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Abstract: As a heterogeneous material, functionally graded material (FGM) behaves as continuously
changed material properties in certain directions from one composition to another, and hence it
has received much more attention for biomedical applications and thermal protections to achieve
innovative functions that conventional homogeneous material cannot accomplish. However, due to
the particularly small thickness ratio of coating to substrate in practice, the conventional mesh
discretization of the coating region is inefficient. To simplify the meshing procedure and increase the
efficiency of analysis, the approximated transfer algorithm based on the concept of finite difference is
developed for transferring boundary conditions applied on the coating surface to the interface of
coating and substrate. As a result, only the substrate with transferred convection boundary conditions
needs to be solved numerically, i.e., by the fundamental-solution based hybrid finite element method
(HFS-FEM) with high accuracy and feasible polygonal element construction, in which only integrals
along the element boundary are evaluated because of the application of fundamental solutions of
the problem as kernel functions of interior approximated fields. Finally, numerical experiments
including the single-layered, multi-layered and functionally graded coatings are carried out to verify
the accuracy and applicability of the present method.

Keywords: substrate; functionally graded coating; transfer approach; hybrid finite element

1. Introduction

Practically, biomaterials are usually not homogeneous and show certain functional gradation
formed by biological adaptation [1]. For instance, the porous bone is graded from the external cortical
bone, a dense and stiff structure, to the internal cancellous bone which is a porous one [2]. A similar
feature can be observed in bamboo [3] and mollusc shell [4]. Such a functionally graded structure
optimizes the material’s response to external loading. Therefore, it is of great importance that the
artificial structures for implant have similar natural functional gradations. As an example of bone
implants for knee joint replacement, a functionally graded interlayer is usually designed to improve
the acceptance of artificial implants by living tissues. This can be achieved for titanium implants
functionalized with a graded coating [5]. Besides, in the case of dental implants, the functionally
graded layers were introduced in the titanium and its alloys to increase osteoconductivity and
biomechanical bonding between the implant and the surrounding bony tissue [2]. As an application of
the HA–TiO2–Ti functionally graded biocompatible coating system designed by Kumar and Wang for
implant applications [6], the hydroxyapatite (HA) powder was mixed with the titanium oxide (TiO2)
power in different weight percentages to form five thin coating layers and then attached to the Ti6A14V
metal substrate to obtain the resulting functionally graded composite. Besides, the multi-layered
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or functionally graded coating film was also used as a thermal barrier coating for protecting the
covered substrate under severe thermal-mechanical environments [7–10]. For such multi-layered
or functionally graded coating/substrate systems, the prediction of temperature distribution in the
covered substrate domain is critical for further analysis of thermal stresses and deformations to control
them within acceptable levels.

To analyze the multi-layered coating system or the functionally graded coating (FGC) system,
numerical modelling is widely employed, including finite element modelling [11,12] and boundary
element modelling [13,14]. However, it is observed that the thickness of coating is usually very
thin, i.e., within µm scale, compared to the size of the covered substrate domain in millimeter scale.
The primary obstacle to the development of efficient and accurate computational modelling for such
a thin coating system is that the meshing operation in the thin coating layers becomes very difficult
and accuracy and efficiency becomes worse as the thickness of the coating layer decreases dramatically.
To deal with such an obstacle, the transfer approximation based on finite difference technique [13]
and the nonlinear transformation technique [14,15] were respectively developed for transferring the
specified boundary conditions on the coating surface to the interface of the coating layer and substrate
so that only the substrate region needs to be solved, instead of the whole coating/substrate system.
However, there are a very few studies that focused on thermal analyses of heterogeneous coating
systems, i.e., FGC [6,16,17].

This paper pays attention to the first attempt of the thermal analysis of a functionally graded
coating/substrate system by combining the approximated transfer algorithm and the hybrid finite
element with fundamental solution kernels, an effective numerical tool called fundamental-solution
based hybrid finite element method (HFS-FEM), which can be viewed as the combination of finite
element method (FEM) [12,18] and boundary element method (BEM) [19–21] and has such inherent
advantages as the stiffness equation containing element boundary integrals only, specially-purposed
elements, arbitrary polygonal-shaped element construction, and better accuracy over the conventional
FEM. However, it is worth noting that the dependence of fundamental solutions of HFS-FEM may
limit its application to those problems without the explicit expression of fundamental solutions.
Detailed summaries of the development of HFS-FEM and the state-of-the-art can be found in [22,23].
In this study, the approximated transfer algorithm based on finite difference is developed to establish
a recurrence formula to treat the multi-layered coating and the functionally graded coating. The applied
thermal boundary conditions on the top surface of coating can be transferred to the surface of substrate
in convection form and then only the substrate domain is solved by the HFS-FEM to analyze the
thermal behavior in it. Finally, the accuracy and applicability of the present method is discussed by
several numerical examples involving the single-layered coating, the multi-layered coating and the
functionally graded coating.

