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Abstract: Electrostatic rotary bell sprayers (ERBSs) are widely used in the automotive industry.
In ERBS, atomization is facilitated using centrifugal forces which disintegrate the paint film inside the
cup into droplets at the cup edge. The droplets are then transported by the flow of a shaping air (SA)
and electrostatic forces to a target surface; the characteristics of these droplets dramatically influence
the quality of a painted surface and the painting transfer efficiency. In the current paper, a novel
Schlieren-based visualization of the shaping air in the absence of paint droplets was performed during
a qualitative investigation to delineate shaping air flow behavior and its interaction with droplets
and droplet transport. An infrared thermographic flow visualization (IRFV) method and droplet
size measurement were used to complement the Schlieren data for providing insight into shaping
air-droplet interactions. The results demonstrated the impact of different operating conditions on the
SA flow pattern, and the influence SA has on the secondary atomization and transport of droplets.
Hence, these experimental methods combine with a useful tool for optimizing SA configurations that
improve spray quality, droplet transport, and the efficiency of ERBS operations.
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1. Introduction

Electrostatic rotary bell sprayers (ERBSs) are widely used in industries requiring very high-quality
surface finishes, and particularly in the automotive industry [1]. Generally, the paint in ERBS is
supplied to the center of a rotating bell cup, and the friction between the paint and the bell cup
wall causes the paint to rotate at roughly the same speed as the cup [2]. This rotary motion creates
centrifugal forces on the paint that induces it to flow in a radial direction, outward toward the rim
of the bell cup. Depending on the rotational speed of the bell cup, the paint will flow to the rim in a
continuous, thin film. At the edge of the cup, the film will be atomized into droplets, the characteristics
of which are affected by the size and geometry of the bell cup, its rotational speed, the paint flow rate,
and the physical properties of the paint.

It is well known that improvements in automotive coating processes could lead to significant
reductions in material costs and environmental impacts. ERBS have been investigated in an attempt
to improve operational performance and decrease costs [1]. The fundamentals of atomization
mechanisms [3], mathematical expressions to describe droplet formation and characteristics under
diverse conditions [4], and the impact of operational conditions and fluid properties on paint
atomization have been [5] examined extensively.
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Atomization in ERBS is controlled by several operating parameters [6], including paint flow rate,
bell cup geometry, and bell cup rotational speed. Peng et al. [7] and Huang et al. [8] indicated that
increasing the flow rate transformed the flow from aerodynamic fragmentation to turbulent breakup.
Domnick and Thieme [9] concluded that increasing the rotational speed of the bell cup led to less
consistent fragmentation. On the other hand, Dombrowski and Lloyd [10] stated that paint droplet
sizes would be multi-modal for low rotary speeds.

After droplet formation, ERBS rely significantly on shaping air (SA) [11]; it serves as a transport
mechanism to redirect droplets toward the target and assist in secondary atomization and to control
the size of the spray pattern. The SA is introduced via rings surrounding, or pinholes within the
edge of, the bell housing and flows around the bell cup perimeter. This airflow shapes the droplet
flow pattern, focusing and transporting it toward a target surface. Ahmed and Yousef [12] surmised
that the rotational bell speed and the flow rate of the paint were the most significant parameters for
controlling droplet size distributions. However, SA also influences ligament disintegration and may
disturb small droplets, especially at high bell cup rotational speeds. Typically, an electric field is also
established between the ERBS and the target to improve paint transfer efficiency. Its influence was
studied by Im et al. [13]; an integrated code was developed that included flows, droplet trajectories
and electrostatic solvers as a function of the applied voltage settings and SA flow rates.

Establishing high-quality surface finishes during automotive painting is a challenging task [14].
Numerous characteristics of the coating process profoundly influence the color, gloss, appearance,
and effects of metallic additives. For example, a better understanding of the effects and dynamics
of SA, paint, and air flow rates, droplet sizes, bell cup rotational speeds and electrostatic charging is
important for developing improved paint transfer efficiencies, painted surface qualities, and costs.

