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Abstract: Hydrophilic coatings have recently emerged as a new approach to avoiding the adhesion
of (bio)organisms on surfaces immersed in water. In these coatings the hydrophilic character is
crucial for the anti-fouling (AF) performance. However, this property can be rapidly lost due to
the inevitable damages which occur at the surface, reducing the long-term effectiveness of the
AF functionality. We report hydrophilic polycarbonate-poly(ethylene glycol) methyl ether (mPEG)
polyurethane coatings with tunable hydrophilic properties as well as an excellent and long-term
stability in water. The coatings exhibit low protein adhesion values and are able to self-replenish
their hydrophilicity after damage, due to the existence of a reservoir of hydrophilic dangling chains
incorporated in the bulk. The combination of low Tg and sufficient mobility of the mPEG dangling
chains (enabled by chains with higher molecular weight) proved to be crucial to ensure autonomous
surface hydrophilicity recovery when the coatings were immersed in water. This coatings and design
approach offers new possibilities towards high-performance AF coatings with an extended service
life-time which can be used in several major applications areas, such as marine and biomedical
coatings, with major economic and environmental benefits.

Keywords: self-replenishing; anti-fouling; hydrophilic coatings; polycarbonate; mPEG;
dangling chains

1. Introduction

Coatings which are immersed or permanently in contact with water will inevitably accumulate
organisms on their surface, i.e., bio-fouling will take place. This phenomenon is of major relevance
in many application fields. In marine coatings, for example, the accumulation of fouling leads
to an increased drag resistance and higher fuel consumption [1]. Furthermore, it requires frequent
maintenance and dry-dock repair which have a highly negative environmental and economic impact [2].
A second example is in the medical field, where coatings are applied on medical devices, such as
catheters and contact lenses to provide a certain lubricious property. Accumulation of foulants such
as blood cells, components from body fluids or even bacteria and viruses would increase the friction
resulting in wounds due to the rupture of cells and also induce infections [3,4]. However, another very
relevant example is in membranes for water purification, where the filtration process and the quality
of water is highly affected by surface fouling, including inorganic scaling/deposition, colloidal fouling,
organic fouling and biofouling in general [5].
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Several anti-fouling (AF) strategies have been reported for polymer coatings in which the
characteristics of the top surface, i.e., chemical composition and topography, are critical for the
effectiveness and long time performance of this surface functionality, as discussed in several literature
reviews available [6–10]. More recently, hydrophilic high surface energy coatings emerged as an
interesting option to prevent the adhesion of foulants, most of them making use of the well-known
anti-fouling character of polyethylene glycol (PEG)-based derivatives [11–15]. Although the working
principle of this type of coating is still unclear and several mechanisms have been proposed by
different authors [9,16,17], it is widely assumed that the use of hydrophilic polymeric surfaces allows
the formation of a hydration layer by means of hydrogen bonding between the water molecules and the
hydrophilic polymer, which reduces the probability of proteins to adhere to the surface, thus reducing
the initial attachment and subsequent accumulation of foulants. However, once the coating is damaged
and the surface characteristics (in this case the hydrophilicity) are lost upon wear, degradation or
attachment of the first biorganisms, the AF properties are no longer effective and the wet surfaces will
become rapidly fouled. Introducing a self-repairing mechanism, which can intrinsically replenish the
damaged surface with new hydrophilic AF chemical moieties, would allow a high AF performance
level throughout the life-time of the coatings, with major economic and environmental benefits.

As previously demonstrated for analogous hydrophobic coatings [18–20], an intrinsic and
spontaneous self-replenishing mechanism can be incorporated in coatings by fulfilling some design
requirements. The coating should contain: (i) a reservoir of hydrophilic dangling chains chemically
bonded to the bulk network; (ii) these dangling chains should be sufficiently mobile, e.g., typically
governed by a low Tg of the polymer components, to reorient upon creation of new interfaces; and (iii)
a proper hydrophilic–hydrophobic balance between all the coating components (i.e., dangling chains
and network polymer precursors), which will provide the driving force for the reorientation of the
dangling chains towards the air–coating, or in this case, water–coating, interface once damage occurs.

