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Abstract: Photocatalysis has recently emerged as an advanced, green, and eco-friendly process for
the treatment of wastewater and air, and antimicrobial disinfection applications. In this context,
TiO2 nanostructures have been shown to be the prominent photocatalyst candidates due to their low
cost, non-toxicity, and ease of fabrication. This review highlights the investigation and development
of TiO2 photocatalyst film by sol-gel method with special emphasis on the photodecolorization of
synthetic dyes and antibacterial activities. Furthermore, various synthesis methods for the preparation
of TiO2 films and their advantages, as well as limitations, are summarized. Finally, recent advances in
TiO2 films by sol-gel method for dye degradation and antibacterial activities, challenges, and future
perspective are discussed.
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1. Semiconductor Photocatalysis

Energy, environment, and health are serious challenges that the modern world faces today.
Besides several benefits to mankind, industrialization has resulted in adverse impacts on ecosystems.
Among the most critical contemporary global issues, environmental pollution has gained extensive
interest. One of the main pollution sources comes from wastewater containing dyes discharged from
textile, foodstuff, and leather industries [1,2]. Water pollution is caused by both synthetic and biological
contaminants and can, among other things, be damaging for aquatic environments. The prevention
of toxic chemical and biological contamination through environmentally green techniques is an
important issue.

In recent decades, semiconductor photocatalysis has been intensively studied for water and air
treatment [3,4]. The semiconductors possess a band gap that separates the valence band (VB) and
conduction band (CB). When the photocatalyst is illuminated by light with an appropriate wavelength
with energy equal to or greater than its band gap, the electrons are excited from the VB to the CB, thereby
producing an electron (e-) in the CB and leaving a positive hole (h+) in the VB. If the as-produced
electron and hole migrate to the surface of the semiconductor photocatalyst without recombination,
they facilitate redox reactions with the compounds adsorbed on the catalyst. The positive hole at the
valence band oxidizes pollutants either directly or through a reaction with water to produce powerful
hydroxyl radicals (OH). Similarly, the electrons at the conduction band reduce the oxygen atoms
adsorbed on the photocatalyst. During the photocatalytic process, superoxide radicals (O2-) and other
reactive groups are produced, resulting from reactions with moisture oxygen (O2). These oxidation
and reduction reactions are the fundamental mechanism of photocatalysis [5–7].
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2. TiO2 Photocatalyst

TiO2 powders have, since ancient times, been commonly used as a paint additive to obtain
white pigments [8]. Since the discovery of the photocatalytic activity of TiO2 [9], it has been known
as one of the most efficient photocatalytic materials. TiO2 is known for its various properties such
as high photoactivity, good stability, low cost, and low toxicity [10,11]. In the last few decades,
TiO2-based nanostructures have been widely studied in academic research and used in a variety of
applications such as photovoltaics, sensors, removal of organic pollutants and pathogens, and energy
storage [1,10,12–16].

TiO2 nanomaterials have a bandgap of 3.0–3.2 eV and can be excited by UV light. Due to this
reason, the use of TiO2 is limited as less than 5% of the solar spectrum falls within the UV range [17–19].
TiO2 exists in three crystalline structures: (i) rutile, (ii) anatase, and (iii) brookite [20]. Anatase and
rutile are preferred for photocatalysis, whereas brookite is considered as the least stable phase and
is generally not used in photocatalysis [21,22]. The bandgaps of bulk anatase and rutile are 3.2 and
3.0 eV, which correspond to the wavelengths of 388 and 414 nm, respectively [23]. As compared to
rutile, the anatase phase is considered as photocatalytically more active due to its ability to adsorb
water and hydroxyl groups [24]. Studies have shown that the synergistic effect between anatase and
rutile is helpful in enhancing the photocatalytic activity of the TiO2 structures [21].

In TiO2-based photocatalysis, when a photon (with energy equal to or greater than the bandgap
of TiO2) illuminates the TiO2 particles or film, the electrons are activated from the valance band to the
conduction band and produce electron–hole pairs. The formed charge carriers migrate towards the
surface and react with the adsorbed chemicals, thereby degrading organic pollutants. The process of
formation of the advanced oxidant and the degradation of the pollutant is given in Figure 1.
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Limitations of TiO2 as a Photocatalyst

