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Abstract: TiB2/ZrO2 multilayers with different modulation ratios (at a fixed modulation period of 50
nm) ranging from 2:1 to 6:1 were deposited by magnetron sputtering. The oxidation behavior of the
as-deposited multilayers was investigated at 600 ◦C in air. The microstructures, mechanical properties,
and oxidation resistance of the multilayers were analyzed and compared. The results indicate that
discontinuous oxidation retarded the inward diffusion of oxygen and the outward diffusion of
metallic components. The formation of dense (Ti, B)-oxide scale and internally inserted ZrO2 layers
in the TiB2/ZrO2 multilayers enhanced the oxidation resistance. Moreover, the oxidation resistance of
the multilayers increased as modulation ratio decreased. The hardness and elastic modulus of the
TiB2/ZrO2 multilayers were maximized (23.9 and 303.1 GPa, respectively) at the modulation ratio of
6:1. After annealing, the formation of thick ZrO2 layers did not lead to sustained increases in hardness.
The maximum hardness and elastic modulus were obtained at the critical modulation ratio of 4:1,
and good adhesion strength with the substrate was also observed. The oxidation mechanism and
experimental results demonstrate that controlling the modulation ratio of multilayers can produce
synergetic enhancements in the oxidation resistance and mechanical properties of multilayers after
high-temperature oxidation.
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1. Introduction

The development of industry has generated increased demand for coatings with outstanding
mechanical properties and oxidation resistance at high temperature for use in cutting tools and
microelectronics [1,2]. TiB2 coatings have been widely used due to their high melting point, high
hardness, good wear resistance, excellent corrosion resistance, and good thermal conductivity. However,
transition metal boride ceramics, which belong to the class of non-oxide coatings, are prone to oxidation,
especially at high temperature, which limits their application at high temperatures [3–6]. Considering
the harsh environments to which protective coatings are exposed, it is particularly important to improve
their oxidation resistance as a protective function. The incorporation of other materials might modify
the microstructure of TiB2 to further improve oxidation resistance. As an incorporated material, ZrO2

was chosen in this study, because it has widespread applications in thermal barrier coatings due to its
low thermal conductivity and high thermal stability [7–11].

Many surface modification techniques such as thermal spraying [12], laser cladding [13], ion
implantation [14], and double-glow plasma surface alloying [15], have been adopted to enhance the
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high-temperature oxidation resistance of substrates. These methods can improve the thermal oxidation
resistance of substrates to some extent. However, they suffer various drawbacks, such as poor adhesion,
large thermally affected zones, complex processing steps, and high cost, which limit their application.
Magnetron sputtering possesses the advantages of preparing dense and uniform coatings with strong
adhesion to the substrate. The composition and microstructure of the coating can be controlled by
adjusting the sputtering parameters [16,17]. Multilayers prepared by magnetron sputtering not only
combine the advantages of the different constituent materials but also have better performance and
microstructure compared to single layers of their respective components due to the superhardness
effect, quantum effects, and macro-tunneling effects between the nanolayers [18–22]. In addition to
resulting in excellent mechanical properties, the formation of multilayer structures can also improve
the oxidation resistance at high temperatures through limited intermixing [23–25]. TiB2 has a higher
hardness (~34.0 GPa) than ZrO2 (~11.8 GPa), and can thus effectively improve the mechanical properties
of multilayers. Inserting ZrO2 layers can also solve the problem of poor high-temperature oxidation
resistance that afflicts boride coatings intended to withstand high-speed cutting tools. Unlike the small
modulation periods used in past studies, a larger modulation period (50 nm) is expected to maximize
the performances of the two component materials, resulting in outstanding mechanical properties and
oxidation resistance.

In this study, TiB2 and ZrO2 monolayers and TiB2/ZrO2 multilayers with the same modulation
periods (50 nm) and various modulation ratios (tTiB2 :tZrO2 = 2:1 to 6:1) were synthesized on silicon
wafer substrates via magnetron sputtering. The high-temperature oxidation resistance of the samples
was studied by thermogravimetric analysis at 600 ◦C in air and the effects of structural variation on
the multilayer properties were evaluated. Finally, the relationships between microstructural features,
chemical components, oxidation resistance, and mechanical performance were established in order to
aid practical applications of multilayers in machining.

