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Abstract: Functional gradient materials (FGMs) have tremendous potential due to their characteristic
advantage of asymptotic continuous variation of their properties. When an FGM is used as a coating
material, damage and failure of the interface with the substrate component can be effectively inhibited.
In order to study the dynamic crack propagation in FGM coatings, a new method, peridynamics
(PD), was used in the present study to simulate dynamic fractures of FGM coatings bonded to
a homogeneous substrate under dynamic loading. The bond-based PD theory was employed to study
crack propagation and branching in the FGM coating. The influences of the coating gradient pattern,
loading, and the geometry and size of the structure on crack curving and propagation under impact
loading were investigated. The numerical results show that different forms of the elastic modulus of
graded material, the geometry of the structure, and the loading conditions have considerate effects
on crack propagation in FGM coatings, but a specific form of elastic modulus had a limited effect on
the dynamic fracture of FGM coating.
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1. Introduction

With the development of modern science and technology, people are demanding materials of
higher and higher quality, and the proposal of functional gradient materials (FGMs), a special type
of material, has aroused much attention. Because of their novel concept and superior performance,
FGMs have gained worldwide attention and have great application prospects in many fields, such as
the aerospace industry, electromagnetism, chemistry, biomedicine, and daily life. FGMs, which are
different from homogeneous materials and composite materials, are made up of two or more kinds of
material with different properties, and, by changing the volume fraction of the materials, the properties
of the materials become asymptotically continuous, resulting in the formation of FGMs. The purpose of
FGMs is to reduce stress concentration and residual stress, and to increase the bond strength between
materials [1,2]. The principle of functional gradation is used to make artificial biomaterials for knee
replacement [3]. FGM can also be used as a coating material and interfacial layer to eliminate the stress
singularity at interface intersections and at the free end of stress in the connecting materials.

The coatings play important roles in various engineering applications to protect metal or ceramic
substrates from abrasion, corrosion, and oxidation. One of the factors that affects the structural
or functional failure of a coating is a mismatch of material properties between the coating and
substrate. In order to eliminate this mismatch and improve the performance and integrity of the
coating and substrate, the design of FGM coatings is actively being explored. In the past two decades,
the fracture behavior of FGM has been illustrated [4–8], and FGMs with special properties have
been used to overcome interfacial debonding problems [9–12]; however, the performance of FGMs
is also significantly lowered by the existence of cracks. Kim and Paulino investigated the effects
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of boundary conditions, crack tip mesh discretization, and material properties on fracture behavior
in detail [13]. The fracture energy criteria were then used to examine the initial condition of FGM
cracks and to determine the initiation angles of cracks [14]. Erdogan researched the fundamental
surface cracking problem of FGM coatings by studying stress singularities near the crack tip in the
interface [15]. Guo et al. studied dynamic fracture behavior of an FGM coating–substrate structure
with a crack perpendicular to the graded direction under internal load [16]. Goyat and Verma used
the extended finite element method to adjust the thickness of the FGM coating by reducing the stress
concentration [17]. Rezaei et al. developed a numerical model which serves to predict damage behavior
and crack propagation in the coating system by using the cohesive zone [18]. When FGM is used as
an interface layer, it is used to connect two incompatible materials. The location of a crack also has
a significant effect on the stress level of the materials. Marur and Tippur studied the graded influence
of a bending beam with FGM as an interface layer through a three-point bending experiment [19].
Rousseau and Tippur re-studied the deflection problem of cracks in the mixed-mode dynamic fracture
experiment reported in Reference [19] by using the cohesive-zone finite element method, and they
found that when the crack is located in the lower gradient area, the deflection is more obvious [20].

The dynamic crack propagation mechanism of FGM materials remains a huge challenge in
computational mechanics research, due to the non-uniformity of FGM properties. The initiation of
cracks is also caused by the mixed modes of cracking and growth phenomena, which occur near
the crack tip [21]. At present, the traditional finite element method, boundary finite element method,
and cohesion analysis method are devoted to solving the numerical analysis of continuity, and there are
still some limitations in the analysis of discontinuities. Silling proposed a new method, peridynamics
(PD), which has great advantages over the traditional numerical method for solving the problem
of non-continuity [22,23]. PD is a method of non-local theory in which the motion equation is
reformulated such that no spatial derivatives are required. It is a suitable analysis method for dynamic
fracture problems. The PD method has no need to evaluate the stress intensity factor of the crack
tip, nor does it need to track the location of the crack tip; the crack appears spontaneously in the PD
model [23]. The method avoids the shortcoming that is the singularity of discontinuous problems
in the numerical methods based on classical continuity. Silling and Askari used bond-based PD to
investigate the propagation of brittle, dynamic cracks and the effect of the sphere on fragile targets [23].
Bobaru and his co-authors discussed a PD analysis of dynamic crack growth and branching of brittle
materials, and proved the reliability of the PD method [24,25].