Although TiO2 is the most studied photocatalyst for the degradation of organic pollutants,
there are lots of limitations to overcome for its widespread application (Figure 2). The main drawback
of TiO2 is its poor ability to absorb solar irradiation [6,25]. Its wide bandgap (3.2 eV) limits the use
of visible light as the light source. Fast recombination of photogenerated charge carriers is also a
limitation of TiO2 in photocatalysis, which decreases the quantum efficiency of the overall reaction.
Since photocatalytic degradation occurs on the surface of photocatalysts, adsorption is prerequisite
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for good performance [26]. However, the adsorption capacity of TiO2 is relatively low, which results
in slow photocatalytic degradation rates [27]. Reducing the size of the TiO2 particles in nanoscale
can enhance the surface area; however, aggregation may appear as a problem that hampers the light
incidence on the active center, thereby reducing the catalytic activity [14]. In addition, separation,
recovery, and reuse of the nanostructured TiO2 may be a key obstacle in its practical application [14,28].
Another limitation of TiO2 is the poor thermal stability of its most effective anatase phase. Anatase
is a highly active polymorph and is normally less stable and transforms to rutile phase at a higher
temperature (above ~700 ◦C) [13,27].
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3. TiO2 Films

TiO2-based photocatalytic thin films and nanostructures are now being used extensively for a
variety of applications such as environmental remediation, self-cleaning windows, water splitting,
hydrogen release, and antibacterial material due to their interesting chemical, electrical, and optical
properties [19,29–33]. The thin films can be applied to various substrates and are used instead of bulk
materials that result in substantial cost savings. Engineering thin films at nanoscale enables distinct
mechanical, chemical, and physical surface functionalities including higher surface area and enhanced
photocatalytic performance [34]. TiO2 thin films can contain anatase, rutile, or a combination of both of
these phases. Mostly, photocatalytic thin TiO2 films have been used for the decomposition of organic
contaminants and antibacterial applications [34].

3.1. Preparation of TiO2 Film

TiO2 thin films have been synthesized by several sophisticated techniques such as chemical
vapor deposition (CVD) [35,36], hydrothermal synthesis [37,38], metal organic chemical vapor
deposition (MOCVD) [39,40], sputtering [41,42], liquid phase deposition (LPD) [43,44], electrophoretic
deposition [45], physical vapor deposition (PVD) [46], pulsed laser deposition [47,48], sol-gel [5,49,50],
electrochemical deposition [51], atomic layer deposition (ALD) [52], etc. Most of the synthesis processes
require a high temperature and pressure. The method of synthesis and processing conditions play an
important role in the properties of the materials. Since the microstructure and physical properties of
TiO2 affect its photocatalytic activity, the choice of a proper method is important in order to achieve
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good results. Table 1 summarizes some of the common techniques along with their advantages
and limitations.

Table 1. Common techniques for TiO2 coating and their advantages as well as limitations.

Method Description Advantages Limitations Ref.

Sputter deposition

An ionizing plasma sputters
the target in a vacuum

chamber and the ionized
atoms are deposited on the

substrate.

—High quality and uniform
deposition

—Good adhesion

—Risk of substrate
damage due to

ionic bombardment
—Grain size of the
sputtered films is
typically smaller

[34,53,54]

Chemical vapor
deposition

A thin film of metal oxide is
formed on a heated

substrate from a gaseous
phase in a closed chamber at

a relatively higher
temperature.

—Produce uniform, films at
low or high rates

—Flexible with regards to the
shape of the substrate

—Compatibility with good
adhesion

—Simultaneously coat
multiple components

—Control structure of crystal
and generate uniform films

with pure materials and high
density

—High cost
—High reaction

temperature
—Low deposition

rates
—Cannot control
the stoichiometry

of films using more
than one material

[53–55]

Physical Vapor
Deposition

It involves the transfer of
material on an atomic level
onto a solid substrate. This
is a physical process such as
high temperature vacuum
evaporation followed by

condensation rather than a
chemical reaction among

precursors.

—Suitable for any type of
inorganic materials

—Safer than other methods
—High cost [54,55]

Sol-gel synthesis

This is a wet chemical
method that involves

hydrolysis and condensation
of metallo-organic alkoxide
precursors for gel formation
followed by dip/spin/spray
coating or screen printing.

—Simple, homogeneity, low
cost, reliability,
reproducibility,
controllability

—Films are easily anchored
on the substrate bearing

complicated shapes and a
large surface area.

—Suitable for deposition on
various substrates

—Easy method

—Long period of
deposition

—High temperature
—Not possible to
attach a thick layer
of nanoparticles on

the substrate

[34,53,55]

Spray pyrolysis

A solution containing a
precursor is sprayed by a

nanoporous nebulizer onto
the hot substrate in the

furnace.

—Cost-effective and can be
easily performed

—Substrates with complex
geometries can be coated.

—Uniform and high-quality
coatings

—Low processing
temperature

—Multilayer fabrication
capability

—Coatings are not
uniform in
thickness.