2. Experimental Details

TiB2/ZrO2 multilayers along with TiB2 and ZrO2 monolayers were prepared using an FJL560CI2
magnetron sputtering system (SKY, Shenyang, China). The high-purity (99%) TiB2 and ZrO2 targets
were controlled by three radio-frequency (RF) cathodes. When the base pressure of the system was
less than 3 × 10−4 Pa, high-purity Ar gas (99.999%) at a pressure of 0.5 Pa was introduced into the
chamber. Multilayers were deposited by rotating the sample holder, alternately exposing the substrates
to the TiB2 and ZrO2 targets. The RF modes were 120 and 80 W with a constant substrate bias of
−40 V and a working pressure of 0.5 Pa. The modulation period of each sample was 50 nm, which
was corresponded to 20 cycles, after which the top layers of all samples were TiB2. By changing the
sputtering time of the TiB2 and ZrO2 targets, thereby changing the thicknesses of the TiB2 and ZrO2

layers, a series of TiB2/ZrO2 multilayers with different modulation ratios (tTiB2 :tZrO2 = 2:1, 3:1, 4:1, 5:1,
and 6:1) was obtained. Total thickness of the multilayers was around 900–1000 nm.

Sample crystallinity was analyzed by X-ray diffraction (XRD, D8A, Bruker, Germany) using a
D/MAX 2500 diffractometer operated with Cu Kα radiation at 1.54056 Å in the range of 20◦–80◦.
The step size and dwell time of θ–2θ were 0.02◦ and 7.76 s, respectively. Confocal Raman spectrometry
(Horiba Jobin Yvon, LabRAM HR800, 17 mW, 514 nm, He-Ne laser, France) was used to determine
the multilayer phase. Sample morphology was observed by scanning electron microscopy (SEM,
TDCLS-8010, Hitachi, Japan) and transmission electron microscopy (TEM, JEOL JEM-3000F, Tokyo,
Japan). The operation voltage of TEM is 300 KV. The hardness and elastic modulus of the multilayers
were measured using a Nano Indenter system (STEP6, Anton Paar, Graz, Austria). The maximum
indention depth for all samples was kept at 15% of the coating thickness to minimize the substrate
effects. This system was also used to perform nano-scratch tests. The residual stress (σ) of the

multilayers was calculated by the Stoney formula [26]: σ =
Est2

s
6tc(1−vs)R

, in which Es, ts and vs are elastic
modulus (165.6 GPa), thickness (0.4 mm) and Poisson’s ratio (0.18) of the substrate respectively; tc

is the multilayer thickness; R is the radius of the curvature of the multilayer coated on substrate,
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which was determined by the multilayer curvature using a surface profilometer (Ambios XP-2, Ambios
Technology, California, USA). The oxidation process was conducted in air inside a chamber furnace at
600 ◦C for 1 h. The oxidation weight gain of the samples was measured using an electronic analytical
balance (XSE, Mettler Toledo, Columbus, OH, USA) with an accuracy of 10−8 kg.

3. Results and Discussion

3.1. Microstructure and Crystallographic Characterization before and after Annealing in Air

Figure 1a shows the XRD patterns of the TiB2 and ZrO2 monolayers along with the TiB2/ZrO2

multilayers with different tTiB2 :tZrO2 before annealing. The TiB2 layer presented a weak (100) and
(101) texture of h-TiB2, and the ZrO2 layer existed (111) preferred orientation. In all multilayers, the
main diffraction peaks indicate a hexagonal phase of TiB2 and a monoclinic phase of ZrO2 (m-ZrO2).
The peaks in the XRD spectra of the multilayers correspond to the (100) and (101) planes of TiB2 and
the (111) and (020) planes of m-ZrO2. Among the TiB2/ZrO2 multilayers, the peak intensity was lowest
for tTiB2 :tZrO2 = 4:1. Due to the nucleation mechanism was satisfied, the grain growth was controlled
by mutual inhibition during the growth process, which also conformed to the principle that the surface
energy tends to the minimum [27].
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Figure 1. The XRD patterns of the TiB2 and ZrO2 monolayers along with the TiB2/ZrO2 multilayers
with different tTiB2 :tZrO2 before (a) and after annealing at 600 ◦C for 1 h (b).