To date, most of the self-replenishing systems found in literature are hydrophobic, while the
development of self-healing hydrophilic coatings is still scarcely addressed [21–24]. In one of the
few examples, Minko et al. settled guidelines towards the design of materials with long-lasting
hydrophilicity and anti-fouling properties. The hydrophilicity and AF properties of PEG 2D
surface-grafted and 3D-network grafted films, possessing PEG chains in the surface and inside the
network film, were studied and compared. For the measuring time of four weeks used, the 3D-grafting
structures demonstrated much higher hydrophilicity stability and fouling resistant properties than the
2D films due to the spontaneous rearrangement of the chains stored inside the film [23]. In a more
recent publication self-assembled microgel spheres with grafted hydrophilic chains were synthesized.
The films presented oil-repellent and AF properties, and were able to self-repair after induced damage.
Also in this case, the self-healing function was attributed to the 3D structure combined with the
presence of a reservoir of hydrophilic chains [24].

It should also be noted that, while for some specific applications an easily degradable polymer
coating may be required (e.g., for short-term medical implants), for many others, the overall long term
stability of the hydrophilic self-healing coatings when immersed in water and the absence of leachable
materials (i.e., resulting from bulk or network degradation) are essential, e.g., in the marine field and
especially on medical devices in contact with the human skin or body-fluids.

Due to their interesting thermal and mechanical properties, aliphatic Poly(carbonates) (PCs)
find applications in a wide variety of fields, such as in regenerative medicine, drug delivery and
in the coatings industry [25–28]. Furthermore, PCs typically present longer hydrolytic stability in
water when compared to polyesters, are highly transparent to visible light and have a tunable and
generally low Tg value [29–31]. Although this low Tg can be envisaged as a major drawback for
some applications, they are advantageous for preparing protective and functional coatings which are
required to interact favorably with water. This type of polymer can confer long-time water stability
and high transparency to the coatings while immersed in water, and also the proper mobility in the
system for self-replenishing. Additionally, PCs can be easily prepared by Cationic Ring Opening
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Polymerization (CROP) via green approaches using organic acids (e.g., trifluoromethanesulfonic acid,
TFA) as catalysts, resulting in metal-free polymers which are very attractive for medical and marine
coatings in general.

The current study focuses on developing hydrophilic self-replenishing coatings, targeting
application areas such as marine or medical AF coatings. To this purpose we designed three component
polyurethane-based networks, with a mixture of tri-branched and linear poly(1,3-propylene)carbonates
(PC) as polymeric matrix, a triisocyanate (tHDI) as crosslinker and PEG moieties as hydrophilic
dangling chains, which preferentially orient towards the water-coating interfaces providing
AF properties.

The preparation of the AF hydrophilic networks and their characterization by FTIR, DSC, static
and dynamic contact angle and water uptake measurements is presented. The long-term stability and
appearance of the coatings in water is addressed and the anti-fouling potential is discussed, based on
preliminary protein adsorption measurements.

The design of the coatings was directed to provide self-replenishing characteristics, i.e., to recover
the surface hydrophilicity and related functionalities. The recoverability of the surface properties in
water is demonstrated by dynamic contact angle measurements, before and after, controlled damage
which was intentionally induced at the coatings surface.