[34,56]

Electrophoretic
deposition

Formation of coating on the
charged surface takes place
by the movement of charge

particles in suspension
under an appropriate

electric field

—Simple and cheap
—Uniform coating
—Size and shape of
nanoparticles can be

controlled
—High-quality coatings

—Volatile, toxic
—Flammability

—Costly
—High electric field

strengths are
required.

[53]
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Table 1. Cont.

Method Description Advantages Limitations Ref.

Hydrothermal

Includes either a single or
heterogeneous phase
reactions in aqueous
solution at elevated

temperatures and pressures
to crystallize materials
directly from solution

—Simple to operate
—Ability to grow large,

high-quality crystals,
maintaining a good control

of their chemical
composition

—Expensive
autoclaves are

required
—Impossibility of

observing the
crystal as it grows

[34,55]

Doctor-blade

A slurry is placed on a
substrate, and the

unidirectional shear force is
applied by a blade over the

substrate.

—Simple and economic
—Easy to control film

thickness and homogeneity
—Suitable for mass

production of
electro-ceramic thick films

—Slow
evaporation

—Tendency to
aggregate or

crystallize at high
solution/paste
concentration

[34]

Plasma-enhanced
chemical vapor

deposition (CVD)

This method utilizes a
plasma to deeply fragment

organic precursor molecules,
which subsequently deposit
onto solid substrates within
the reaction chamber, such

as nanoparticles.

—Requires much lower
temperatures

—Good for deposition on
multilayer films

—Good adhesion and
uniformity

—High deposition rate
—Good mechanical

properties
—Controllable coating

thickness

—Chemical and
particle

contamination
—High cost

—Toxic byproducts

[54]

Spray coating The solvent is evaporated
during the spraying process.

—Simple
—Low-cost

—Scalable film forming
technique

—The thickness is
not uniform. [57,58]

3.2. Preparation of TiO2 Film by Sol-gel Method

Among the various methods, the sol-gel method is one of the most used methods to prepare thin
film or a powder catalyst for various applications such as catalysis, sensors, membranes, electrochemical
devices, etc. [5,34]. The sol-gel method has become the most common and simple approach to prepare
TiO2 films due to its effectiveness, homogeneity, and reliability [34]. In this process, TiO2 colloidal
suspension is formed from the involvement of hydrolysis and polycondensation reactions of the
precursor (metal alkoxides or inorganic metal salts), and the film with the desired thickness can be
deposited onto the substrate either by dip coating or spin coating techniques [59]. By controlling the
sol-to-gel transition and thereby the sol viscosity, a variety of shapes with desired porosity and texture
can be obtained [60]. Most importantly, the sol-gel coating can be carried out at room temperature
without special expensive instruments [34]. The sol-gel route combined with deep or spin coating
has been widely applied to coat metallic film in different substrates. In this section, we discuss the
sol-gel-assisted synthesis of TiO2 or doped-TiO2 films and their photocatalytic performance in the
degradation of organic pollutants and antibacterial activities. Figure 3 shows a process flow chart for
the preparation of TiO2 film by sol-gel method.
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3.3. TiO2 Film for Organic Dye Removal Application

Among the most critical contemporary global issues, environmental pollution related to water
pollution has gained extensive interest. One of the main pollution sources comes from wastewater
containing dyes discharged from textile, foodstuff, and leather industries. TiO2 films have been shown
to be promising materials for removing organic dyes from water. In recent years, pure or modified
TiO2 films have been developed for organic dye removal applications [5,34,61,62]. Table 2 presents
some examples of TiO2-based film for organic dye removal applications.

3.3.1. Undoped TiO2 Films

Guillard el al. [63] employed several sol-gel methods for depositing TiO2 films on various
substrates such as silicon wafers, soda lime glass, and Pyrex glass and studied their effectiveness in
water treatment. The photocatalytic efficiency of synthesized films was tested by degrading malic acid.
It was found that several factors such as TiO2 loadings, the thickness, the number of coatings, and the
calcination temperature influenced the photocatalytic activity of the film. The optimal calcination
temperature was 400 ◦C.

Chen et al. [64] synthesized a series of mesoporous ultrafine anatase nanocrystallite TiO2 films
onto a borosilicate glass substrate via the sol-gel preparation route. The synthesis process involved the
use of nonionic surfactant Tween 20 as a template through a self-assembly pathway. After calcination
at 500 ◦C, crystalline structure, thickness, morphology, optical properties, and porous structures were
investigated. The photocatalytic property was investigated by creatinine degradation test. The study
revealed that the high calcination temperature was beneficial to get good crystallinity and adhesion
between the film and substrate. The obtained results showed that the photocatalytic activity could be
remarkably improved by increasing the Tween 20 loading in the sol.