The original purpose of PD was to solve dynamic fracture problems involving multiple cracks,
impact loading, and crack branching in brittle and composite materials. After more than a decade of
development, the PD method has been developed in many fields. Hu et al. analyzed the influence
of dynamic brittle fracture and damage behavior of unidirectional fiber-reinforced composites [26].
Carvalho and his colleagues predicted the initial conditions and expanded the delamination shapes
of composite plates by capturing the critical energy release rate at the interlayer interface [27]. Ha et
al. observed the growth and branching behavior of pre-cracks in rock materials under uniaxial
compression [28]. Zhang et al. used PD theory to analyze the damage and asymptotic failure of
concrete structures [29,30]. Cheng et al. studied the dynamic fracture of FGMs based on the PD
model [31]. However, the dynamic fracture problem for FGM coatings based on PD theory has not yet
been reported on.

Based on the PD method, we investigated and simulated the dynamic fracture behavior of FGM
coatings with a homogeneous substrate. The crack propagation mode is pointed out. This paper is
organized into four parts. In Section 2, we briefly review the PD model and the methods used to obtain
the bond parameters in FGMs. Crack propagation in an FGM coating was simulated. The effects of the
loading magnitude, structure geometry, gradient form, and crack position on the pattern of the crack
propagation are studied in Section 3. In addition, the conclusions are given in Section 4.
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2. The PD Formulation for FGMs

2.1. Basic Review of PD Theory for Elastic Brittle Materials

The PD method is a non-local continuity method that divides the material into a finite number
of discrete material points, and the material point pairs are connected with each other by means of
interaction forces within a limited distance. In PD theory, these interactions are called bond interaction
forces, which are given by

ρ
..
u =

∫
Hx

f
(
u(x, t)− u

(
x′, t

)
, x′ − x

)
dVx′ + b(x, t) (1)

where f is the interaction force between the material points x and x’, u is the displacement vector field,
$ is the material density, and b(x,t) is the volume force. This integral is defined in the area H, which is
called the ‘horizon,’ as shown in Figure 1. This ‘horizon’ region is a circle with a radius δ, and we also
call the δ ‘horizon’ [23].
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Figure 1. Any point x in R interacts directly with point x’ in horizon H by the bond.

For a micro-elastic brittle material, the interaction force function between the material points can
be expressed by its scalar potential function w:

f (η, ξ) =
∂w(η, ξ)

∂η
(2)

Here, η = u’ – u is the relative displacement and ξ = x’ − x is the relative position. The micro-potential
energy w represents the single-bond energy, and the micro-potential energy function given by the
strain energy density is

W =
1
2

∫
Hx

w(η, ξ)dVξ (3)

The 1/2 factor is included because each end point of the bond is only half the energy of the total bond.
Thus, it is concluded that

w(η, ξ) =
cs2ξ

2
(4)

Thus, the interaction function f of the paired particles given above has the following form:

f (η, ξ) =
η+ ξ

‖η+ ξ‖ c(ξ)s ξ ≤ δ (5)

where ξ = ‖ξ‖, s = ‖ξ+η‖−‖ξ‖
‖ξ‖ represents the elongation of the bond, and the function c represents

the bond modulus function, which contains the material properties and determines the bonding elastic
stiffness. In 2D structures, the constant micro-modulus function is

c =
6E

πδ3(1− ν)
(6)
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where E, ν, and δ denote the modulus elasticity of the material, the Poisson’s ratio, and the horizon size,
respectively. For the 2D bond-based PD model of an isotropic and homogeneous material under plane
stress conditions, the Poisson’s ratio is ν = 1/3. The influence of the Poisson’s ratio ν on the fracture of
FGMs is almost negligible [32]. Accordingly, in this paper, the bond-based PD model is used and the
Poisson’s ratio ν is 1/3. According to the method of calculating micro-modulus functions [33] in 1D,
we concluded that, in 2D, the conical micro-modulus function under plane stress [24] is obtained by
the following:

c = c1

(
1− ξ

δ

)
=

24E
πδ3(1− ν)