2. Experimental

2.1. Materials

Firstly, 1,3-propanediol, ethyl chloroformate, triethylamine (TEA), trifluoroacetic acid (TFA, 99% for
HPLC), pyridine, poly(ethylene glycol) methyl ether with average Mn of 550 and 2000 g·mol−1 (mPEG550
and mPEG2000, respectively), and Fibrinogen (FB, ~340 kDa) were purchased from Sigma-Aldrich
(St. Louis, MO, USA) Poly(ethylene glycol) methyl ether average Mn 1000 g·mol−1 (mPEG1000) was
purchased from TCI Chemicals (Tokyo, Japan). A polyisocyanate crosslinker, Desmodur N3600 containing
primarily a trimer of hexamethylenediisocianate (further noted as tHDI, hydroxyl group functionality 2.8)
was kindly supplied by Perstorp (Malmö, Sweden). Aluminium oxide 90 active neutral (activity stage
I) used for column chromatography was purchased from Merck (Kenilworth, NJ, USA). The Phosphate
Buffer Saline (PBS) solution 1X with pH 7.4 was purchased from Thermo Fischer Scientific (Waltham,
MA, USA). Organic solvents were purchased from Biosolve (Dieuze, France). Trimethylolpropane (TMP)
was purchased from Merck and dried at 45 ◦C during 3 h before use. All the other chemicals were used
as received.

2.2. Characterization Techniques and Procedures

Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The thermal
properties of the coatings (5–10 mg samples) were studied on a TGA-TA Q500 equipment (from TA
Instruments, New Castle, DE, USA), heating from 25 to 600 ◦C at 10 ◦C/min under a nitrogen flow.
DSC measurements were performed on a DSC-TA Q100 (from TA Instruments). Samples (6–8 mg)
were measured with a heating–cooling–heating cycle that runs from −80 ◦C to 80 ◦C at 10 ◦C/min
under a nitrogen flow. The second heating run was selected for the analyses of the results. The coating
thicknesses were measured on a Veeco Dektak 150 profilometer (from Veeco, Plainview, NY, USA).

Extractables. The amount of non-reacted or non-network incorporated species was extracted from
coatings by immersing a known amount of coating detached from the substrate (typically 50–100 mg)
in water and acetone. After 24 h immersion the coatings were dried overnight in vacuum at 45 ◦C.
The weight loss (%) was calculated from the mass of coating after extraction divided by the mass
coating before extraction ×100. Each coating was measured in triplicate. Water and acetone liquid
extracts were evaporated at room temperature and afterwards vacuum dried at 45 ◦C overnight to
recover and analyze the extracted solid residues by 1H-NMR.
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Contact Angle. Static and dynamic contact angle measurements were performed on a OCA30
contact angle system (from DataPhysics, Regensburg, Germany) by using distilled water as a probe
liquid. For static measurements water droplets of 8 µL were deposited on the surface. For dynamic
measurements the advancing water contact angle (CAAdv) was measured with the ARCA software
tool in the following way: a 2 µL droplet was first placed on the surface. Water was then injected
into the droplet up to 8 µL at 0.5 µL/s. After a waiting period of 2 s water was retracted from
the droplet by using the same settings as for the water injection. Each coating was measured in
triplicate. All measurements were done in coatings previously soaked in water to minimize the water
absorption effect.

Water uptake. The water uptake (%) was calculated from the following equation: Wt − W0/W0 × 100,
where Wt is the weight of the swollen coating at a specific time and W0 the initial weight of the dry coating.
Each coating was measured in triplicate. Typically, ~50–100 mg of the free standing film coatings were
immersed in demineralized water. The amount of absorbed water was measured gravimetrically at several
immersion times. The water absorption experiments allowed to determine the percentage of water uptake
after 24 h as well as the degradation of the coatings which was evaluated over one year.