Figure 1b shows the XRD patterns of all samples after oxidation. For the TiB2 monolayer, the main
phases indicated in the XRD pattern are anatase TiO2 (JCPDF#21-1272) and rutile TiO2 (JCPDF#21-1276).
For the ZrO2 monolayer, the main phases are m-ZrO2 (JCPDF#37-1484) and tetragonal ZrO2 (t-ZrO2)
(JCPDF#50-1089). Only TiO2, m-ZrO2 and t-ZrO2 appear in the TiB2/ZrO2 multilayers irrespective
of the value of tTiB2 :tZrO2 , while no TiB2 is detected. This could suggest severe oxidation of the TiB2

layers in the multilayers. The nucleation mechanism also was applied to oxidized films, the TiB2/ZrO2

multilayer with tTiB2 :tZrO2 = 4:1 had the lowest peak intensity. Meanwhile, the intensities of t-ZrO2

increased and those of m-ZrO2 decreased in the multilayer spectra, which means that oxidation
promotes the growth of the high-temperature tetragonal phase of ZrO2 grains.

Figure 2 shows the surface and cross-sectional SEM images of the TiB2 monolayers and TiB2/ZrO2

multilayers (tTiB2 :tZrO2 = 2:1, 4:1, and 6:1) on Si substrates after annealing in air at 600◦C for 1 h.
The TiB2 monolayer showed large pompon-like (Ti, B)-oxides (Figure 2a). The surface SEM images
of the TiB2/ZrO2 multilayers were similar for all values of tTiB2 :tZrO2 (Figure 2b–d). All samples
displayed sphere-like oxide microstructures. As tTiB2 :tZrO2 increased, oxygen diffused toward the inner
regions of the TiB2/ZrO2 multilayers, leading to the formation of porous scaly deposit of (Ti, B)-oxide.
The cross-sectional SEM images of the TiB2/ZrO2 multilayers indicate that the compact (Ti, B)-oxide
scale became thicker as tTiB2 :tZrO2 increased. The ZrO2 layers were thinner in the TiB2/ZrO2 multilayers
with tTiB2 :tZrO2 = 6:1 compared to those with tTiB2 :tZrO2 = 2:1 and 4:1, resulting in decreased oxidation
resistance at tTiB2 :tZrO2 = 6:1. That is, while the TiB2/ZrO2 multilayers are in their initial oxidation state,
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the thick ZrO2 layers effectively delayed the inward diffusion of oxygen and impeded the outward
diffusion of metal atoms (Figure 2f–h). In contrast, the TiB2 monolayer was almost completely oxidized,
as shown in Figure 2e. The multilayered architecture clearly resulted in the compression of crystal
grains and hindered grain growth, leading to the formation of a dense oxide layer that suppressed
further oxidation. Moreover, ZrO2 blocked the progress of the oxidation layer by layer, improving the
overall oxidation resistance of the multilayer.
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Figure 3 shows cross-sectional high-resolution TEM (HRTEM) images and the corresponding
selected-area electron diffraction (SAED) patterns of TiB2/ZrO2 multilayers with tTiB2 :tZrO2 = 4:1 before
and after annealing at 600 ◦C for 1 h. Both pre- and post-annealing, the images exhibited a clearly
periodic multilayered structure. The diffraction rings in the inset SAED pattern of Figure 3a are
characteristic of the (101) and (111) planes and can be indexed to the hexagonal structure of TiB2 and
the monoclinic structure of ZrO2. The diffraction rings in the SAED pattern in Figure 3b correspond to
the (111), and (011), and (110), (012), (211) planes and can be indexed to the monoclinic and tetragonal
structures of ZrO2 along with the rutile structure of TiO2. These results are consistent with the
qualitative information provided by XRD. The HRTEM micrographs show the well-formed crystal
state of the multilayers before and after annealing. The modulation period (Λ) of the multilayers
showed an appreciable increase after annealing due to the increase in grain size and the difference
in molar volumes between the oxidation products. For example, the modulation periods estimated
from the TEM images at the same position before and after annealing were approximately 49.6 and
52.1 nm, respectively. The single-layer thicknesses of the TiB2, (Ti, B)-oxide, and ZrO2 layers were
approximately 39.7, 42.8, and 9 nm, respectively. In summary, the barriers formed by the ZrO2 layers
effectively blocked oxygen from entering during oxidation, helping maintain the multilayered structure.
The generation of the high-temperature tetragonal phase of ZrO2 after oxidation, as demonstrated by
the SAED pattern in Figure 3b, was also favorable for the oxidation resistance of the multilayers.