The anatase phase of TiO2 is normally found in the sol-gel synthesis, although brookite is
often observed. Pure brookite without anatase or rutile is difficult to prepare [22]. Recently,
Komaraiah et al. [65] employed a sol-gel spinning technique in order to deposit TiO2 thin film
onto a glass substrate. After annealing at different temperatures, the authors studied the photocatalytic
degradation of a methylene blue aqueous solution under visible light irradiation. It was confirmed
from the XRD that the thin film was of a single phase orthorhombic brookite structure. SEM analysis
showed highly uniform, crack-free, and spherical nanoparticles with around a 68 nm diameter.
The as-synthesized film showed 92% methylene blue (MB) degradation efficiency within 240 min
under visible light irradiation.

Dulian et al. [60] studied the influence of coating thickness on the photocatalytic performance of
TiO2 films. In their study, the authors prepared transparent anatase TiO2 film by sol-gel method in
alcoholic solution. The thin films were deposited on the borosilicate glass substrate and a multiple dip
coating technique was employed to prepare different layers of coating for up to 12 dip-coating cycles.
It was observed that with an increasing number of coatings, the roughness and optical band gaps were
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decreased. Furthermore, the photocatalytic degradation of MB was strongly related to the thickness of
the layer, the number of the layer, and its morphology. The thicker oxide layers showed faster MB
degradation properties.

In recent years, various supporting media such as glass, ITO, textile, etc. have been applied
for TiO2 coating. Among different substrates, textile has attracted increasing interest due to the
durability and good affinity of inorganic nanostructures with fabrics [66]. In this regards, Costa and
coworkers have developed TiO2-supported textile media with self-cleaning properties [67]. Their study
revealed that the photocatalytic efficiency is correlated to the surface hydrophilicity, which promotes
the formation of a higher amount of OH radicals.

3.3.2. Modified TiO2 Films

One important approach to overcome the quick recombination of photogenerated charge carriers
is the doping technique. The doping strategy can suppress the electron–hole pair recombination rate
and shift the activity of TiO2 from UV to the visible light region, thereby enhancing the photocatalytic
efficiency in visible light [68]. In past decades, several approaches have been adopted for TiO2

modification, for example, metal-doped TiO2 (such as Pt, Pd, Ag, Sr, Au, Ce, V, Fe) [34,69], non-metal
doped TiO2 (such as N, S, C, B, F) [34,69], composite of TiO2 with a lower semiconductor bandgap
energy than that of TiO2 [18,69].

Metal-Doped TiO2 Films

Sonawane et al. [70] prepared Fe-doped TiO2 thin films on a variety of substrates (glass, silica
rings, glass-helix) using a Ti-peroxy sol-gel dip coating method. Fe and polyethylene glycol (PEG)
were incorporated in titanium peroxide sol, and after drying and calcination at 500 ◦C, the PEG was
removed and crystalline Fe-doped TiO2 film was obtained. The photocatalytic activity of the Fe–TiO2

film was studied by methyl orange degradation under sunlight. As compared to undoped TiO2 film,
the degradation capacity was enhanced by 2–2.5 times in the Fe-doped TiO2 film.

Gultekin et al. [71] prepared gold nanoparticle-doped TiO2 film by sol-gel method and studied
the effect of Au doping on the optical, structural, and morphological properties. From their study,
the authors conclude that Au doping can modify the optical, structural, and morphological properties
of TiO2 film.

Yu et al. [72] investigated the photocatalytic activity of sol-gel-derived Pb-doped TiO2 film by
degrading dimethyl-2,2-dichlorovinyl phosphate (DDVP) under sunlight irradiation. The Pb dopant
reduced the bandgap of the photocatalyst and extended the wavelength response towards the visible
region, thereby improving the photocatalytic activity under solar light.

Rapsomanikis et al. [73] synthesized cerium (Ce)-modified TiO2 film via the sol-gel route at 500 ◦C
on glass substrate with a varying content of Ce. The presence of Ce caused a decrease in the size of TiO2

NPs, and the films were formed without cracks. The authors examined the photocatalytic behavior of
the Ce-modified TiO2 films for the decoloration of Basic Blue 41 in water under both UV and visible
light. It was found that the cerium-modified TiO2 films effectively extend the spectral response to the
visible region, exhibiting enhanced photocatalytic decoloration of BB-41 in water under visible light.