Coating damage. Controlled damage was induced on dry coatings by using a setup previously
described for self-replenishing studies on hydrophobic coatings [19]. A piece of 1200/4000 grit silicon
carbide sand paper (2 × 2.4 cm2) was glued to a metal disk which was loaded with additional metal
rings with a final mass of 30.9 g, resulting in a constant pressure on the abrasion area of about 4300 Pa.
To perform the abrasion test, the sandpaper (with the metal disks on top of it) was applied on the
coatings surface and moved manually along the parallel direction (back and forth). The extent of
damage was detected by measuring the thickness (Dektak 150 profilometer, from Veeko) and the
surface wettability (CAAdv) before and after damage. The sand paper was replaced every 50 cycles to
avoid transfer of debris and contamination. The surface hydrophilicity recovery was quantified by
calculating the Self-Replenishing Efficiency (SRE), where CAinitial is the water CA of the coatings before
damage and CAfinal is the water CA measured after damage and a specific time of self-replenishing.

SRE (%) = 100 −
[

CAfinal − CAinitial
CAinitial

× 100
]

(1)

Protein adsorption. Coatings applied on glass substrates (20 mm × 20 mm) were first washed
with acetone (5 × 1 mL) and extracted overnight with 25 mL of water to get rid of all non-reacted
or non-network incorporated components (extractables) that could interfere in the measurement.
The extracted coatings were dried in vacuum at 45 ◦C overnight. The dried coatings were rehydrated by
immersing them in 5 mL of PBS solution for 1 h. Next, the PBS soaked coatings were incubated for 24 h
with 700 µL of 1 mg·mL−1 FB protein solution in PBS, ensuring that the full coating surface was covered
by the protein containing solution. Afterwards the coatings were washed (with 2 × 450 µL of PBS)
to remove the non-adsorbed proteins. Following procedures previously reported in literature [24,32],
the amount of adsorbed proteins was determined in an indirect way by measuring the non-adsorbed
proteins and subtracting this value from the initial known protein feed. For the quantification of the
protein in the PBS solutions, the characteristic absorbance of the Fibrinogen proteins at 280 nm [33]
was analyzed on a HP 8453 UV–Vis spectrophotometer equipped with a Peltier cell using a quartz
cuvette (1 cm path length). Each coating was measured in triplicate. The absorbance values obtained
were interpolated in the corresponding Fibrinogen calibration curves, built from PBS protein solutions
of 0.1–1 mg·mL−1 and having a good linearity in the measured concentration range with an R2 of
0.9999. (Calibration curved provided in the Supplementary Materials, Figure S1).

2.3. Polymer Synthesis: Trimethylene Carbonate (TMC) Monomer and Polycarbonate (PC)

The monomer (TMC) and polymer (PC) were synthesized by applying the optimized conditions
previously described by us [34]. TMC synthesis: Ethyl chloroformate (25 mL, 0.262 mol) was added to
a solution of 1,3-propanediol (10 g, 0.132 mol) dissolved in 500 mL of tetrahydrofuran (THF), in a dry
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nitrogen atmosphere. The reaction mixture was cooled with an ice bath and TEA was added dropwise
over a period of 30 min. After 2 h the white precipitate formed, triethylamine hydrochloride, was
filtered off through a neutral aluminum oxide column. The filtered solution was then concentrated
in a rotavapor and a white solid was precipitated in 200 mL of diethyl ether and left overnight in
the fridge. The white precipitate (TMC) was collected by filtration and washed with diethyl ether
(3 × 20 mL). TMC was dried overnight under vacuum at 35 ◦C before use. Yield: 54%. 1H-NMR
(CDCl3, 400 MHz, δ in ppm): 2.14 (m, 2H), 4.45 (t, 4H). 13C-NMR (CDCl3, 125 MHz, δ in ppm): 21.3,
67.9, 148.5. ATR FT-IR (ν in cm−1): 2954.9 (C–H st), 1 728.2 (C=O st), 1188.1 (C–O st as).