It is generally assumed that SA contributes only to droplet transport and most visualization
methods are inappropriate for studying it. However, Matsuyama et al. [15] studied SA using nozzles
instead of annular jets and found the nozzle approach produced more focused sprays. Yamasaki and
Honna [16], studying the design of SA nozzles by varying the diameters and number of pinholes,
proposed a design in which sufficient droplet velocities could be achieved without the need for high air
flow rates. Tachi et al. [17] used hot wire anemometer to determine the velocity of SA flow. Although
simulation techniques are advancing dramatically in their complexity and successful applications,
most insightful understandings of fluid mechanics continue to rely on visual sciences and visualization
techniques as was the case when Leonardo da Vinci wrote the first scientific description of turbulence
through his sketches of waterspouts [18].

Several methods have been used for measuring droplet diameters, speeds, mass fluxes and
densities [12]. Im et al. [19] used a phase Doppler particle analyzer (PDPA) with copper vapor laser
light sheet illumination to measure effects on droplet characteristics when SA flows, voltage settings,
paint flow rates and cup rotational speeds were varied. Their results showed that the cup rotational
speeds governed atomization processes but that voltage settings and SA flow rates dominated droplet
transport processes. Laser diffraction instrumentation and photography have also been used to study
the effects of fluid properties on atomization [5]; ESRB operation has been visualized using diffraction
spectrometry and short spark photography [20]. Wilson et al. [2] applied shadowgraph high-speed
imaging to visualize the edge of a rotating cup and droplet formation, while infrared thermography
has been used to qualitatively assess effects of rotational velocities and paint flow rates on spray
shapes [21]. Despite these research efforts, the aerodynamics of SA remains unknown [22], and precise
interactions between droplets and the SA are not understood.

In this research, Schlieren imaging was used as the method for visualizing SA flows. The degree
of the Schlieren effect is proportional to the first spatial derivative of the refractive index of the
visualized gas [23]. In gases and air, a linear relationship exists between the gases’ refractive index
and its density [24]. In other words, factors like temperature and gas composition change the
density of the gas and cause a shift in its refractive index that leads to its visualization using the
Schlieren method [25–27]. Its applicability strength is an ability to monitor gas flows non-intrusively,
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in contrast to the application of pitot or Prandtl tube velocimetry, and a capability to visualize gas flows
without requiring seeding or flow interference as is required in particle image velocimetry (PIV) and
laser doppler anemometry (LDA) systems [28,29]. To complement the Schlieren testing, an infrared
thermography flow visualization (IRFV) technique, as described by Akafuah et al. [30], was used to
visualize paint sprays within the SA; also, liquid droplet measurements were accomplished during
spraying from the ERBS. These three techniques have provided heretofore unobtainable and qualitative
insight into the effects of SA on spray flow fields, droplet transport, and droplet size control.

2. Materials and Methods

2.1. Schlieren Instrumentation for SA Visualization

Figure 1 presents a schematic of the Schlieren experimental set up for SA visualization testing.
White light from a 3000 lumens LED was passed through an aperture to create an approximate point
source. Directed toward a 40.6 cm diameter, f /4.5 parabolic mirror mounted on an optical table,
the point source was placed at a distance equal to two mirror focal lengths. A knife edge was placed
immediately in front of a camera in the direction facing the device to be tested. This setup produced a
focused image of the point source with a size approximately equal to that of the aperture diameter.
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Figure 1. Schematic diagram of the Schlieren setup for SA visualization.

A Phantom Miro 4 camera (Vision Research, Wayne, NJ, USA) equipped with an f = 105 mm
Sigma lens was used for high-speed Schlieren image acquisition. The Eco-Bell 2 sprayer (Dürr,
Bietigheim-Bissingen, Germany) was fitted with a shaping air ring, Model M35020039, with a single
circular array of 40 nozzles, and a 65 mm diameter bell cup, Model N16010060, with straight serrations.
The sprayer was connected to a Dürr control unit which controlled the SA flow rate as well as the
rotational speeds of the bell cup. The SA was heated to 35 ◦C using an in-line heat exchanger
(Laboratory fabricated); this temperature was about 10 ◦C above room temperature. With the
SA temperature elevated above the ambient, it had a different density than the ambient air and,
therefore, a different refractive index than the air into which the SA was injected; the index of
refraction of the SA can be calculated using the following relationship: n = 1 + k$ [24], where k
is the Gladstone-Dale coefficient.