The Raman spectra of the multilayers after annealing for different times at 600 ◦C in air are shown
in Figure 4. After 30 min of oxidation (Figure 4a), peaks corresponding to ZrO2 (315 cm−1), TiO2

(445 and 515 cm−1), and TiB2 (590 cm−1) along with weak peaks of B2O3 (1120, 1120, and 1420 cm−1)
appeared in the multilayer spectrum. When the oxidation time increased to 60 min (Figure 4b), the
intensities of the TiO2 peaks at 445 and 515 cm−1 increased, while that of the TiB2 peak decreased, and
TiO2 peaks appeared at 395, 638, and 826 cm−1 [28–31]. After annealing for 90 min (Figure 4c), the
intensities of the TiO2 and B2O3 peaks increased, and the TiB2 peak disappeared. Compared to the
TiB2/ZrO2 multilayers (Figure 4d), the intensities of the TiO2 and B2O3 peaks were much higher for the
TiB2 monolayers after 60 min of oxidization, indicating that surface oxidation was more serious in the
TiB2 monolayers.
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Figure 4. The Raman spectra of theTiB2/ZrO2 (tTiB2 :tZrO2 = 4:1) multilayers after annealing for (a)
30 min, (b) 60 min, (c) 90 min, and TiB2 monolayers after 60 min of oxidization (d).

3.2. Mechanism of Improved Oxidation Resistance and Mechanical Properties

Based on the XRD, SEM, TEM, and Raman results, high-temperature oxidation led to changes in
the structure and composition of the TiB2/ZrO2 multilayers. To clarify the effects of high-temperature
oxidation on the multilayer properties, the oxidation mechanism is depicted in Figure 5. The TiB2/ZrO2

multilayers were oxidized to form TiO2 and B2O3 on the surfaces of the multilayers. As the oxidation
time increased, the oxide content gradually increased. The primary oxidation reaction can be written
as follows [32].
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TiB2(s) +
5
2

O2(g) = TiO2(s) + B2O3(s) (1)

According to thermodynamic calculation, the standard Gibbs free energy of the reaction in Equation
(1) is negative at 600 ◦C, indicating that the formation of TiO2 and B2O3 phases is feasible. In the
TiB2 monolayer, the oxygen atoms entering the monolayer through the inter-crystal gaps can react
with TiB2 to form TiO2 and B2O3, releasing the residual stress in the monolayer. The TiB2 monolayer
expands after annealing due to the different molar volumes of TiB2 (15.5 cm3/mol), TiO2 (18.8 cm3/mol),
and B2O3 (38.7 cm3/mol), and then strip from the substrate. In addition, due to the difference in the
thermal expansion coefficient between the TiB2 monolayer and the substrate, circular blisters form as a
result of the biaxial compressive stress generated during heating. Once cracks form at the edges of the
blisters, circular peeling occurs [33]. In the multilayers, the formation of circular blisters in the TiB2

phase is obstructed due to the presence of internal interfaces. For ZrO2, its thermal conductivity varies
widely and almost continuously throughout the sample, so the ZrO2 layers are hardly oxidized at all.
Therefore, they form barriers hindering the oxidation process. This discontinuous oxidation of the
multilayers is key to improving their oxidation resistance. Meanwhile, ZrO2 has an elastic modulus of
approximately 50 GPa and can form an alternating soft and hard multilayer system with TiB2 [34,35].
The plastic deformation of the ZrO2 layers allows the partial relief of residual stress generated by the
volumetric expansion of the TiB2 layers upon oxidation [1]. This mechanism contributes to the observed
increase in hardness with increasing ZrO2 layer thickness because the development of compressive
stress in the ZrO2 layers can accommodate the volume increase of the TiB2 layers during oxidation.