PC synthesis: TMC (5.2 g, 51 mmol) and TMP (324 mg, 2.4 mmol) where added to a flask with
56 mL of dry toluene (monomer concentration 0.9 M). The mixture was immersed in an oil bath
at 35 ◦C and left under dry nitrogen flow for 15 min. After this time TFA (184 µL, 2.4 mmol) was
added. Then three vacuum–dry nitrogen cycles were applied to the mixture to ensure oxygen and
water free conditions. The reaction mixture was stirred for 48 h and thereafter 0.6 mL of pyridine
were added to neutralize the acid and stop the reaction. The toluene fraction was evaporated in the
rotavapor and the resulting oil was dissolved in 15 mL of DCM. The reaction mixture dissolved in
DCM was precipitated in 500 mL of diethyl ether and the polymer was obtained after decantation of
the solvent and washing with diethyl ether (2 × 60 mL) as a colorless and sticky oil. Yield: 91%. PC
characterization: 1H-NMR (CDCl3, 400 MHz, δ in ppm): 0.91 (t), 1.53 (m), 1.92 (m), 2.05 (m), 3.74 (t),
4.11 (s), 4.30–4.24 (m). 13C-NMR (CDCl3, 125 MHz, δ in ppm): 7.25, 21.88, 28.03, 31.63, 42.69, 58.86,
64.30, 64.48, 65.03, 154.79, 154.90, 155.26. ATR FT-IR (ν in cm−1): 3 554.8 (OH), 2 970.4 (C–H st), 1 735.9
(C=O st), 1 226.7 (C–O st as). GPC Mn 2826 g·mol−1, Đ = 1.19. MALDI maximums (m/z): 1339 (linear,
number of TMC repeating units, n = 12)) and 1805 (tri-branched, 3n = 16) g/mol. Polymer mixture
molar composition: ~34% linear, ~66% tri-branched. Polymer mixture hydroxyl group functionality
per mol: 2.7. Tg = −36 ◦C.

Polymer characterization. 1H-NMR and 13C-NMR spectra were recorded on a Varian (Palo Alto, CA,
USA) and Bruker (Billerica, MA, US) spectrometer operating at 400/100 MHz or 500/125 MHz (Varian
Inova). CDCl3 with TMS as an internal standard was used as the solvent. Fourier Transform-Infrared (FT-IR)
Attenuated Total Reflectance (ATR) Spectroscopy was performed on a Varian 3100 FT-IR spectrometer
with DTGS detector, collecting an average of 50 scans in the frequency range from 600 to 4000 cm−1.
GPC measurements were performed on a Waters Alliance system GPC equipped with a Waters model
1515 pump and a model 2414 refractive index detector. A set of two columns (SDV 500 Å, PSS, 30 cm, 40 ◦C
and a guard column (SDV 5 µm, PSS) was used and THF was selected as eluent with a flow of 1 mL·min−1.
The system was calibrated using narrow molecular mass polystyrene standards ranging from 139 to
39,000 g·mol−1. The polymers were dissolved in THF at a concentration of 1 mg·mL−1. Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) measurements were performed
on a Voyager-DE Pro instrument (Perspective Biosystems, Framingham, MA, USA). The polymers were
dissolved in THF at a concentration of 5 mg·mL−1. Potassium trifluoroacetate (KTFA) was used as the
ionizing agent and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-porpenylidene] malononitrile (DCTB) was
used as matrix. The isotopic distributions were analyzed using DataExplorer Advanced Biosystems
(version 4.4).

2.4. Coatings Preparation

Coating solutions were prepared from stock solutions of PC (25 wt %), crosslinker tHDI (50 wt %)
and mPEG550 (or mPEG1000, or mPEG2000) (25 wt %) in dry cyclohexanone. mPEG1000 and
mPEG2000 stock solutions were heated at 50 ◦C for several minutes until complete dissolution
was achieved. Stock solutions were mixed at NCO:OH functional group mol ratio of 1.1 and
PCL:mPEG functional group mol ratio of 9, reaching a final coating solution solid content of 27–28 wt %.
As a control sample (reference coating) a coating was prepared without mPEG chains, containing only
PC and tHDI. The stock solution and final coating solution were prepared under argon atmosphere.
The glass substrates (dimensions 20 × 75 mm2 or 20 × 20 mm2) were rinsed with acetone, ethanol,
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dried overnight at 100 ◦C and finally treated for 15 min with UV/ozone (PSD-UVT from NovaScan,
Avenue Boone, IA, USA). The coatings solutions were applied with a doctor blade squared applicator
with a 120 µm spacing on the previously cleaned substrates. The coatings were cured by a using first
applying 125 ◦C for 2 h and a second, overnight curing/drying step at 60 ◦C, both in dry nitrogen
atmosphere. The typical thickness of the coatings obtained after curing was between 7 and 10 µm.