Guillén-Santiago’s group [74] prepared Ag-doped TiO2 thin films by sol-gel method and compared
their photocatalytic properties with undoped TiO2 film. The author also studied the effect of ageing
time of the starting solution, as well as the number of coatings, on the photocatalytic degradation of
MB. It was found that the film thickness and ageing time of the solution play an important role in
the degradation of MB. An optimal photocatalytic activity (35% under UV irradiation) was achieved
in 5-immersion Ag-doped TiO2 thin films that were deposited from 7- and 14-day-old solutions.
Solís-Casados and coworkers [75] synthesized Bi-doped TiO2 film with different Bi contents by sol-gel
method. The material was characterized with various techniques. It was found that the addition of
bismuth promotes the formation of bismuth titanate. Malachite green was selected as a representative
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pollutant, and the degradation test was carried out under simulated solar light. The TiO2 film with
bismuth showed better photocatalytic activity as compared to pure TiO2 film.

MB is one of the most commonly used substances for dyeing cotton, wood, paper, and silk [26,76].
It has been widely used in medicine for several therapeutic and diagnostic purpose. Due to its complex
aromatic structure, hydrophilic nature, and stability against light, temperature, and chemicals, it is
difficult to degrade MB completely through the conventional water treatment process. For decades,
semiconductor photocatalysis has been considered as an advanced technique for the complete
degradation of MB. MB is one of the most commonly used dyes to study the photocatalytic performance
of TiO2 films. Generally, brookite is considered as a less effective phase of TiO2 as compared to rutile
and anatase. Komaraiah et al. [65] employed the sol-gel spinning technique in order to deposit TiO2 thin
film onto a glass substrate. After annealing at different temperatures, the photocatalytic degradation of
MB in aqueous solution was carried out under visible light irradiation. It was confirmed from the XRD
that the thin film was of a single-phase orthorhombic brookite structure. SEM analysis showed highly
uniform, crack-free, and spherical nanoparticles around 68 nm in diameter. The as-synthesized film
showed 92% MB degradation efficiency within 240 min under visible light irradiation.

Non-Metal Doped TiO2 Film

Although metal doping has been widely applied for enhancing the photocatalytic activity of TiO2

film, the metal dopants tend to suffer from thermal instability, which causes an increase in photoinduced
carrier recombination centers, thereby decreasing the lifetime of the electron–hole pairs. In this regard,
non-metal doping seems to be a more promising technique for enhancing the photocatalytic activity of
TiO2 film in the visible light region due to the presence of impurity states that are near the valence
band edge. Several non-metal (such as C, F, S, N)-doped TiO2 films have been prepared.

Lin et al. [77] prepared C-doped mesoporous TiO2 film by combined sol-gel and hydrothermal
processes, using glucose as a carbon source and structure-directing agent. Their study indicated that
the oxygen sites in the TiO2 lattice were substituted by carbon-atom-forming O–Ti–C bonds, and the
film was composed of mainly anatase TiO2. The C-doped TiO2 film exhibited a significant red shift to
the visible region, showing visible light active photocatalytic properties. The photocatalytic activity of
C-doped TiO2 film for the degradation of X-3B was higher than that of undoped TiO2 film under both
UV and the visible region.

Rajendra et al. [59] employed a sol-gel dip coating method to prepare immobilized activated
carbon-doped TiO2 film by sol-gel method using titanium tetraisopropoxide. It was observed that the
type and concentration of the doping agents and the operating temperature influenced the properties
of TiO2 film. Hassan et al. have reported that the presence of carbon influences the crystallinity of
TiO2, which controls the photocatalytic sites and activity [78].

Han et al. [31] prepared visible-light-activated S-doped TiO2 film by sol-gel method based on a
self-assembly technique for a water treatment application. In this work, borosilicate glass was used as
a substrate and the films were calcined to remove the organic content. The results showed that the
calcination temperature influenced the physiochemical properties of the film. S-doped TiO2 film with a
smooth surface and minimum roughness was obtained at 350 ◦C calcination and was the most effective
for the degradation of hypatotoxin microcystin-LR (MC-LR), compared to other films obtained at 400
and 500 ◦C.

Nitrogen is known for enhancing the photoresponding range of TiO2 into the visible region [79].
Among all the non-metal dopants, nitrogen has been applied most for visible-light-active photocatalytic
TiO2 systems. Introducing nitrogen into the TiO2 lattice is effective and straightforward due to the
atomic size, low ionization potential, and high stability of nitrogen. Nitrogen atoms either occupy
interstitial sites (possibly with N–O bonding) or substitutional sites (replacement of O with N atoms)
in TiO2. Mekprasart et al. [80] prepared nitrogen-doped TiO2 films on glass substrate by spin coating
technique and studied the effect of nitrogen doping on the optical and photocatalytic properties.
They found that after doping with nitrogen, the absorption spectrum of the TiO2 film shifted to the
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visible region, clearly suggesting photocatalytic activity under visible light. Compared to undoped TiO2,
the N-doped TiO2 film showed better photocatalytic performance for the degradation of Rhodamine B
under solar light irradiation.