(
1− ξ

δ

)
. (7)

The PD theory mainly focuses on dynamic fracture and failure theory. When the deformation
within the horizon of the material point x exceeds the critical value, the PD bond between the material
points is broken and the point fails. The critical length s0 can be calculated by the fracture energy of
materials. In 2D structures, the fracture energy G0 is the following:

G0 = 2
∫ δ

0

∫ δ

z

∫ cos−(
z
ξ
)

0

(
cs2

0ξ

2

)
ξdθdξdz. (8)

By equating G0 to the work done in a PD material, the critical length s0 is

s0 =

√
4πG0

9Eδ
(9)

for the constant micro-modulus function, and

s0 =

√
5πG0

9Eδ
(10)

for the conical micro-modulus function. The critical relative elongation depends on the properties of
the material and the ‘horizon’ δ.

2.2. PD Model for FGM

In this work, FGMs are understood as following an elastic model of local homogenization of
material properties, where the density, elasticity modulus, and fracture toughness of material are
constant. On the basis of local homogenization, the fracture theory of homogeneous materials is applied
to inhomogeneous materials, such as composite materials [26], composite fiberboard materials [27],
FGMs [31], and so on. For FGMs, we use the fracture criterion of the maximum energy release rate to
calculate the fracture energy, which is given by the following formula:

G0 =
K2

IC
E

(11)

KIC and E represent the fracture toughness and elastic modulus of the crack tip of an FGM, respectively.
Since FGMs are not homogeneous materials, the above Equations (6)–(10) do not apply to FGMs,

but are applicable locally. Cheng et al. [34] proposed a pair-bond principle, based on PD theory, in FGM
as a heterogeneous material. They pointed out that two parallel bonds are used to replace the bonds
between the original material points. If one of the bonds breaks, then the other bond will break at the
same time. The validity and feasibility of the pair-bond PD theory have been well verified in FGM
fracture simulations. In this paper, we use the pair-bond PD theory to study the dynamic fracture
mechanism of FGM coating components.

For FGMs, the pair-wise interactions in bond-based PD are modified and two parallel bonds are
introduced to replace the interaction between two material points, as shown in Figure 2. The bond
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between material points A and B becomes two parallel bonds. In the initial configuration, the length
between material points A and B is s, and the bond length is s’ after the deformation.
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2.2.1. Determination of Micro-Modulus Function c

Since material points A and B are connected by two parallel bonds, the energy of point A and the
energy of point B each represent half of the total energy. It is defined that the micro-modulus function
of material A is CA, and the micro-modulus function of material B is CB; obviously, the constant
micro-modulus function C of the two parallel bonds is

cA =
12EA

πδ3(1− υ)

(
1− ξ

δ

)
(12)

cB =
12EB

πδ3(1− υ)

(
1− ξ

δ

)
(13)

2.2.2. Determination of the Interaction Function f

For the interaction function between two material points, the interaction function of material
point A on the role of material point B is expressed as f AB, and the interaction function of material
point B on the role of material point A is expressed as f BA. The interaction between material point A
and material point B is then denoted by f. Thus,

fAB =

{
η+ξ
‖η+ξ‖ cABsAB, ξ ≤ δ

0, ξ > δ
(14)

fBA =

{
η+ξ
‖η+ξ‖ cBAsBA, ξ ≤ δ

0, ξ > δ
. (15)

2.2.3. Critical Relative Elongation s0

The critical relative elongation is the fracture criterion used to measure the bonds among the
material points. The critical relative elongation of the bond AB is sAB, and the critical relative elongation
of the bond BA is sAB. These can be described as

sAB =

√
5πGAB

9EABδ
(16)

sBA =

√
5πGBA

9EBAδ
(17)
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It is only when the two bonds between point A and point B are broken that there is no bond
between point A and point B.

3. Convergence Studies in Dynamic Crack Branching of FGMs

A PD model of FGMs has been verified [31,34], and the convergence of different stresses and
different geometric sizes has been studied. In this section, the convergence of PD models is achieved
by focusing on the problem where there is a pre-crack in an FGM sample under tensile stress load on
the upper and lower surfaces.