The illuminance in the imaged plane of the setup is proportional to the first spatial derivative of
the refractive index of the Schlieren gas, i.e., the SA [23]; this means the SA was visualized because of
the illuminance contrast between the ambient air and the SA in the image plane. Additionally, more of
the illumination that entered the camera from the focal plane could be decreased as the knife edge was
raised; the effect of moving the knife edge was to increase contrast visualization at the expense of the
illuminance [31]. Different operating conditions of the bell cup rotational speeds and SA flow rates
were tested using this experimentation, as outlined in Table 1.



Coatings 2018, 8, 279 4 of 13

Table 1. SA visualization operating conditions.

Bell Rotational Speed (RPM) SA Flow Rate (L·min−1)

0
50

150
250

20,000
50

150
250

50,000
50

150
250

2.2. Infrared Thermography for Spray Visualization

For infrared thermography flow visualization (IRFV), a uniformly heated blackbody background
was placed on one side of the imaged plane, and an infrared camera was placed on the other side of
this plane, as depicted in Figure 2; this setup enhanced the thermal contrast between the medium to be
visualized and the background. The background radiation source was an IR-160/301TM Blackbody
System (Infrared Systems Development, Winter Park, FL, USA); it consisted of an extended-area
(304.8 × 304.8 mm2), flat plate emitter with a high emissivity coating (average emissivity = 0.96). It was
temperature controlled within ±0.1 ◦C resolution, and had a temperature range from ambient-to-350 ◦C
and a wavelength range of 1–99 µm; its temperature sensing was platinum resistance temperature
detector (RTD) and a Type T (copper-constantan) thermocouple. A ThermoVisionTM SC4000 infrared
camera (FLIR, Wilsonville, OR, USA) was used for acquiring two-dimensional images; intensities
and temperatures were calculated for each imaged pixel [30]. The integration time was set to 1.7 µs,
for which the IR intensity measurements were calibrated using the blackbody to read temperatures.
The blackbody was set to emit infrared radiation at 30 ◦C. The thermal waves are attenuated as
they travel through the spray, the infrared camera then captures the transmitted waves. The more
attenuation; i.e., the higher the liquid concentration in a certain region, the lower the intensity read
by the camera, and therefore the lower the temperature reading. The liquid was sprayed at a flow
rate of 0.1 LPM [32,33] traversing through the blackbody radiation as shown in Figure 2; the captured
measurement maps were finally exported as thermal images.
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3. Results and Discussion

3.1. Results for Shaping Air Flow Rate of 50 LPM

The high-speed rotary bell atomizer was operated without liquid flow at three different rotational
speeds of 0, 20,000, and 50,000 RPM while using a SA flow rate of 50 LPM (Reynolds = 1.7 × 103

calculated based on velocity in the longitudinal direction [22]). Schlieren videos were captured at
4400 FPS; images left to right shown in Figure 3a are snapshots taken from Videos S1–S3 respectively;
which are uploaded as Supplementary Materials.
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Figure 3. (a) Schlieren images of SA flow away and outward from the edge of the ERBS bell cup;
increased cup rotational speeds at a fixed SA flow rate increased the radial dimension over which SA
flowed. (b) A schematic illustrating the SA flow dynamics with increasing bell cup rotational speeds.

The images in Figure 3a show that the total pattern angle, i.e. angle subtended by SA flow from
one side of the cup to the opposite side of the cup, increased from 84◦ at zero rotational speed to 152◦ at
20,000 RPM, and to 166◦ at 50,000 RPM; this change is schematically depicted in Figure 3b. This result
shows that the shaping air force direction on the droplets will be dependent on the cup rotational
speed, and cannot always be considered fixed.