The coatings were also prepared as free standing films by using aluminum cups (with ~6 cm
diameter). Approximately 0.8–1 g of coating solution were poured into the cups and cured in the same
way as described previously. The typical thicknesses for free standing films were ~40 µm.

3. Results and Discussion

3.1. Polycarbonate (PC) Polymers Synthesis

The PC polymeric matrix used in this work was synthesized with optimized polymerization
conditions as described in our previous work [34]. Briefly, trimethylene carbonate (TMC) was used
as monomer and a trifunctional alcohol, trimethylolpropane (TMP), was used as initiator, obtaining
a polymer mixture composed of a ~66% of tri-branched and ~34% of linear polycarbonate (the PC
polymer mixture chemical structures are represented in Figure 1). This polymer mixture was always
obtained due to the coexistence of two polymerization mechanisms, the Activated Chain End (ACE)
and Activated Monomer (AM) mechanism. A complete characterization by NMR, GPC and MALDI
was crucial to discriminate the polymer composition and characteristics, as the difference between
the two types of polymers is only detectable by MALDI (full polymer synthesis and characterization
details are given in Section 2).
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Figure 1. (a) Chemical structure of the coating components and coating preparation. The images
show transparent and colorless free standing coating films after curing (the transparent pieces were
placed over a white paper with a logo for easier visualization. In the printed version it may be difficult
to visualize the transparent pieces); (b) (top) FTIR of poly(carbonate) (PC)-reference and (bottom)
PC-mPEG2000: dashed lines—coating solutions before curing; solid lines—solid film after curing.

This approach allowed the preparation of metal-free polymers, with low Đ value, well-known
chemical structure and composition and very high stability in aqueous conditions, as will be
demonstrated. These are valuable characteristics when biomedical, pharmaceutical or non-toxic
materials for green technologies are targeted.

3.2. Coatings Preparation and Characterization: Surface Wettability and Stability

The coatings solutions were prepared by combining stock solutions of the synthesized PC
polymers with the different molecular weight mPEG hydrophilic dangling chains, mPEG550,
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mPEG1000 or mPEG2000, and the crosslinker tHDI, from now on referred as PC-mPEGy, where “y”
represents the mPEG molecular weight, i.e., 550, 1000 or 2000 g·mol−1. A reference coating composed
by PC and tHDI was also made in order to study the effect of mPEG chains in the polycarbonate
coatings properties (named as PC-reference). The variation of mPEG with different molecular weight
was done to investigate the influence of the dangling chain length in the coating features: hydrophilicity,
anti-fouling properties and self-replenishing behavior.

Crosslinking of the coatings was done with thermal curing via the reaction between the tHDI
isocyanate groups and the hydroxyl groups present in both the PC polymer precursors and the mPEG
dangling chains, producing a polyurethane network (Figure 1a).