3.1. Problem Setting

We considered a thin FGM rectangular plate with dimensions of 40 × 20 mm2 and a crack
length of 20 mm. The geometric size and boundary conditions are shown in Figure 3. In addition,
no other boundary conditions existed. The constant micro-modulus function (Equation (10)) was
used in this section. The material composition of the FGM rectangular plate was epoxy mixed with
a certain amount of glass to make its mechanical properties change step by step. The mechanical
properties of the material parameters are shown in Table 1. The values of the density, elastic modulus,
and fracture toughness of the FGM coating were taken from the results of Kirugulige and Tippur [7].
The gradient form of FGM was changed to its exponential form, a method that has been adopted by
many researchers in previous studies [8]. In this section, the PD convergence of the FGM rectangular
plates in exponential gradient form was investigated to further prove the feasibility of the PD method
for studying crack bending of gradient materials under dynamic loading conditions.Coatings 2018, 8, x FOR PEER REVIEW  7 of 19 
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Figure 3. Specimen geometric and boundary conditions.

Table 1. Material parameters of functional gradient material (FGM) coating samples.

Material Elastic Modulus
E (GPa)

Density $
(kg m−3)

Poisson Ratio
ν

Fracture Toughness
KIC (MPa·m1/2)

Lower FGM l 4 1175 0.33 1.4
Upper FGM 10 1750 0.33 2.2

3.2. δ-Convergence of FGM Samples

For the δ-convergence, we selected m = 4 (m is the ratio between the horizon size and ∆x) and
horizon sizes of δ = 0.8 mm (∆x = 0.2 mm), δ = 1.0 mm (∆x = 0.25 mm) and δ = 1.33 mm (∆x = 0.33 mm).
Note that ∆x is the grid spacing, and all models had uniform grid spacing. A uniform time step size
of ∆t = 25 ns was used, and a uniform tensile stress of σ = 2.5 MPa was applied to the FGM models
in this section. It should be noted that when an FGM is used as a coating material, it is affected by
coating thickness, so we refined the grid as much as possible to make sure that there were enough
nodes to maintain the consistency of the mechanical property parameters of the material. The crack
paths of the FGM samples at t = 80 µs are compared in Figure 4. The critical relative elongation s0 also



Coatings 2019, 9, 62 7 of 18

changed with the δ decrease (Equations (9) and (10)). Moreover, the crack paths were not different as
the δ decreased, but became clearer and clearer.
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Figure 4. Crack path with different δ (m = 4) values using peridynamics (PD) models at 80 µs.
(a) δ = 1.33 mm (∆x = 0.33 mm); (b) δ = 1.0 mm (∆x = 0.25 mm); (c) δ = 0.8 mm (∆x = 0.2 mm).

3.3. m-Convergence of FGM Samples

For the m-convergence, the FGM model and boundary conditions selected were the same as
for the δ-convergence. We selected a fixed horizon size of δ = 1 mm, and respectively used m = 3
(∆x = 0.33 mm), m = 4 (∆x = 0.25 mm), and m = 5 (∆x = 0.2 mm). A uniform time step size of ∆t = 25 ns
was used. The crack paths of PD simulation in t = 80 µs are shown in Figure 5. With an increase in the
grid density, m-convergence took place, causing dynamic crack growth in terms of the crack path and
crack velocity. When there were enough nodes within the horizon range (m > 4), the crack path did not
change further with an increase in grid density.
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Large m values required a higher calculation cost, but the results were not affected. In the later
simulation study, we chose m = 4, which was a good choice.

3.4. ∆t-Convergence of FGM Samples

The time integral algorithm adopted for the PD motion equation was the Velocity–Verlet
algorithm [23]:

u′n+ 1
2
= u′n + u′′n

∆t
2

(18)

un+1 = un + u′n+ 1
2
∆t (19)

u′n+1 = u′n+ 1
2
+ un

n+1
∆t
2

(20)

where u, u’ and u” denote the displacement, velocity, and acceleration, respectively. ∆t is the time step
size per iteration. Silling pointed out that a computationally stable time step size ∆t should satisfy [23]

∆t <

√
2ρ

∑i Vic
(21)

Bobrau studied the effect of the brittle fracture of homogeneous rocks on the convergence of the
PD model using a time step size of ∆t = 25 ns, which is considered to be a stable time step for the finest
models [24]. Here, we studied the convergence of the time step size for FGM samples to determine the
optimal stable time step for the FGM model.