Figure 4 presents infrared images of liquid spray from the ERBS at the same SA flow rate as used
during data acquisition for Figure 3 and with a liquid flow rate of 0.1 LPM. In agreement with the
Schlieren results, a 50,000 RPM rotary speed caused more pronounced radial flow than when the rotary
speed was 20,000 RPM, a result that may be expected from the Schlieren data showing the SA flow
was significantly more radial at 50,000 RPM than at 20,000 RPM.

The corresponding droplet size distributions at 1 and 10 cm downstream of the cup during
liquid spraying, obtained using the Malvern Spraytec instrument (Malvern Panalytical, Almelo,
The Netherlands); which utilizes He-Ne laser beam diffraction patterns for droplet size measurement,
are shown in Figure 5. The average Sauter mean diameters of the droplets decreased from 54.3–21.4 µm
as the rotary speed was increased from 20,000–50,000 RPM at 1 cm from the cup and from 41.9–21.2 µm
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at 10 cm from the cup. Having lower momentum, smaller particles are more likely to follow the
airflow [34]; therefore, at higher bell rotational speeds, the smaller liquid droplets following the SA,
will have significant radial divergence; as a consequence, it can be expected that the liquid spray
pattern is broadened leading to overspray as shown circled on Figure 4.

As also shown in Figure 5, the droplet size distribution was bi-modal at the lower bell cup
speed of 20,000 RPM and 1 cm distance from the cup; this location is considered to be in the primary
atomization zone of the ERBS. However, the droplets displayed a normal distribution at both 20,000
and 50,000 RPM at the distance considered to be the secondary atomization zone at 10 cm from the cup.
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3.2. Results for Shaping Air Flow Rate of 150 LPM

The Schlieren, IRFV and Malvern droplet size measurements were repeated using the same
liquid flow rate and bell cup rotational speeds, but with the SA flow rate increased to 150 LPM
(Reynolds = 5.1 × 103); these results are shown in Figures 6–8, respectively. From the Schlieren
images in Figure 6 (taken from Videos S4–S6), it can be seen that the pattern angle of the shaping air
increased from 78◦ at a zero rotational speed, to 96◦ at 20,000 RPM, and then to 136◦ at 50,000 RPM;
the percentages increase in the angle value are noticeably lower than the corresponding increases for
the 50 LPM SA flow rate case.
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flow rate of 150 LPM and a fixed liquid flow rate of 0.1 LPM.

The IRFV data of 20,000 and 50,000 RPM in Figure 7 show significant differences in the liquid
flow directions at 150 LPM SA flow rate in comparison to what was observed at the 50 LPM SA flow
rate. In particular, the large radial divergence of the liquid flow at 50,000 RPM and 50 LPM SA was
not as dramatic when using 150 LPM SA; this result may be a consequence of the smaller pattern
angle of the SA when using 150 LPM SA in which the cup’s rotational speed did not have as large
of an influence on SA flow. In addition, the droplet size and size distribution data in Figure 8 show
that the average droplet Sauter mean diameter decreased as the rotary speed was increased from
20,000–50,000 RPM in both the primary atomization zone at 1 cm from the cup (44.8–21.7 µm) and
in the secondary atomization zone at 10 cm from the cup (45.3–19.2 µm). Furthermore, no bimodal
droplet size distribution was observed at a SA flow rate of 150 LPM. The small peak noted in Figure 8
for the 50000 RPM, is an outlier and modally insignificant. The overall result is that an increased SA



Coatings 2018, 8, 279 8 of 13

flow rate reduced the pattern angle; which is attributed to the higher air inertia in the forward direction
manifested in the higher Reynolds number. In turn, the liquid flowed more toward the target even
when the rotary speed of the cup was increased.Coatings 2018, 8, x FOR PEER REVIEW  8 of 13 
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Figure 8. Droplet volumetric distributions versus droplet sizes and Sauter mean diameters at two
locations downstream of the cup for a liquid flow rate of 0.1 LPM, a SA flow rate of 150 LPM, and two
cup rotational speeds.