Binary Composite

Preparation of a binary or ternary semiconductor system is another approach to modify the TiO2

film photocatalyst and can improve the charge separation system and enhance the photocatalytic
activity. In this regards, Pérez-González et al. [81] synthesized TiO2–ZnO composite thin films by
sol-gel method and studied their optical, structural, and morphological properties. The photocatalytic
efficiency was evaluated by degradation of MB. The result indicated better photocatalytic properties
than single metal oxide films. Photocatalytic properties were further enhanced with the addition of Ag
NPs on the film [82].

Weerachai Sangchay [83] deposited SnO2-doped TiO2 film on a glass substrate and calcined it
at 700 ◦C for 2 h. The photocatalytic decolorization of the aqueous MB solution revealed enhanced
performance as compared to the pristine TiO2 film. Furthermore, the TiO2 film doped with 1 mol% of
SnO2 showed the highest photocatalytic properties.

Hernández-Torres and coworkers [84] prepared CdS/TiO2 composite films on glass substrate by
chemical bath deposition and the sol-gel /dip coating method. They examined the influence of CdS
deposition on the morphology and optical and photocatalytic properties of TiO2 films and found that
the CdS deposition time influences the absorbance of the composite, with the absorption edges being
shifted to the visible region. The photocatalytic study was carried out by degrading methyl blue under
visible light, and the composite showed enhanced photocatalytic properties as compared to CdS-free
TiO2 film. Stoyanov et al. [85] studied the photocatalytic performance of mixed TiO2/V2O5 films and
found that the composite film showed better photocatalytic decomposition of methylene blue in water
as compared to TiO2 films.

Composites of TiO2 with silicon dioxide (SiO2) have been prepared for enhancing the performance
of TiO2 photocatalysts [86,87]. SiO2 is employed as an additive to TiO2 due to its interesting properties
such as chemical inertness, thermal stability, and low refractive index [88]. In this regard, Pakdel and
Daoud [87] employed a sol-gel method to prepare titania and silica sols. The TiO2/SiO2 composite
was loaded in the cotton fabrics. The authors evaluated the self-cleaning properties of the composite
sample by studying the decomposition rate of MB under UV irradiation and observed that the sample
coated with TiO2/SiO2 showed an enhanced photocatalytic performance [87].
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Table 2. Photocatalytic dye degradation performance of various TiO2 films prepared by sol-gel method.

Catalyst TiO2 Precursor Substrate Light Source Pollutant
Initial

Concentration of
the Pollutant

Degradation
Performance Ref.

TiO2
nanocrystalline

thin film

titanium (IV)
butoxide and

Degussa P25 TiO2

glass UV 3,5-dichlorophenol
(3,5-DCP) 5 ppm 1600 min [89]

TiO2 film
titanium

tetraisopropoxide
and Degussa P25

soda lime
glass,

pyrex glass
UV 2-hydroxybutanedioic

acid 50 ppm 200 min [63]

Fe-doped TiO2
film

titanium
tetraisopropoxide

soda lime
glass, silica

rings,
glass helix

sunlight methyl orange 100 ppm 95% in 3 h [70]

TiO2 film titanium
isopropoxide glass solar light 4- chlorophenol and

carbaryl 20 mg/L

4-chlorophenol:
75% degradation in

3 h, and carbaryl:
65% for degradation

in 3 h

[90]

Mesoporous
TiO2 film

titanium
isopropoxide

Tween 20
as

template
UV creatinine 19.5 mg/L - [64]

Au-doped
TiO2 film

titanium
isopropoxide

quartz
glass UV methylene blue 1.63 × 10− 5 M 180 min [91]

S-doped TiO2
film

titanium
isopropoxide

borosilicate
glass visible light

hepatotoxin
microcystin-LR

(MC-LR)
500 µg L−1 ∼50% degradation

was observed in 5 h [31]

Cr-doped
TiO2 film butyl titanate glass or

silicon visible light methyl orange – 90% within 5 h [92]

Nb-doped
TiO2 film

titanium (IV)
butoxide

glazed
porcelain UV methylene blue 5 ppm 76.2% within 120

min [93]

Ag-doped
TiO2 film, titanium butoxide ITO plates visible light methanol and basic

orange II (BOII) 60 × 10−3 mol L−1 80% of total organic
carbon in 5 h [94]

P-doped TiO2
film

titanium tetrabutyl
titanate

glass
plates visible light butyl benzyl

phthalate (BBP) 20 mg/L 98% in 240 min [95]

Fe, Ni, and Cu
–ion implanted

TiO2 film,
tetrabutylorthotitanate glass UV, visible,

sunlight methyl orange – [96]

Ag/TiO2 films tetrabutylorthotitanate glass UV, visible
light methyl orange 5 × 10−5 mol/L

UV365 (73%) and
visible light (3.8
times) enhanced.