For the convergence study of time steps, we selected a horizon size of δ = 1 mm, a grid spacing of
∆x = 0.25 mm (m = 4), and time step sizes for comparison of ∆t = 10, 20 and 25 ns. The crack paths of
the FGM samples in various ∆t were compared at t = 80 µs, as shown in Figure 6. The models with the
time step size of ∆t = 25 ns had a larger bending phenomenon after t = 62 µs, but the crack paths with
∆t = 10 and 20 ns were very similar. Considering the calculation cost, the time step size ∆t = 20 ns was
shown to be a good choice, as it is a precise and stable explicit central difference method.
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Based on the PD convergence research of FGMs, we adopted these parameters with δ = 1.0 mm,
m = 4, and ∆t = 20 ns to balance the computational cost and accuracy requirements after the numerical
simulation of the FGM coating components.

4. Simulation of FGM Coating—Substrate

There have been many studies on the dynamic fracture of homogeneous materials based on the
PD model [24–26], and the PD model has also been used to analyze the dynamic fracture behavior of
FGMs [31]. The convergence of the PD method was demonstrated in an FGM analysis that included
damage, fracture, and thermal stress by Liu et al. [34]. In this paper, the crack propagation and
deflection of FGM coatings with different forms of gradient are presented.

4.1. Problem Setting

In this section, consider a specimen in which the FGM coating is bonded to a homogeneous elastic
substrate. The dimensions of the specimen are 40 mm× 80 mm. In the specimen, there are three cracks,
each having a length of a1 = a2 = a3 = 5 mm, and the distance between adjacent cracks is L1 = 10 mm.
The three cracks are perpendicular to the surface of the coating and are symmetrically arranged
about the y axis, wherein the intermediate cracks are distributed along the y axis. Considering the
existence of various complex cracks in reality, here, we only provide a simplified simulation. Based on
the indentation test, we chose the superpositions of symmetric vertical cracks and central cracks.
An impact load was applied to the upper surface of the specimen. The impact load had a range
of 16 mm and was symmetrically distributed about the y axis. The specimen size, crack location,
and loading location are shown in Figure 7; otherwise, no other boundary conditions existed. For the
sake of simplicity of the simulation, we assumed that the coating thickness was H1 = 10 mm and
the substrate thickness was H2 = 70 mm. In this study, the substrate used was an epoxy material
with the same material properties as the lower surface of the FGM coating. The coating used was
an FGM coating material made of glass/epoxy, in which the epoxy was attached to the substrate and
the glass was exposed to the outside. It was assumed that the interface adhesion between the FGM
coating and the homogeneous substrate was an ideal bond. The mechanical properties of the FGM
coating–substrate specimen are listed in Table 1.
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4.2. Crack Propagation and Deflection of the FGM Coating Corresponding to Different Gradient Forms

Based on the difficulty of discontinuity assumptions, many previous experiments and finite
element simulations in FGMs have assumed that the properties of the elastic modulus in FGMs are
exponential [7,8,19]. The PD theory was used to analyze the FGM model with arbitrarily changed
gradient forms in this paper. The influence of diverse gradient forms in the FGMs was demonstrated
by simulating the growth behavior of cracks with different gradient functions under dynamic loading
conditions. In order to investigate the influence of the gradient forms of the material elastic parameters,
it was assumed that the material parameters of the FGM changed according to the following three
functional forms:

E = E1 + α1y (22)

E = E1eα2y (23)

E = E1 + (E2 − E1) sin(α3y) (24)

where α1, α2, and α3 are the variable parameters of the elastic modulus, which are related to the
boundary value of the FGM coating. The variation in the three gradient functions of the FGM coating
is shown in Figure 8. Similarly, the density and fracture toughness of the FGM coating also have these
three forms. The forms of density are as follows:

Linear functions : ρ = ρ1 + β1y (25)

Exponential function : ρ = ρ1eβ2y (26)

Sinusoidal function : ρ = ρ1 + (ρ2 − ρ1) sin(β3y). (27)

Additionally, the forms of the fracture toughness have

Linear functions : KIC = ρ1 + γ1y (28)

Exponential function : KIC = KIC1eγ2y (29)

Sinusoidal function : KIC = KIC1 + (KIC2 − KIC1) sin(γ3y) (30)

where β1, β2, and β3 are the variable parameters of the elastic modulus, and γ1, γ2, and γ3 are the
variable parameters of fracture toughness. For this example, the values of E1, E2, $1, $2, KIC1, KIC2 are
expressed in Table 1.