3.3. Results for Shaping Air Flow Rate of 250 LPM

The Schlieren, IRFV and Malvern droplet size measurements were repeated using the same
liquid flow rate and bell cup rotational speeds, but with the SA flow rate increased to 250 LPM
(Reynolds = 8.5 × 103); these results are shown in Figures 9–11, respectively. From the Schlieren
images in Figure 9 (taken from Videos S7–S9), it can be seen that the pattern angle of the shaping air
increased from 90◦ at a zero rotational speed, to 102◦ at 20,000 RPM, and then to 110◦ at 50,000 RPM;
the trends in these pattern angles with increasing rotary speeds were similar to those for the 50 and
150 LPM SA cases. The IRFV data for 20,000 and 50,000 RPM in Figure 10 show even less radial
divergence of the liquid spray at 250 LPM SA air flow rate in comparison to when 150 LPM SA
was used; this result is in agreement with the trend of decreasing pattern angles as the SA flow
rates were increased. Furthermore, air entrainment regions showing recirculation mentioned by
Stevenin et al. [22] can be seen as red portions of low liquid concentrations in the high rotational speed,
high SA flow case. These regions of high mixing contribute further to the atomization of the droplets
in the secondary atomization region.

Coatings 2018, 8, x FOR PEER REVIEW  8 of 13 

 

 
Figure 8. Droplet volumetric distributions versus droplet sizes and Sauter mean diameters at two 
locations downstream of the cup for a liquid flow rate of 0.1 LPM, a SA flow rate of 150 LPM, and two 
cup rotational speeds. 

3.3. Results for Shaping Air Flow Rate of 250 LPM  

The Schlieren, IRFV and Malvern droplet size measurements were repeated using the same 
liquid flow rate and bell cup rotational speeds, but with the SA flow rate increased to 250 LPM 
(Reynolds = 8.5 × 103); these results are shown in Figures 9, 10, and 11, respectively. From the Schlieren 
images in Figure 9 (taken from videos S7, S8, and S9), it can be seen that the pattern angle of the 
shaping air increased from 90° at a zero rotational speed, to 102° at 20,000 RPM, and then to 110° at 
50,000 RPM; the trends in these pattern angles with increasing rotary speeds were similar to those for 
the 50 and 150 LPM SA cases. The IRFV data for 20,000 and 50,000 RPM in Figure 10 show even less 
radial divergence of the liquid spray at 250 LPM SA air flow rate in comparison to when 150 LPM SA 
was used; this result is in agreement with the trend of decreasing pattern angles as the SA flow rates 
were increased. Furthermore, air entrainment regions showing recirculation mentioned by Stevenin 
et al. [22] can be seen as red portions of low liquid concentrations in the high rotational speed, high 
SA flow case. These regions of high mixing contribute further to the atomization of the droplets in 
the secondary atomization region. 

 
Figure 9. Schlieren image of the ERBS SA, showing changing bell cup rotational speed at a fixed SA 
flow rate of 250 LPM. 

The liquid droplet size distributions and Sauter mean diameters are shown in Figure 11, for the 
250 LPM SA flow case. It is noted that the average Sauter mean diameter of the droplets decreased 
from 45.4 to 20.7 μm at 1 cm and from 46.8 to 17.1 μm at 10 cm downstream of the cup when the cup 
rotary speed changed from 20,000 to 50,000 RPM. No bi-modal size distributions were detected. The 

Figure 9. Schlieren image of the ERBS SA, showing changing bell cup rotational speed at a fixed SA
flow rate of 250 LPM.



Coatings 2018, 8, 279 9 of 13

The liquid droplet size distributions and Sauter mean diameters are shown in Figure 11, for the
250 LPM SA flow case. It is noted that the average Sauter mean diameter of the droplets decreased
from 45.4 to 20.7 µm at 1 cm and from 46.8 to 17.1 µm at 10 cm downstream of the cup when the
cup rotary speed changed from 20,000 to 50,000 RPM. No bi-modal size distributions were detected.
The droplet sizes and spray angles were significantly improved at the higher SA flow rates. As a
consequence, less overspray paint would be expected during automotive painting operations.

Coatings 2018, 8, x FOR PEER REVIEW  9 of 13 

 

droplet sizes and spray angles were significantly improved at the higher SA flow rates. As a 
consequence, less overspray paint would be expected during automotive painting operations. 