[97]

Bi-modified
TiO2 film

titanium
isopropoxide

borosilicate
glass

simulated
sunlight malachite green 10 µmol/L 67%

180 min [75]

TiO2 thin films titanium
tetraisopropoxide glass visible light methylene blue 1 × 10−6 M

92%
4 h [65]

Pb-doped
TiO2 film

titanium (IV)
butoxide

soda-lime
glass sunlight dimethyl-2,2-dichlorovinyl

phosphate 10−4 M
~30%

6 h [72]

Ce-modified
TiO2 film

titanium
tetraisopropoxide glass UV and visible

light basic blue 41 2.5 × 10−5 M ~85% in 180 min [73]

Several factors influence the photocatalytic behavior of TiO2 films, such as the initial concentration
of dye, catalyst amount, pH, presence of inorganic anions, temperature, light source, light intensity,
and configuration of the photocatalytic reactor [26,98]. In recent years, pilot plant studies for different
reactor configurations have been carried out and compared to select the optimal configuration for
scale-up [99,100].

3.4. TiO2 Film for Antibacterial Application

TiO2 is considered a promising antibacterial agent due to its good antibacterial behavior and
biocompatibility [1,101]. In addition, TiO2 nanostructures have been found to be effective for the
inactivation of both Gram-positive and Gram-negative bacteria [102]. Table 3 represents the antibacterial
performances of various TiO2 films prepared by sol-gel method. TiO2 kills the microorganisms upon
illumination of light mainly due to its photocatalytic properties [103]. Currently, there are three
different mechanisms suggested for the antibacterial action of TiO2-based materials [103]: i) reactive
oxygen species (ROS) generation, ii) cell wall damage and lipid peroxidation of the cell membrane,
iii) cytoplasmic flow due to cell membrane damage. Several studies have indicated that ROS formation
is the main mechanism responsible for the antibacterial activities of TiO2-based materials [104–107].
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The bactericidal activity of ROS is attributed to its high reactivity and oxidizing properties. ROS are
generated continuously by aerobic cells during metabolism and include the superoxide anion (UO2−),
hydrogen peroxide (H2O2), the hydroxyl anion (OH−), and hydroxyl radical (UOH). The generated
species are capable of destroying cell membrane constituents directly, damage the integrity of the
membrane, and even cross the bacterial membrane. The destruction of cellular components such as
lipids, DNA, and proteins leads to loss of function and ultimately to the death of cells [14,103,108,109].
A schematic diagram showing the antibacterial mechanism of TiO2 is given in Figure 4.
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In order to investigate antibacterial performance against Eschericia coli (E. coli) under visible light,
Arellano et al. [110] prepared Fe-doped TiO2 film deposited on a sodium glass substrate. The precursor
was treated at 400 and 800 ◦C to give the anatase and rutile phase of TiO2, respectively. The antibacterial
study showed that the Fe–TiO2 film containing 5% of Fe and treated at 800 ◦C eliminated E. coli
completely after 60 min. This is attributed to the higher contact area for the adherence of bacteria and
smaller energy band gap.

Kiwi et al. [111] present a design, characterization, and antibacterial evaluation of TiO2 and
TiO2-doped films (polyethylene–TiO2, TiO2–In2O3, and TiO2–polyester) against E. coli. The authors
suggest bacterial cell wall damage to be the main bactericidal action of the films.

Pleskova and coworkers [102] prepared TiO2 films on glass substrate using tetrabutyl oxytitan as
a TiO2 precursor. The bactericidal activity of TiO2 films was studied against both Gram-negative and
Gram-positive bacteria under UV irradiation at a wavelength of 380 nm. After 12 min of exposure
to UV light, a 29, 45, and 47% decrease in viability was recorded for Staphylococcus aureus (S. aureus),
Staphylococcus epidermidis (S. epidermidis), and E. coli. Furthermore, the authors reported that the
sterilization activity was only observed in a single use; however, photoinduced bactericidal activity
can be restored by annealing the TiO2 at a temperature higher than 400 ◦C.

Sunada and researchers [106] prepared TiO2 films on silica coated soda-lime glass plates using
titanium isopropoxide as a precursor and studied their photokilling acidity against E. coli cells.
The authors found that the photocatalytic reaction affected cell survival by causing damage from the
outside of the cell. They concluded that the TiO2 film photocatalyst decomposes the lipopolysaccharide
of E. coli’s cell wall. The AFM photographs of E. coli cell on TiO2 films after different time of UV
illumination is given in Figure 5. The AFM image showed that the outer membrane decomposed first,
and upon further UV illumination, the bacterial cell completely decomposed.