2. Problem Statement

To address the generalization of the present method, a general two-dimensional functionally
graded coating/substrate system depicted in Figure 1 is considered in the study, where the thickness
of heterogeneous coating and substrate is hc and hs, respectively. It is assumed that the substrate region
is homogeneous and isotropic, while the coating layer is graded along the thickness of it. Besides, it is
worth pointing out that the substrate is not limited to the finite domain shown in Figure 1, and the
half-infinite substrate domain is also workable with the numerical procedure developed below.
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Figure 1. Configuration of the functionally graded coating/substrate system.

For the composite system consisting of the single-layered functionally graded coating and
the substrate, the basic partial differential equations at point x = (x1,x2) governing the steady-state
temperature distribution in the coating region Ωc and the substrate region Ωs can be expressed as:

∇qc(x) = 0, x ∈ Ωc

∇qs(x) = 0, x ∈ Ωs
(1)

where qc and qs are heat flux vectors in the coating and substrate regions, respectively, and can be
expressed in terms of temperature variable by the Fourier’s law,

qc(x) = −kc∇Tc(x), x ∈ Ωc

qs(x) = −ks∇Ts(x), x ∈ Ωs
(2)

In Equation (2), kc and ks are the thermal conductivity of the coating material and the substrate,
respectively. Tc and Ts are the corresponding temperature fields in each region, respectively. For the
homogeneous coating, the thermal conductivity kc is constant, while it may change in terms of spatial
coordinates along the thickness of the functionally graded coating. In this study, the following two
graded forms are considered, as shown in Figure 1,

kc(x2) =

{
a + bx2 for the linear form
aebx2 for the exponental form

(3)

where a and b are constant coefficients, which can be determined by the continuous change of thermal
conductivity from one material phase to another material phase.

Substituting Equation (2) into Equation (1) yields,

∇kc∇Tc(x) + kc∇2Tc(x) = 0, x ∈ Ωc

ks∇2Ts(x) = 0, x ∈ Ωs
(4)

Obviously, the two governing equations defined in Equation (1) are independent of each other,
owing to the material difference in thermal conductivity. To couple them, the temperature and normal
heat flux continuous conditions at the interface Γi of the coating and substrate should be added for
representing local thermal equilibrium:

Ts = Tc on the interface Γi
qs · ns + qc · nc = 0 on the interface Γi

(5)

where nc = −ns are respectively the unit outward normal vector to the interface for the coating domain
and substrate domain.
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Typically, the thin functionally graded material (FGM) coating is practically laminated by
several homogeneous sublayers with different proportions along its thickness [6,16]. For such cases,
the governing Equations (4) can be rewritten in general form:

kcm∇2Tcm(x) = 0, x ∈ Ωcm, m = 1, 2, · · · , M + 1 (6)

where kcm is thermal conductivity of the mth layer, Tcm denotes the temperature in the mth layer and
M is the number of homogeneous sublayers in the functionally graded coating domain, as shown in
Figure 2. Note that in Equation (6), the (M + 1)th layer refers to the substrate domain and kc(M+1) = ks,
Tc(M+1) = Ts, Ωc(M+1) = Ωs.

Subsequently, the continuous conditions at the interface of adjacent layers m and m + 1 can be
written as:

Tcm = Tc(m+1)
qcmncm + qc(m+1)nc(m+1) = 0

(7)

where qcm = −kcm∆Tcm is the heat flux vector in the mth (m = 1, 2, · · · , M + 1) layer, and ncm = −nc(m+1)
is the normal vector to the interface.
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3. Approximated Transfer Algorithm for Thin Graded Coating Layer

Conventional multi-region numerical methods such as the FEM and the HFS-FEM are inefficient
when the coating is particularly thin. Under such ultra-thin circumstances, extremely refined mesh
with massive integration points is required. To tackle this problem, the approximated transfer approach
for the single homogeneous coating [13] is firstly reviewed and then is extended to deal with the
multi-layered coating and the functionally graded coating by an iterative scheme. Although the
temperature distribution in the thin coating domain cannot be given through the present approximated
transfer algorithm, the algorithm can significantly improve the computational efficiency in the substrate
region, which is particularly interesting to assess the “bioactive” and “protective” effect of the coating.