 
Figure 10. Infrared images of the ERBS Spray, showing changing bell cup rotational speed at a fixed 
SA flow rate of 250 LPM and a fixed liquid flow rate of 0.1 LPM. 

 
Figure 11. Droplet volumetric distribution versus droplet diameter and Sauter mean diameter for 
changing cup rotational speeds, at two locations downstream of the cup for a liquid flow rate of 0.1 
LPM, and a 250 LPM SA flow rate. 

The spray pattern angle for the SA flow for all the conditions tested are summarized in Table 2. 
Note that the angles were measured at the edge of the cup detecting the flow edges (maximum angle 
subtended by the flow). Fluctuation, due to the chaotic nature of the flow, can be seen from frame to 
frame and results in about ±6° variation in angle measurements. As such, no trend in the data is 
observed at 0 RPM; rather, because of the error associated in measuring precise angles from the 
Schlieren videos, it is suggested that no differences were observed in the spray pattern angle under 
the 0 RPM cases. An easily-measured, large decrease in the spray angle occurred when the SA flow 
was increased from 50 to 150 LPM for the 20,000 RPM case, but it did not change when the SA was 
further increased to 250 LPM. Furthermore, the spray angle gradually decreased as the SA flow rates 
were increased at 50,000 RPM. These changes are reflected in the liquid flow patterns under the 
various test conditions. 
  

Figure 10. Infrared images of the ERBS Spray, showing changing bell cup rotational speed at a fixed
SA flow rate of 250 LPM and a fixed liquid flow rate of 0.1 LPM.

Coatings 2018, 8, x FOR PEER REVIEW  9 of 13 

 

droplet sizes and spray angles were significantly improved at the higher SA flow rates. As a 
consequence, less overspray paint would be expected during automotive painting operations. 

 
Figure 10. Infrared images of the ERBS Spray, showing changing bell cup rotational speed at a fixed 
SA flow rate of 250 LPM and a fixed liquid flow rate of 0.1 LPM. 

 
Figure 11. Droplet volumetric distribution versus droplet diameter and Sauter mean diameter for 
changing cup rotational speeds, at two locations downstream of the cup for a liquid flow rate of 0.1 
LPM, and a 250 LPM SA flow rate. 

The spray pattern angle for the SA flow for all the conditions tested are summarized in Table 2. 
Note that the angles were measured at the edge of the cup detecting the flow edges (maximum angle 
subtended by the flow). Fluctuation, due to the chaotic nature of the flow, can be seen from frame to 
frame and results in about ±6° variation in angle measurements. As such, no trend in the data is 
observed at 0 RPM; rather, because of the error associated in measuring precise angles from the 
Schlieren videos, it is suggested that no differences were observed in the spray pattern angle under 
the 0 RPM cases. An easily-measured, large decrease in the spray angle occurred when the SA flow 
was increased from 50 to 150 LPM for the 20,000 RPM case, but it did not change when the SA was 
further increased to 250 LPM. Furthermore, the spray angle gradually decreased as the SA flow rates 
were increased at 50,000 RPM. These changes are reflected in the liquid flow patterns under the 
various test conditions. 
  

Figure 11. Droplet volumetric distribution versus droplet diameter and Sauter mean diameter for
changing cup rotational speeds, at two locations downstream of the cup for a liquid flow rate of
0.1 LPM, and a 250 LPM SA flow rate.

The spray pattern angle for the SA flow for all the conditions tested are summarized in Table 2.
Note that the angles were measured at the edge of the cup detecting the flow edges (maximum angle
subtended by the flow). Fluctuation, due to the chaotic nature of the flow, can be seen from frame
to frame and results in about ±6◦ variation in angle measurements. As such, no trend in the data
is observed at 0 RPM; rather, because of the error associated in measuring precise angles from the
Schlieren videos, it is suggested that no differences were observed in the spray pattern angle under the
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0 RPM cases. An easily-measured, large decrease in the spray angle occurred when the SA flow was
increased from 50 to 150 LPM for the 20,000 RPM case, but it did not change when the SA was further
increased to 250 LPM. Furthermore, the spray angle gradually decreased as the SA flow rates were
increased at 50,000 RPM. These changes are reflected in the liquid flow patterns under the various
test conditions.

