35
0.082 2.02 24.48
0.110 3.01 27.39
0.137 4.41 32.13
0.165 8.71 52.85
0.192 11.18 58.14
0.220 609.93 2775.16
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Table 2. Listed HRS data of ∆R/R0 versus ε for the GF calculation.

ε ∆R/R0 GF

0.000 0.00 0.00
0.034 0.11 3.15
0.067 0.40 5.94
0.101 0.77 7.63
0.135 0.79 5.86
0.168 0.66 3.91
0.202 0.83 4.10
0.236 1.47 6.25
0.269 3.14 11.66

3.3. A Highly Sensitive and Durable Strain Sensor

To verify the highly sensitive sensing characteristics of the LRS, the repeated cycles of stretching
and releasing the NT resistive memory are measured at a fixed ε = 7.1% with the horizontal stretching
system of JSH-H1000. An obvious electromechanical response of the LRS with time is obtained and
a high GF of approximately 22 is found in Figure 8, further accounting for the LRS with a highly
piezoresistive sensing characteristic. This result suggests that the LRS of the textile-based NT resistive
memory can serve as a highly sensitive and durable strain sensor for wearable e-textiles.Coatings 2019, 9, x FOR PEER REVIEW 6 of 7 
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Figure 8. Many cycles of repeatedly stretching and releasing the LRS of the NT resistive memory under
applied a fixed ε = 7.1%. The GF value of the LRS can be determined to be approximately 22 at the
fixed ε = 7.1%.

4. Conclusions

The simple dip-and-dry solution process has been proposed for the fabrication of the textile-based
NT resistive memory. The textile-based NT resistive memory has shown to have typical WORM
characteristics. The GF value of the LRS is found to be higher than that of the HRS. This result
suggests that the contribution of the local overlapping interconnection change in graphene–PEDOT:PSS
composites to the LRS resistance change is greater than that to the HRS resistance change. In addition,
the textile-based NT resistive memory shows to have typical WORM characteristics and simultaneously
its LRS serves as a highly sensitive and durable strain sensor. Finally, the actual integration of the NT
resistive memory into textiles can provide resistive memory and piezoresistive sensor applications
simultaneously for wearable e-textiles.
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