3.1. Thin Single-Layered Homogeneous Coating

For the single-layer homogeneous coating shown in Figure 3, it is assumed that a mixed boundary
condition is applied at point Qc,

αTc|Qc
+ β0 (qc · ns)|Qc

= γ (8)

where α and β0 are constant coefficients, and γ is the given value, respectively. Practically, the combinations
α = 1 and β0 = 0, α = 0 and β0 = 1, and α 6= 0 and β0 6= 0 respectively correspond to the temperature
condition, heat flux condition, and convection condition.
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According to the forward finite difference technique [24], the first-derivative of the temperature
field Tc at point Qs can be approximated as:

∂Tc

∂x2

∣∣∣∣
Qs

≈
Tc|Qc

− Tc|Qs

hc
(9)

from which the normal heat flux at point Qs can be given by:

(qc · nc)|Qs
= kc

Tc|Qc
− Tc|Qs

hc
(10)

Introducing the interfacial conditions (5) we have:

(qc · nc)|Qs
= − (qs · ns)|Qs

= kc
Tc|Qc

− Ts|Qs

hc
(11)

from which such relation can be derived as:

Tc|Qc
= Ts|Qs

− hc

kc
(qs · ns)|Qs

(12)

Besides, the heat flux term in Equation (8) is assumed to be same as that applied at the coating
substrate interface [13], that is,

(qc · ns)|Qc
= (qc · ns)|Qs

= (qs · ns)|Qs
(13)

Then, substituting Equations (12) and (13) into the mixed boundary condition (8) produces:

αTs|Qs
+

(
β0 −

αhc

kc

)
(qs · ns)|Qs

= γ (14)

from which it is found that the applied boundary condition (8) on the top surface of the coating
is approximately transferred to the interface of substrate and coating. Obviously, the results of the
specified temperature condition which corresponds to α = 1, β0 = 0 and the specified heat flux condition
which corresponds to α = 0, β0 = 1 can be regarded as special cases of the general form (14).
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3.2. Thin Functionally Graded Coating

Once the approximated transfer approach for the single-layered homogeneous coating is derived,
the procedure can be extended for deriving the recurrence formula for the functionally graded coating.
In this study, the functionally graded coating is generally divided into M thin layers, and each layer
is approximately homogeneous, as shown in Figure 2. It is assumed that the thickness and thermal
conductivity of the mth layer is hcm and kcm (m = 1, 2, · · · , M), respectively.
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If a general form of boundary condition is applied at the top surface point Qc1 of the layer #1,

αTc1|Qc1
+ β0 (qc1 · nc1)|Qc1

= γ (15)

by means of the derivation of the single-layered case, the transferred boundary condition at point Qc2

on the interface of layer #1 and layer #2 can be written as:

αTs|Qc2
+ β1 (qc2 · nc2)|Qc2

= γ (16)

with
β1= β0 −

αhc1

kc1
(17)

Following this transferring rule, the resulting thermal-response at the point Qs on the upper
surface of the substrate domain can be written as:

αTs|Qs
+ βM (qs · ns)|Qs

= γ (18)

in which the transfer coefficient βM is given by the following recurrence relation:

βm= βm−1 −
αhcm

kcm
(m = 1, · · · , M) (19)

Specially, when the temperature condition is applied on the coating surface, that is, α = 1,
β0 = 0, Equation (18) reduces to Ts

∣∣Qs + βM(qs·ns)
∣∣Qs = γ with βM = −∑M

m=1 hcm/kcm. If the normal
heat flux condition is given on the coating surface, that is, α = 0, β0 = 1, Equation (18) reduces to
(qsns)

∣∣Qs = γ . Besides, the procedure above shows that the present approximated transfer approach
is also suitable for multi-layered homogeneous or inhomogeneous coating.

4. Hybrid Element Formulation

From the above transfer procedure, it is found that the substrate region should be solved under
the approximated convection-typed boundary condition (18) applied on the coating-substrate interface.
This can be done through the HFS-FEM including the convection term, which is implemented by
introducing fundamental solution kernels for element interior fields and shape functions for element
boundary frame field. Compared to the conventional FEM and BEM, and the Trefftz FEM [25,26],
this method has some inherent characteristics like stiffness equations containing element boundary
integrals only, specially-purposed elements and polygonal-shaped elements and has been successfully
applied to elastic [22,27,28] and thermal conduction [23,29–31] problems with better accuracy over the
conventional FEM and more flexible multi-sided element construction, prior to this study. Additionally,
different to the BEM, the HFS-FEM can be applied to multi-domain or multi-material problems
more conveniently.