Table 2. Spray pattern angles of the SA for tested operating conditions.

SA Flow Rate (L·min−1) Bell Rotational Speed (kRPM) Angle of the SA (Degree)

50
0 84

20 152
50 166

150
0 78

20 96
50 136

250
0 90

20 102
50 110

3.4. Effect of Shaping Air Flow Rate on Droplet Transport and Atomization

Figures 12–14 presents a compilation of the results for the tests when bell cup rotational speed
was 50,000 RPM. The Schlieren images of the SA at 50,000 RPM in Figure 12 show significant pattern
angle reductions with increasing SA flow rates: In fact, the SA pattern angles decreased from 166◦ to
136◦, and then 110◦ for SA flow rates of 50, 150, 250 LPM, respectively.

Corresponding infrared images for the 50,000 RPM case that depict SA-droplet interactions are
shown in Figure 13. Increased compactness of the spray manifested the impact of increasing the SA
flow rate, i.e., decreased spray angle, at the bell cup speed of 50,000 RPM.

Figure 14 shows that at 1 cm downstream of the bell cup, the Sauter mean diameters were not
significantly affected, with values of 21.4, 21.7, and 20.7 µm, when the SA flow rates were 50, 150,
and 250 LPM, respectively; the standard deviations for these diameters were ±0.4, 0.2, and 0.2 µm,
respectively. Thus, at 1 cm from the cup, the Sauter mean diameter did not statistically vary and was
independent of SA flow rates. However, at the 10 cm downstream location, the Sauter mean diameters
were 21.2, 19.2, and 17.1 µm at SA flow rates of 50, 150, and 250 LPM, respectively, with standard
deviations of ±0.2, 0.2, and 0.4 µm. Hence, the Sauter mean diameter decreased with increasing SA
flow rates in the region where secondary atomization occurs; a result of higher air inertia and stronger
mixing regions at higher SA flow. As such, both increased bell cup speed and SA flow rates not only
had a significant impact on atomization quality, but they resulted in a more focused spray pattern and
reduced overspray; significantly improving droplet transport toward the target surface.
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4. Conclusions

The potential and benefit of using the Schlieren technique for qualitatively studying SA and the
effects of ERBS operational parameters, and for developing insight into both atomization quality and
transport of spray droplets to a target surface were shown. Results showed that at high rotational
speeds, low SA flow condition, the smaller liquid droplets tend to follow shaping air diverging radially
and producing more overspray. However, at high rotational speeds, high SA flow, the smaller droplets
following the high forward momentum air, will result in a more focused spray and better transport.
The Schlieren data, combined with IRFV and liquid droplet size measurement data, also demonstrated
visually how SA improves secondary atomization of spray droplets. Hence, the combination of
these experimental methods may be a useful tool for optimizing SA configurations that improve
spray quality, droplet transport, and the efficiency of ERBS operations. Moreover, future quantitative
schlieren research can be used to validate previous and imminent theoretical and simulation work on
SA flow.



Coatings 2018, 8, 279 12 of 13

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/8/8/279/s1,
Video S1: Shaping air only at 50 LPM SA flow rate and 0 kRPM rotational speed; Video S2: Shaping air only at
50 LPM SA flow rate and 20 kRPM rotational speed; Video S3: Shaping air only at 50 LPM SA flow rate and
50 kRPM rotational speed; Video S4: Shaping air only at 150 LPM SA flow rate and 0 kRPM rotational speed;
Video S5: Shaping air only at 150 LPM SA flow rate and 20 kRPM rotational speed; Video S6: Shaping air only at
150 LPM SA flow rate and 50 kRPM rotational speed; Video S7: Shaping air only at 250 LPM SA flow rate and
0 kRPM rotational speed; Video S8: Shaping air only at 250 LPM SA flow rate and 20 kRPM rotational speed;
Video S9: Shaping air only at 250 LPM SA flow rate and 50 kRPM rotational speed.
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