Further experiments were carried out to verify the above oxidation mechanism. Figure 6a
shows the thermogravimetric curves of the TiB2 and ZrO2 monolayers and the TiB2/ZrO2 multilayers
during oxidation. Here, mass gain was defined as the mass change of the specimen per unit area
corresponding to the as-deposited multilayers after annealing. After oxidation at 600 ◦C, the TiB2

monolayers exhibited an obvious mass gain, while the ZrO2 monolayers hardly gained any mass.
With increasing modulation ratio, the mass gain of the TiB2/ZrO2 multilayers also increased. For all
multilayers, the mass gain during oxidation was lower than that of the TiB2 monolayer, indicating
that the multilayered structure of the TiB2/ZrO2 multilayers is favorable for improving oxidation
resistance. The TiB2 and ZrO2 monolayers along with the TiB2/ZrO2 multilayers exhibited parabolic
mass gains during oxidation, indicating that the oxidation rate of the TiB2/ZrO2 multilayers follows a
diffusion-controlled law [36,37].
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The parabolic oxidation rate can be expressed by Equation (2):(∆m
A

)2
= kt + c (2)

where t is the time, ∆m is the mass change, A is the surface area of the sample, k is the parabolic rate
constant, and c is a constant.

Figure 6b shows plots of (∆m/A)2 vs. t with linear fits to the data. Evidently, the data points can
be fitted to straight lines. All curves obey the parabolic law, indicating that the oxidation reaction was
controlled by diffusion. The coefficients of determination (R2) were in the range of 0.98–0.99, indicating
that the data were well fit by straight lines. The values of k are shown in Table 1. The activation
energies of the multilayers were calculated using the Arrhenius equation (Equation (3)):

k = A0 exp
( Ea

RT

)
(3)

where T is the absolute temperature, R is the gas constant, A0 is the pre-exponential constant, and Ea is
the activation energy, which can be calculated from Equation (4):

Ink = InA0 −
Ea

RT
(4)

Table 1. The calculated K, R2 and Ea (activation energy) values of TiB2, ZrO2 monolayers and TiB2/ZrO2

multilayers tested at 600 ◦C, respectively.

Coating Style Absolute
Temperature (K) K (mg2 cm−4 t−1) R2 (Correlation

Coefficient) Ea (KJ mol−1)

ZrO2 873.15 9.88 × 10−8 0.99 140.87
tTiB2 :tZrO2 =2:1 873.15 4.58 × 10−6 0.99 107.34
tTiB2 :tZrO2 =3:1 873.15 1.25 × 10−5 0.99 98.60
tTiB2 :tZrO2 =4:1 873.15 1.67 × 10−5 0.99 96.07
tTiB2 :tZrO2 =5:1 873.15 4.52 × 10−5 0.99 87.34
tTiB2 :tZrO2 =6:1 873.15 6.05 × 10−5 0.98 84.83

TiB2 873.15 1.51 × 10−5 0.98 76.84

Table 1 shows the Ea values for the oxidation of the TiB2 and ZrO2 monolayers and the TiB2/ZrO2

multilayers. The Ea values for the oxidation of the TiB2 and ZrO2 monolayers were approximately
76.84 and 140.87 kJ/mol, respectively, indicating that the ZrO2 monolayers were less likely to react with
oxygen compared to the TiB2 monolayers under the same conditions. For the multilayers, Ea decreased
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with increasing modulation ratio, and the Ea values were higher than that of the TiB2 monolayer.
Discontinuous oxidation retarded the inward diffusion of oxygen and hindered the outward diffusion
of metallic components. The formation of a dense (Ti, B)-oxide scale and the internally inserted ZrO2

layers in the TiB2/ZrO2 multilayers enhanced the oxidation resistance of the multilayers [7,38].
To verify the synergetic enhancement of the oxidation resistance and mechanical properties, the