Before deriving the computing formulation, the mixed boundary condition given in Equation (18)
should be reorganized to meet the requirement for implementing the HFS-FEM. In the hybrid
variational functional of HFS-FEM for thermal analysis, three types of boundary conditions are
involved: specified temperature condition, specified heat flux condition and specified convection
condition. For such cases, Equation (18) is rewritten as the following convection form:

(qs · ns)|Qs
= h̃∞

(
Ts|Qs

− T̃∞

)
(20)

where
h̃∞ = − α

βM
, T̃∞ =

γ

α
(α 6= 0) (21)

respectively denote the generalized convection coefficient and environment temperature.
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For two-dimensional steady-state heat transfer in the isotropic homogeneous substrate media,
the weak form of the double-variable hybrid functional for a particular hybrid finite element e,
i.e., element #1 in Figure 4, can be expressed by [29].

Πme = −
1
2

∫
Ωe

ks

(
Ts,1

2 + Ts,2
2
)

dΩ−
∫

Γqe
qT̃sdΓ +

∫
Γe

qn

(
T̃s − Ts

)
dΓ− 1

2

∫
Γce

h̃∞

(
T̃s − T̃∞

)2
dΓ (22)

in which q represents the specified value of normal heat flux qn = qs·n on the element heat flux
boundary Γqe, n = (n1,n2) is the unit normal vector to the element boundary, Ts and T̃s are respectively
the temperature within the element and on the element boundary, Ωe and Γe respectively denote the
element domain and element boundary, and Γce and Γqe stand for the element convection boundary
and heat flux boundary, respectively. It is noted that the four integral terms on the right side of
Equation (22) represent the effects of thermal energy equilibrium, specified normal heat flux condition,
inter-element continuity condition, and the convection condition, respectively. Besides, it is assumed
that the coordinates x1 and x2 are set along the element plane. The temperature in the element is
only a function of two space coordinates x1 and x2, when the prescribed temperature and heat flux
are independent of the thickness direction of element. This means that the kinematics of heat flow
along the thickness direction of the element can be ignored. Therefore, the two-dimensional hybrid
finite element with thickness t(x1, x2) can be used to model the computing domain. Here, the constant
element thickness is considered in this work, for simplicity.
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In the application of variational functional (22), the temperature and its gradient fields at any point
x in the interior of the element e are approximated by linear combination of fundamental solutions
centered at series of source points xs

j (j = 1, · · · , ns) locating on the pseudo boundary similar to the
element boundary Γe, that is,

Ts(x) =
ns

∑
j=1

T∗(x, xs
j )cej = Nce (23)

qs = −ks∇Ts = −ks∇Nce = Tce (24)

where ce = {cej}T (j = 1, · · · , ns) is the coefficient vector consisting of unknown source intensities
at ns source points locating outside the element domain. N and T are respectively coefficient
matrices consisting of temperature fundamental solutions T*(x,xj

s) and heat flux fundamental solutions
q∗i (x, xs

j ) = −ks∂T∗(x, xs
j )/∂xi(i = 1, 2) of problem under consideration, i.e.,

N =
[

T∗(x, xs
1) T∗(x, xs

2) · · · T∗(x, xs
ns)

]
(25)

T =

[
q∗1(x, xs

1) q∗1(x, xs
2) · · · q∗1(x, xs

ns)

q∗2(x, xs
1) q∗2(x, xs

2) · · · q∗2(x, xs
ns)

]
(26)
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For the two-dimensional isotropic and homogeneous substrate taken into consideration,
the temperature fundamental solutions are given as [19].

T∗(x, xs
j ) = −

1
2πks

ln r with r = ‖x− xs
j‖ (27)

Because the interior fields are independently defined for adjacent elements, i.e., element #1 and
#2 in Figure 4, they should be weakly linked through the common interface. In order to enforce the
conformity on the common interface of adjacent elements, the element frame temperature field T̃s can
be defined in terms of the generalized nodal temperature vector de = {di}T (i = 1, ···, nd) as

T̃s(x) =
nd

∑
i=1

Ñi(x)di = Ñde (28)

where Ñ denotes the matrix consisting of the conventional one-dimensional shape functions widely
used in the standard FEM [18] and BEM [19], nd is the number of nodes of the element e.