The effects of the gradient functions of the FGM coating on crack propagation were shown to
be conducted. Some snapshots at 100 µs are shown in Figure 9. The impact loading applied to the
coating surface was σ = 48 MPa, and the duration of the loading was t = 100 µs. As shown in Figure 9,
the fracturing patterns were captured when the duration of the impact loading reached 100 µs. It can
be observed from Figure 9 that among the three cracks, the crack on the right side was deflected to
the right, the crack on the left side was extended to the left, and the crack in the middle was vertically
expanded downward without deflection. It was also found that there was little difference in the
crack propagation tendencies for different gradient function forms. This means that the effect of the
gradient form on crack propagation in FGMs is very limited. Since the applied impact loading and the
pre-cracks were symmetrically distributed, the intermediate crack propagated vertically downward
and did not deflect to the left or right sides of the specimen. Figure 10 shows some snapshots for
elastic energy density in the load duration. As expected, the highest elastic energy density was ahead
of the crack tips, especially in the intermediate crack tip. It can also be found from Figure 10 that when
the cracks propagated near the transition interface between the coating and the substrate, the stress
concentration always occurred at the crack tips, especially at the tip of the intermediate crack.
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As we know, FGMs are heterogeneous materials, of which the properties change continuously in
a particular direction. The range of changes in material properties may affect the crack propagation in
an FGM coating system. A functionally graded material coating structure with three vertical boundary
cracks was considered, as shown in Figure 7. In the gradient layer, the material parameters of the
upper and lower surfaces of the functionally gradient coatings are shown as E2 and E1, respectively.
The function curve between the elastic modulus and coordinate y are plotted in Figure 11 for several
specimens when E = E1 = 4 GPa and E2/E1 = 0.5, 2.5, 5, and 10, respectively. The applied impact
loading was σ = 44.5 MPa and the duration of the load was t = 100 µs. The material properties in the
specimen differed from sample to sample, though their gradient forms were all exponential functions.
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Figure 11. The ratio of the elastic moduli of different gradient coatings.

The volume fraction content of an FGM coating has a certain effect on its overall performance,
which is an important aspect of FGM performance. Tilbrook and his coworkers observed the pores
and crack path of FGMs with different volume fractions by electron micrographs [35]. Figure 12 shows
some snapshots of crack maps of FGM coatings with different E2/E1 at 100 µs. It can be seen that
whether the ratio was E2/E1 = 2.5, 5, or 10, the crack propagation path was basically similar, but the
propagation rate was different. When E2/E1 = 5, the two cracks extended to the edge of the specimen,
but when E2/E1 = 2.5 or 10, the crack did not yet extend to the edge of the specimen, while when
E2/E1 = 0.5, the coating was destroyed under impact loading. The contours of elastic energy density
corresponding to Figure 12 at the same time are shown in Figure 13. For ease of comparison, the coating
structure was also calculated when the coating consisted of homogeneous materials with the same
geometry and loading conditions as the FGM coating, as shown in Figure 14. It can be seen from
Figure 14 that the deflection angle of the crack in the uniform material coating was larger than that in
the gradient coating, and the propagation range of the crack in the uniform material substrate was
longer. This means that the fracture resistance of the coating structure can be improved by selecting
suitable gradient coatings [36].
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4.3. Crack Propagation and Deflection of FGMs Corresponding to Different Coating Thicknesses