hardness, residual stress (Figure 7a), and elastic modulus (Figure 7b) of the TiB2 and ZrO2 monolayers
and the TiB2/ZrO2 multilayers were measured before and after annealing. The higher TiB2 fraction
with increasing ratio from 2:1 to 6:1 the hardness increased. It almost followed the rule of mixture of
the individual components [39] Herein, with increasing tTiB2 :tZrO2 , the hardness and elastic modulus
both improved, reaching their highest values of 23.9 GPa and 303.1 GPa before annealing. Accordingly,
Figure 7b shows a decrease in hardness and elastic modulus after oxidation. The hardness reduction
during oxidation was basically due to the decreasing fraction of TiB2. The reduction in residual stress
also caused by high-temperature oxidation results in reduced hardness [40]. After annealing at 600 ◦C,
the hardness of the oxidized multilayers did not increase as the oxidation resistance of the multilayers
did. Instead, a critical point appears at tTiB2 :tZrO2 = 4:1, where both the hardness and elastic modulus
reach their maximum values of approximately 16.4 GPa and 262.4 GPa. These values are much higher
than those of the TiB2 monolayers. In addition, among the multilayers, annealing resulted in the
smallest reductions in hardness and elastic modulus for the multilayer with tTiB2 :tZrO2 = 4:1 (Figure 7b).
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Figure 8 shows the results of scratch scan and post scan surface profiles of TiB2 monolayers and
TiB2/ZrO2 (tTiB2 :tZrO2 = 4:1) multilayers before and after annealing. The maximum load was 5 N.
The critical fracture load can be used to characterize the adhesion strength or fracture resistance
of the coating. The loads of first cracking for the TiB2 monolayers and TiB2/ZrO2 (tTiB2 :tZrO2 = 4:1)
multilayers before annealing were 4.17 and 4.02 N, respectively. Meanwhile, only slight cracks were
observed at the edges of the coatings, and they did not delaminate with the tracks, indicating the
good strengths of the TiB2 monolayers and TiB2/ZrO2 (tTiB2 :tZrO2 = 4:1) multilayers on the substrates.
Owing to the formation of oxidation products and the oxidation of the interface to the substrate itself,
the critical fracture load of TiB2/ZrO2 (tTiB2 :tZrO2 = 4:1) multilayers (3.91 N) was higher than the TiB2

monolayers (3.14 N) after annealing, and the fracture range was smaller. This indicated that the
TiB2/ZrO2 (tTiB2 :tZrO2 = 4:1) multilayers enhances the adhesion strength with the substrate and is in
favor of releasing the residual stress.

Our experimental observations showed that the oxidation resistance of the multilayers increased
as the modulation ratio decreased. That is, as the ZrO2 layers became thicker, the progressive oxidation
of the multilayers from top to bottom became more difficult. The change in hardness with annealing
was studied based on the proposed oxidation mechanism, which takes into account changes in the
mechanical properties of the layers due to oxidation and the development of internal stresses to
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accommodate the volume increase associated with the oxidation of multilayers during annealing.
The hardness of the annealed multilayers should also increase as the modulation ratio decrease.
The experimental results did not indicate a further increase in hardness for the multilayers with
tTiB2 :tZrO2 = 4:1. This behavior was associated with the development of damage at the interfaces between
the ZrO2 and TiB2 layers, and the corresponding rule of mixtures for composites. The construction
of the multilayer system with controlled ZrO2 content provided a multilayer structure with good
oxidation resistance while maintaining a high hardness.
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4. Conclusions

In this work, TiB2/ZrO2 multilayers with a constant modulation period along with TiB2 and
ZrO2 monolayers for comparison were synthesized on Si (100) substrates by magnetron sputtering.
The oxidation behaviors of the samples upon annealing at 600 ◦C were investigated. The deposited
multilayers were dense and maintained their periodic structures after annealing. The oxidation
resistance and mechanical properties of the multilayers before and after high-temperature oxidation
were studied based on an oxidation mechanism model. The TiB2/ZrO2 multilayers exhibited
a significantly higher Ea for oxidation (~107.34 kJ/mol) than TiB2 monolayer (~76.84 kJ/mol).
The maximum hardness (16.4 GPa) and elastic modulus (262.4 GPa) of the oxidized multilayers
were observed at tTiB2 :tZrO2 = 4:1. The superior mechanical properties and oxidation resistance of the
TiB2/ZrO2 multilayers were attributed to the synergistic contributions of the modulated thickness of
the TiB2 and ZrO2 layers and the discontinuous oxidation of the multilayers. The findings of this
work demonstrate that ceramics/metal oxide nanocomposites with enhanced oxidation resistance and
mechanical properties can be obtained via structural optimization.
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