The substitution of the interior and frame fields related to the element e into the functional
(22) gives

Πme = −
1
2

ce
T Hece − de

T ge + ce
TGede −

1
2

de
T Fede + de

T fe − ae (29)

where
He =

∫
Γe

QT NdΓ, Ge =
∫

Γe
QT ÑdΓ

Fe =
∫

Γce
h̃∞ÑT ÑdΓ, fe =

∫
Γce

h̃∞T̃∞ÑTdΓ

ge =
∫

Γeq
ÑTqdΓ, ae =

∫
Γce

h̃∞ T̃2
∞

2 dΓ
(30)

and Q = AT with A = {n1 n2}.
It is worth pointing out that during the procedure of deriving Equation (29) involving integrals

along the element boundary only, the distinct feature that the interior fields exactly satisfy the governing
equation is used to remove the domain integral in the functional (22). Moreover, the element boundary
integrals in (29) mean that the polygonal element with more sides can be flexibly constructed for
practical computation, not limited to triangle and quadrilateral elements in the conventional FEM.

Finally, the stationary conditions of Πme with respect to the coefficient vector ce and the nodal
temperature vector de,

∂Πme
∂cT

e
=0

∂Πme
∂dT

e
=0

(31)

yield the optional relationship between ce and de,

ce = He
−1Gede (32)

and the element stiffness equation,
Kede = ge − fe (33)

where
Ke = GT

e H−1
e Ge − Fe (34)

It is clear from the above procedure that the element stiffness matrix is symmetric, and after
assembling the global stiffness matrix keeps sparse and symmetric features, such as that in the
conventional FEM. Additionally, the evaluation of the right-handed vector (33) is the same as that in
the conventional FEM. Therefore, these features make the implementation of the present hybrid finite
element conveniently incorporate into the existing FEM program.
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5. Numerical Results

In this section, five tests including the single-layered homogeneous coating with simple and
complicated boundary conditions and the functionally graded coatings with exponential and linear
graded forms are carried out for demonstrating the accuracy and applicability of the present method.
Since the focus of the current work is on the development of generalized computational technique
for analyzing various coating/substrate systems, the outmost material phase of the FGC layer
or the single-layered homogeneous coating is arbitrarily assumed to have a thermal conductivity
6 W m−1 K−1. The thermal conductivity of the substrate material is assumed to have a value
of 28 W m−1 K−1. These values can be adjusted to meet the practical coating/substrate system.
Additionally, the convergence of the present hybrid finite element and the effect of the location of
source points have been well investigated for thermal analysis (see literature [23,29–31] for reference),
so they are not discussed in this study. Moreover, the 4-sided hybrid finite element with 4 edges and
8 nodes is employed without exception in the following computation.

5.1. Homogeneous Thin Coating with Simple Boundary Conditions

Firstly, a simple test with a simple temperature boundary condition on the coating surface is
performed to investigate the accuracy of the present method. In this test shown in Figure 5, it is
assumed that both the left and right sides of the coating/substrate system are insulated, and the
top and bottom sides are of specified temperature f c and f s. From the basic heat transfer theory,
the one-dimensional analytical solutions of temperature for the coating and substrate domains are
given by

Tc(x2) =
ks( fc − fs)

kshc + kchs
x2 +

fchs(kc − ks) + fs(hc + hs)ks

kshc + kchs
, x2 ∈ Ωc

Ts(x2) =
kc( fc − fs)

hs

(
ks

hc
hs
+ kc

) x2 + fs, x2 ∈ Ωs
(35)

from which it is seen that temperature distributions both in the coating and in the substrate are linear.
In the practical computation, it is assumed that the coating/substrate model is composed of

a square substrate with hs = 1 mm and a thin homogeneous coating with thickness hc. The specified
temperature boundary condition on the top and bottom surfaces of the model is assumed to be
f c = 1173 K and f s = 298 K, respectively. For the purpose of comparing the numerical and analytical
results, the temperature distributions are evaluated in the substrate domain for different coating
thickness values, which are controlled by the specific thickness ratio hc/hs of the coating and substrate
ranging from 10−6 to 10−1, and in each analysis, the hybrid finite element mesh with an element size
of 0.1 mm is identically modelled. Since only the substrate domain is solved, the present approximated
model is clearly more computationally efficient than the full-domain model consisting of the coating
and substrate domains.

For different coating thickness values, the determined temperature values at three specific points
respectively locating on the interface and within the substrate region, i.e., A (0.4 mm, 1 mm), B (0.2 mm,
0.9 mm) and C (0.6 mm, 0.4 mm), are recorded for analysis. Results in Table 1 indicate that there is
perfect agreement between the numerical results and the analytical solutions, even for very small
coating thicknesses. Thus, the present method shows a significant potential for analyzing thin coating
problems. Moreover, it is seen that the temperature is nearly independent of the thickness ratio hc/hs

when its value is equal to or less than 10−4. It is reasonable that the extremely thin coating will make
the temperature profile in the coating layer very close to the specified value f c.