The chemical crosslinking of the coatings was analyzed with FTIR by measuring the initial coating
solution before curing and the obtained film after curing. PC-reference and PC-mPEG2000 FTIR
spectra are shown in Figure 1b as representative examples. After the curing reaction, the characteristic
vibration bands of the isocyanate (υNCO ≈ 2300 cm−1) and hydroxyl groups (υOH ≈ 3500 cm−1)
were no longer present and the new vibration bands assigned to the urethane bonds formation at
(δNH ≈ 1500 cm−1 and υNH ≈ 3400 cm−1) were detected. It is worth noting that for some coatings,
e.g., PC-mPEG2000 (Figure 1b, bottom), a residual isocyanate peak remains after curing. This can be
due to the slight excess of tHDI crosslinker added in the coating formulation (NCO:OH functional
group mol ratio of 1.1) and the higher viscosity of mPEG2000, which has also a slight influence on the
amount of extractable residues obtained in these coatings, as discussed below. Nevertheless, all the
synthesized PC coatings were free of application defects, colorless and highly transparent after curing,
as can be observed in Figure 1a.

To investigate further the incorporation of the different components in the cross-linked network,
extraction experiments were performed in water and acetone to determine the coatings mass loss
(Table 1). The coatings mass loss after curing is attributed to non-reacted or non-network incorporated
components which dissolve into the extraction solvents. For both, acetone and water extraction,
the coatings remained visually unchanged after the immersion time. When comparing the water and
acetone weight loss values, a lower weight loss was observed in water for all the coatings, which was
expected due to the better solubility of all the coating components in acetone. This was confirmed by
the 1H-NMR analyses performed on the dried solid residues (Figure S2, Supplementary Materials).
In the residues from the acetone extract, traces of all the coating components, PC, mPEG dangling
chains and tHDI crosslinker, were detected. For the residues of the water extracts, mPEG and tHDI
were mostly found, since the PC polymer is nearly insoluble in water. Overall, the low amount of
weight loss detected, reaching a maximum of six percent in acetone for PC-mPEG2000, confirms that
covalently bonded coating networks were efficiently formed and are rather stable in the tested solvents.

The highest weight loss registered for PC-mPEG2000 coatings in both solvents can be related to an
incomplete reaction of the isocyanate groups due to a lower availability of the hydroxyl groups, in view
of the higher molecular weight of PEG2000, its higher viscosity and lower solubility, which ultimately
affects more strongly the chain mobility and its incorporation to the network. This observation is also
corroborated by the remaining isocyanate peak observed in the FTIR spectrum after curing (Figure 1b),
as discussed above.

Table 1. PC coatings characterization: Weight loss after immersion in water or acetone, water uptake,
static contact angle in water soaked coatings, Glass Transition Temperature (Tg).

Coating Code
Weight Loss (%)

Water Uptake (%) Static Contact Angle (◦) Tg (◦C)
Water Acetone

PC-Reference 0.65 ± 0.4 1.7 ± 0.1 2.4 ± 0.7 79 ± 1.5 −10
PC-mPEG550 0.67 ± 0.5 3.4 ± 0.05 4.5 ± 0.4 69.9 ± 1.1 −12

PC-mPEG1000 0.68 ± 0.2 4.5 ± 0.8 12.1 ± 1.6 66 ± 1 −14
PC-mPEG2000 3 ± 0.1 6.3 ± 0.2 26.2 ± 1.5 51 ± 0.75 −34
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After confirming proper network formation, the influence of the dangling chains on the coatings
properties, i.e., water uptake, wettability and Tg, was analyzed (Table 1). The incorporation of the
PEG-based hydrophilic dangling chains allowed tuning of the coatings hydrophilicity. The hydrophilicity
of the coatings increased with the length of the dangling chains, as denoted by the ability of absorbing
more water and the lower static water contacts angles obtained. This is in accordance with the expectation
that the introduction of more hydrophilic ethylene oxide units in the network via the dangling chains
will allow more water–polymer interactions via hydrogen bonding. As for the thermal properties of the
coatings, a decrease in Tg was observed when introducing mPEG, this decrease being more pronounced
for the longer dangling chains.