Pleskova et al. [112] used TiO2 films as a self-sterilization surface, which killed several bacteria
by reactive oxygen species upon irradiation with UV light. The authors presented a new way to
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enhance the antibacterial action of TiO2 films by the forming of nanopores on the surface of the film.
They studied the bactericidal activities of TiO2 films against both Gram-positive and Gram-negative
bacteria and observed that the modified surface possesses significantly higher antibacterial activity as
compared to the conventional TiO2 surface film, due to the increased surface area as well as possible
changes in the microstructure of TiO2 induced by laser exposure. The morphological changes in the
bacteria after the incubation was examined by atomic force microscopy and indicated cell wall damage
caused by the exposure to UV and/or ROS.

In the literature, most antibacterial investigations have been carried out against E.coli. bacteria,
which is a member of the coliform group. However, there have been few studies of the photocatalytic
destruction of other bacteria. Recently, Pleskova et al. [112] studied the antibacterial properties of
TiO2 film against various bacteria such as E. coli, S. aureus, Staphylococcus epidermidid (S. epidermidis),
Enterococcus faecium (E. faecium), Klebsiella oxytoca (K. oxytoca), Kelbsiella penumoniae (K. pneumoniae),
Proteus vulgaris (P. vulgaris), and Microcossus spp. Their study suggested that the vast majority of the
strains used were sensitive to the bactericidal property of TiO2 film under UV irradiation. However,
the degree of antibacterial efficacy was bacteria-dependent. As can be seen in Figure 6, P. aeruginosa
9691 and S. epidermidis 1061 showed the most sensitivity when treated with TiO2 film under UV
irradiation. On the other hand, P. vulgaris 1212 and K. pneumonia 527 showed the least sensitivity.
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Table 3. Antibacterial performance of various TiO2 films prepared by the sol-gel method.

Catalyst Substrate Bacteria Concentration
of Bacteria

Incubation
Time Light Source Inhibition

% Ref.

Fe–TiO2 thin
film sodium glass E. coli - 1 h Visible light 100 [110]

Multi-Layered
TiO2 film glass plates E. coli 2.59 × 107

CFU/ml
8 h Sunlight 91.9 [113]

nano-TiO2
(anatase)-based

thin films
Silicon E. coli 108 CFU/mL 20 min UV 100 [101]

SiO2–TiO2
film glass slides E. coli 106–108 per ml 1 h Artificial solar

radiation 50 [114]

Cu-doped
TiO2 film glass E. coli 103 CFU/ml 4 h UV 100 [115]

TiO2 film glass plate
S. aureus, S.

epidermidis, E.
coli

200 CFU 15 min UV 50 [102]

TiO2 thin film silica- coated soda-
lime glass E. coli 2 × 105

CFU/ml
90 min UV 100 [106]

Ag
ion-implanted
TiO2 thin films

E. coli 4.46 × 108

CFU/mL
24 h

fluorescent
lamp and in

the dark
100 [116]

Ag-doped
TiO2 film glass fiber P. aeruginosa 1 × 103

CFU/ml
10 min UV 100 [117]

Mesoporous
TiO2 film glass E. coli 106 cells mL−1 60 min UV 99.99 [118]

GO
nanosheets on

TO2 film
glass E. coli 106 CFU/mL 24 h Solar light – [119]

4. Conclusions, Challenges and Future Perspectives

TiO2-based photocatalytic systems, including films, have shown promising results for the removal
of organic pollutants and the destruction of pathogens in water. TiO2 films are mainly prepared by
chemical, physical, and sputter-based approaches, among which sol-gel coating is the most simple,
low-cost, and suitable method for laboratory studies. Despite several advantages of TiO2, such as low
cost, non-toxicity, and ease of fabrication, a poor ability to absorb solar irradiation is the main drawback
to widening its application in photocatalysis. In recent years, pristine TiO2 films as well as modified
(or doped) TiO2 films have been developed by sol-gel technique for photocatalytic dye degradation
and antibacterial applications. Although there is great progress in designing and synthesizing TiO2

films with enhanced photocatalytic efficiency, challenges remain in developing a cheap, low-toxicity,
and reproducible synthetic approach. Control over the thickness of the coating, pore size, surface area,
uniform morphology, and crystallinity also need to be addressed for better results. Another challenge
associated with the use of TiO2 film for photocatalytic dye removal and antibacterial applications
is stability and durability. It is expected that continued research in this field will lead to a better
understanding and uncover the way to overcome existing limitations.
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