However, it is worth noting that the test above is a one-dimensional linear case and it is not enough
to assess the capability of the present method. Hence, more complex two-dimensional problems should
be considered to check whether the present method can be used for them.
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Table 1. Temperature results at the three specific points for different thickness ratios in the first test.

hc/hs
Point A Point B Point C

EXACT Present EXACT Present EXACT Present

1 × 10−6 1.1730 × 103 1.1730 × 103 1.0855 × 103 1.0855 × 103 6.4800 × 102 6.4800 × 102

1 × 10−5 1.1730 × 103 1.1730 × 103 1.0855 × 103 1.0855 × 103 6.4798 × 102 6.4798 × 102

1 × 10−4 1.1726 × 103 1.1726 × 103 1.0851 × 103 1.0851 × 103 6.4784 × 102 6.4784 × 102

1 × 10−3 1.1689 × 103 1.1689 × 103 1.0818 × 103 1.0818 × 103 6.4637 × 102 6.4637 × 102

1 × 10−2 1.1340 × 103 1.1340 × 103 1.0504 × 103 1.0504 × 103 6.3239 × 102 6.3239 × 102

1 × 10−1 8.9459 × 102 8.9459 × 102 8.3493 × 102 8.3493 × 102 5.3664 × 102 5.3664 × 102

5.2. Homogeneous Thin Coating with Complicated Boundary Conditions

In the second test, a complicated two-dimensional heat transfer is tested. The same geometrical
domain and element mesh as those in the first test are taken here. Along the outer boundary of
the coating/substrate system in Figure 5, the temperature boundary conditions are applied by the
following exact solutions of temperature respectively for the coating and substrate regions

Tc(x1, x2) = ηx2
1 − ηx2

2 +
ks
kc

x1x2 + x1 + 2ηx2, (x1, x2) ∈ Ωc

Ts(x1, x2) = ηx2
1 − ηx2

2 + x1x2 +
ks
kc

x1 + 2ηx2, (x1, x2) ∈ Ωs
(36)

where η is any constant. It is obvious that Equation (36) is constructed by the polynomial including
2nd and 1st terms to satisfy the governing Equation (1) and the interfacial condition (5) so that the
two-dimensional heat transfer in the coating/substrate system is ensured.

Firstly, we take η = 10 in Equation (36) such that the analytical temperature distribution is
independent of the thickness ratio hc/hs. Results at three different points the same as those in the
first test are listed in Table 2, from which it is found that the accuracy of numerical results begins
to slightly decrease as the thickness ratio drops below 10−2, and the relative error to the analytical
solution at the interfacial point A is the largest (0.32%), compared to that at the interior points B and
C, i.e., 0.21% at the point B and 0.05% at the point C. It is reasonable that the points B and C are far
away from the interface on which the approximated transfer boundary conditions are applied. Besides,
Figure 6 shows the variation of temperature along the interface and we observe that, although the
temperature changes nonlinearly in terms of the coordinate x1, the numerical results calculated by the
present method are in good agreement with the exact solutions.

Subsequently, we take η = 1000 hc/hs so that the analytical temperature fields both in the coating
and in the substitute severely depend on the thickness ratio hc/hs. Results in Table 3 indicate that
the numerical results from the present method are still in good agreement with the exact solutions,
although the values of temperature at the three specific points increase with the increase of the thickness
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ratio. Besides, the temperature variations along the interface for different thickness ratios are plotted
in Figure 7 and the good agreement between the numerical results and the analytical solutions is
observed again.

Table 2. Temperature results at the three specific points for different thickness ratios for η = 10 in the
second test.

hc/hs
Point A Point B Point C

EXACT Present EXACT Present EXACT Present

1 × 10−6

13.867

13.867

11.413

11.413

13.040

13.040
1 × 10−5 13.867 11.413 13.040
1 × 10−4 13.867 11.413 13.040
1 × 10−3 13.867 11.413 13.040
1 × 10−2 13.866 11.413 13.040
1 × 10−1 13.822 11.389 13.033

1 
 

Figure 6 

 

Figure 7 

 

Figure 9 

 

Figure 10 

Figure 6. Variation of temperature along the interface for η = 10 in the second test.