When FGMs is used as a coating material, the coating thickness is also an important factor for
its dynamic fracture. Tilbrook and his colleagues demonstrated the fracture problem of randomly
oriented cracks of FGMs about the probability density function of mixed mode SIFs [35]. The value of
the stress intensity factor K is related to the material thickness, and the coating thickness also affects
the stress of the crack tip. Here, the dynamic fracture behavior of different gradient coating thicknesses
on the substrate components was investigated. The geometry and the boundary conditions of the
FGM coating structure are shown in Figure 7. The coating thicknesses used in this simulation were
H1 = 8, 10 and 12 mm, H2 = 70 mm, and W = 40 mm. The stress load application conditions were
σ0 = 41 MPa, as shown in Figure 15; the duration of the load was t = 100 µs. The crack length was
d = 4 mm, and the distance between adjacent cracks was L1 = 10 mm. Some snapshots of the crack
maps and the elastic strain density of the FGM coating with different coating thickness at 100 µs with
σ0 = 41 MPa are shown in Figures 16 and 17, respectively. It was found that the deflection angle of
the crack was almost the same under three sizes of coating thickness, but when the coating thickness
was 12, the crack first extended to the left and right boundaries, and when the coating thickness was
8, the crack propagation distance was the smallest. Goyat and Verma chose an FGM coating with
the power law index, and pointed out that the thickness of the coating largely contributes to the
reduction of the stress concentration factor [17]. It was also found that the sample with a coating
thickness of 8 mm had a smaller range of strain energy density and less damage was done to the
component under the same conditions. Although the strain energy density of the sample with a coating
thickness of 12 mm was minimal, the crack extension was indeed the fastest. It was seen that the 12 mm
coating sample did not really exert its full energy effect. This means that the coating thickness also
has a great influence on the generation of cracks. Due to the cost and complexity of FGM preparation,
an appropriate coating thickness is sufficient to protect the substrate from damage.
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5. Conclusions 

In this paper, the bond-based PD theory was employed to discuss the dynamic fracture behavior 
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Figure 16. Propagation and deflection of cracks in FGM coatings with different coating thickness:
(a) 8 mm; (b) 10 mm; (c) 12 mm.

Coatings 2018, 8, x FOR PEER REVIEW  17 of 19 

 

   

 

(a) (b) (c) 

Figure 16. Propagation and deflection of cracks in FGM coatings with different coating thickness: (a) 

8 mm; (b) 10 mm; (c) 12 mm. 

   

 

(a) (b) (c)  

Figure 17. Contours of the elastic energy density in FGM coatings with different thicknesses: (a) 8 mm; 

(b) 10 mm; (c) 12 mm. 

5. Conclusions 

In this paper, the bond-based PD theory was employed to discuss the dynamic fracture behavior 

of surface cracks in FGM coating substrate specimens. The influences of the gradient pattern, coating 

thickness, and elastic gradient ratio of the upper surface and the lower surface of the FGM coating on 

crack propagation and deflection in the FGM coating substrate under dynamic load were analyzed. 

The numerical results showed that the surface cracks in the FGM coating substrate specimen always 

spread to the two sides under the impact load of the upper center, no matter how the gradient formed. 

The gradient function form of FGM had little effect on the crack propagation in the FGM coating. 

Because of the symmetry of the compressive load and crack locations, the middle crack was never 

deflected due to the stress concentration. The different elastic modulus ratios of gradient coatings 

and coating thicknesses showed no relation to the crack paths, but the degree of crack curing was not 

the same. The coating thickness was shown the most significant effect on the cracks. In future research, 

the gradient form of FGM coating components will be investigated in order to find a suitable gradient 

form that can better play the role of an FGM coating. 

Author Contributions: Methodology, Z.C.; Supervision, Z.C.; Writing–original draft, Y.Z.; Writing–review & 

editing, Z.C. and H.F. 

Figure 17. Contours of the elastic energy density in FGM coatings with different thicknesses: (a) 8 mm;
(b) 10 mm; (c) 12 mm.

5. Conclusions

In this paper, the bond-based PD theory was employed to discuss the dynamic fracture behavior
of surface cracks in FGM coating substrate specimens. The influences of the gradient pattern, coating
thickness, and elastic gradient ratio of the upper surface and the lower surface of the FGM coating on
crack propagation and deflection in the FGM coating substrate under dynamic load were analyzed.
The numerical results showed that the surface cracks in the FGM coating substrate specimen always
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spread to the two sides under the impact load of the upper center, no matter how the gradient formed.
The gradient function form of FGM had little effect on the crack propagation in the FGM coating.
Because of the symmetry of the compressive load and crack locations, the middle crack was never
deflected due to the stress concentration. The different elastic modulus ratios of gradient coatings and
coating thicknesses showed no relation to the crack paths, but the degree of crack curing was not the
same. The coating thickness was shown the most significant effect on the cracks. In future research,
the gradient form of FGM coating components will be investigated in order to find a suitable gradient
form that can better play the role of an FGM coating.
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