Table 3. Temperature results at the three specific points for different thickness ratios for η = 1000 hc/hs

in the second test.

hc/hs
Point A Point B Point C

EXACT Present EXACT Present EXACT Present

1 × 10−6 2.2678 2.2678 1.1144 1.1144 3.0410 3.0410
1 × 10−5 2.2783 2.2783 1.1236 1.1236 3.0500 3.0500
1 × 10−4 2.3827 2.3827 1.2163 1.2163 3.1400 3.1400
1 × 10−3 3.4267 3.4267 2.1433 2.1433 4.0400 4.0400
1 × 10−2 13.867 13.866 11.413 11.413 13.040 13.040
1 × 10−1 118.27 117.82 104.11 103.87 103.04 102.97

1 
 

Figure 6 

 

Figure 7 

 

Figure 9 

 

Figure 10 

Figure 7. Variation of temperature along the interface for η = 1000 hc/hs in the second test.
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5.3. Partially Heated Homogeneous Thin Coating

A substrate with a partially heated homogeneous thin coating is considered in the third test.
The boundary conditions specified in Figure 8a are complicated enough to ensure two-dimensional
heat transfer. The side length hs of the square substrate domain is 7 mm, and the local length l0 of the
specific extremely high temperature constraint is 1.75 mm. The related hybrid finite element mesh in
the substrate domain is generated with 700 elements, as shown in Figure 8b.
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Because there is no analytical solution for this test, the numerical results from the present method
are compared to the available BEM solutions [13]. To do so, the determined temperature values at
the point (1 mm, 6.41 mm) within the substrate region are recorded in Table 4 for comparison under
different coating thicknesses between 1 µm to 1 mm. From Table 4, it is shown that the deviation
between numerical results from the single-domain BEM and the present method can be ignored. Thus,
the present method can be used for engineering analysis of thin coating. Besides, it is seen from Table 4
that, when the coating thickness is less than 10 µm, the temperature at the specific point just changes
slightly. This can be attributed to the extremely small thickness of the coating layer.

Table 4. Results at the specific point for different coating thickness in the third test.

hc (µm) BEM [13] Present

0.01 – 1016.1
0.1 – 1.015.9
0.5 – 1015.2
1 1016.5 1014.3
2 1014.8 1012.6
3 1013.2 1010.9
5 1010 1007.8
10 1002.4 1000.5
50 951.2 950.1

500 666.5 666.1
1000 547 546.7

Note: – means unavailable result.
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5.4. Linear-Form Functionally Graded Coating

Different to the conventional homogeneous coating studied above, the FGC offers the possibility
of significantly improving interface reliability caused by material mismatch [17], and thus is considered
in this and the next tests. Identical geometry and boundary conditions to that depicted in Figure 5 are
employed. It is assumed that the thermal conductivity of the FGC varies along the thickness of coating
in the following linear form:

kc(x2) = a + bx2, hs ≤ x2 ≤ hc + hs (37)

in which the coefficients a and b can be determined from the continuous change of thermal
conductivity from the outmost material phase kc0 = 6 W m−1 K−1 to the inner substrate material
phase kS = 28 W m−1 K−1, i.e., when x2 = hc + hs, kc = kc0, and when x2 = hs, kc = ks, from which
we have

a = (1 +
hs

hc
)ks −

hs

hc
kc0, b =

kc0 − ks

hc
(38)

From Equation (38), it is seen that the value of a is linearly dependent of the thickness ratio hs/hc,
but b depends on the coating thickness only. For example, for hc = 0.001 mm, we have a = 22,028 and
b = −22,000.

From the basic heat transfer theory, the one-dimensional analytical solution of temperature in the
coating/substrate system can be derived by substituting Equation (37) into Equation (4),

Tc =
ks( fc − fs)

ks{ln[a + (hc + hs)b]− ln(a + hsb)}+ bhs
ln(a + bx2)+

ks fs ln[a + (hc + hs)b]− fcks ln(a + hsb) + fchsb
ks{ln[a + (hc + hs)b]− ln(a + hsb)}+ bhs

, hs ≤ x2 ≤ hs + hc

Ts =
b( fc − fs)

ks{ln[a + (hc + hs)b]− ln(a + hsb)}+ bhs
x2 + fs, 0 ≤ x2 ≤ hs

(39)

To demonstrate the capability of the present method for analyzing this inhomogeneous coating,
the coating is uniformly divided into 2, 6 and 10 thin layers, respectively, and each layer is assumed
to be homogeneous. The related thermal conductivity of each layer is evaluated by the coordinate of
centroid of the layer. Table 5 demonstrates the temperature results at the interfacial point (0.5 mm,
1 mm) for different coating thicknesses. It is clearly seen that the numerical accuracy of the present
method becomes better as the number of layers increases for each value of the coating thickness.
Besides, for M = 2, the results deteriorate quickly as the coating thickness is less than 0.1 mm; however,
more layers, i.e., M = 6 and M = 10, can produce very consistent results with the exact solutions even
though the thickness is larger than 0.1 mm. Finally, the temperature variations along the middle line
x1 = 0.5 mm for different coating thicknesses are plotted in Figure 9 when the 10-layered coating
model is employed. It is found that the temperature profile in the substrate tends to be unchanged as
the thickness of the coating becomes small.

Table 5. Temperature at the interfacial point (0.5 mm, 1 mm) for different coating thicknesses for
linear gradation.

hc (mm) M = 2 M = 6 M = 10 EXACT

0.001 1171.4 1171.3 1171.3 1171.3
0.01 1157.2 1156.3 1156.2 1156.2
0.1 1037.0 1030.7 1030.0 1029.6
0.2 937.65 928.15 927.14 926.54
0.3 861.83 850.81 849.64 848.95
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Figure 9. Temperature variation along the middle line x1 = 0.5mm for different coating thicknesses for
linear gradation.

5.5. Exponential-Form Functionally Graded Coating

In the last test, the same model as that in the fourth test is considered and the exponent form,

kc(x2) = aebx2 , hs ≤ x2 ≤ hc + hs (40)

is utilized to represent the continuous change of the thermal conductivity of the coating material.
The coefficients a and b are similarly determined from the continuous change of thermal conductivity
from the outmost material phase kc0 = 6 W m−1 K−1 to the inner substrate material phase
ks = 28 W m−1 K−1, i.e., when x2 = hc + hs, kc = kc0, and when x2 = hs, kc = ks, from which we have

a = kc0e[−(
hs
hc
+1) ln kc0

ks
], b =

1
hc

ln
kc0

ks
(41)

From Equation (41), it is seen that the value of a is seriously dependent on the thickness ratio hc/hs,
while the coefficient b depends on the coating thickness only. Too small hc/hs will cause extremely
large a, which is not suitable for practical use. For example, for the case of hc = 0.1 mm, hs = 1 mm,
we have a = 1.3716 × 108, b = −15.4045.

From the basic heat transfer theory, the one-dimensional analytical solution of temperature in the
coating and substrate domains can be derived by substituting Equation (40) into Equation (4)

Tc = − 1
eax2

eb(2hs+hc)ks( fc− fs)

abeb(2hs+hc)hs+ks(eb(hs+hc)−ebhs)
+ abeb(2hs+hc) fchs+ fckseb(hs+hc)− fsksebhs

abeb(2hs+hc)hs+ks(eb(hs+hc)−ebhs)
,

hs ≤ x2 ≤ hs + hc

Ts =
abeb(2hs+hc)( fc− fs)

abeb(2hs+hc)hs+ks(eb(hs+hc)−ebhs)
x2 + fs, 0 ≤ x2 ≤ hs

(42)

To demonstrate the performance of the present method for exponentially graded coating,
the coating is also divided into 2, 6, 10 thin layers and each layer is assumed to be homogeneous.
When the coating thickness changes from 0.1 to 0.3 mm, the temperature results calculated from the
present method both in Table 6 and in Figure 10 show good agreement with the analytical solutions.
Moreover, the convergent tendency of temperature can be observed from Table 6 when the number
of layers increases, as expected. Additionally, in contrast to the results in Table 5, it is seen that the
exponentially graded distribution can produce a smaller temperature at the interface than the linear
distribution under the same coating thickness. This is because the exponential variation of thermal
conductivity can yield a smaller value than the linear form.
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Table 6. Temperature at the interfacial point (0.5 mm, 1 mm) for different coating thicknesses for
exponential gradation.

hc (mm) M = 2 M = 6 M = 10 EXACT

0.1 1008.1 1005.1 1004.9 1004.8
0.2 895.47 891.32 890.99 890.80
0.3 813.70 809.06 808.68 808.48

 

2 

 
Figure 10. Temperature variation along the middle line x1 = 0.5 mm for different coating thicknesses
(10 layers) for exponential gradation.

6. Conclusions

In this work, the general functionally graded coating/substrate system is solved by integrating
the approximated transfer algorithm and the HFS-FEM for predicting the temperature distribution
in the substrate and numerical results, demonstrating that the proposed method can be applied to
various coatings with high computational efficiency and accuracy. In contrast to the previous works in
the literature, the proposed method can be summarized as follows:

• The approximated recurrence formula based on the finite difference technique is derived for
approximately transferring the general thermal boundary condition applied on the coating surface
to the coating/substrate interface.

• The established transfer approach is highly suitable for treating thin multi-layered coating or
functionally graded coating.

• With the present transfer approach, only the substrate needs to be solved, instead of the whole
coating/substrate system.

• With the fundamental solutions of the problem as kernel functions, the HFS-FEM involving the
evaluation of element boundary integrals only is implemented in the substrate region to achieve
high accuracy and feasible element construction.
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