In the search for materials with long-time durability, the stability and appearance of the coating
along with the surface wettability in time are important parameters. The stability of the coatings
was estimated by measuring the water uptake in time. The cleavage of the urethane and carbonate
bonds could lead to a more hydrophilic network and probably loss of the network structural integrity,
meaning that a higher capacity of absorbing water and thus an increase in the water uptake value
should be observed in time. On the other hand, the release of small coating fragments of coating into
the solvent could also lead to a decrease in water uptake. As for the surface wettability, a decrease of
the water contact angle would indicate the formation of more hydrophilic groups on the surface, most
likely due to degradation as explained before. On the contrary, an increase in contact angle would
indicate a loss of the hydrophilicity due to the loss of the hydrophilic dangling chains at the surface.

In spite of all these possible scenarios, the water uptake and contact angle of the PC coatings
prepared remained remarkably constant over one year of immersion in water, as can be seen in Figure 2,
demonstrating the excellent stability of the coatings. Interestingly the coatings appearance was also
the same as the initial coatings, keeping their integrity, transparency and not developing any color
in time, which is a further indication of absent degradation (Figure S3). The excellent stability of the
coatings was further confirmed by the low weight loss of the coatings after one year immersion in
water, reaching a maximum of only ~3.1% loss (Figure S3). The most notable difference was observed
for the reference coatings. After one year immersion, their water CA decreased to a value close to
the one of the PC-mPEG500 and PC-mPEG1000. Since the water uptake (Figure 2) and the mass loss
(Figure S3) of the reference coatings were not significantly changed, this CA change could be due to
rearrangements in the polymer films and a higher exposure of the more hydrophilic segments of the
polymer network to the water interfaces.
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3.3. Evaluation of Anti-Fouling Properties

Biofouling is a complex process that involves several stages [35]. In the first minute after
immersion of a material in water proteins adsorb on the surfaces forming a conditioning film which
establishes the proper environment (biofilm or slime) for the attachment of bigger organisms during
the next stages, micro- and macro-fouling. The fouling problem is even more complex due to the fact
that it is also influenced by external factors, like water salinity, oxygen concentration, temperature
and light-exposure period, which vary across the globe and for the type of water [1]. A simplified,
laboratory-accessible way to evaluate the anti-fouling properties is to quantify the first stage of
biofouling by measuring the protein adsorption on surfaces. Thus surfaces presenting a low protein
adsorption value can be considered to be of high potential for anti-fouling since the prevention of
primary phase of fouling (biofilm formation) ensures the impossibility of bigger organisms to adsorb
and settle afterwards.

In this study, Fibrinogen (FB) was selected as model protein-foulant to evaluate the fouling
potential of the PC coatings prepared. The quantification of the adsorbed FB was done by UV/Vis
spectroscopy and making use of the characteristic absorption peak of these proteins at 280 nm, due
to the presence of aromatic aminoacids in their chemical structure [32,33]. The coatings were fully
covered with a known amount of a PBS solution of FB. The adsorbed proteins were quantified by
determining the proteins remaining in the PBS solution (not-absorbed) after 24 h of incubation and
with reference to a previously prepared calibration curve (see Figure S1 in Supplementary Materials).

The FB adsorption value was determined to be very close to 10 µg·cm−2 for all the coatings
prepared which is normally considered as a low protein adsorption value in the related AF literature
(Table 2) [24]. Such low protein adsorption values denote the very good stability of these coatings and
their high potential for AF. In fact, the protein adsorption determination procedure was sometimes
rather difficult and inconclusive due to the very low values measured. For this purpose the coatings
were always measured in triplicate and with extra care to avoid contamination or any loss of material
from the PBS solutions.

Table 2. Evaluation of the PC coatings performance: values obtained for the protein (Fibrinogen)
adhesion tests and for the self-replenishing efficiency (SRE, in %, as given by Equation (1)) after
150 cycles of abrasion and after 22 h of immersion in water.

Coating Code Fibrinogen Adhesion (µg·cm−2) SRE (%)

PC-Reference 11.2 ± 0.4 91
PC-mPEG550 5.8 ± 0.3 95

PC-mPEG1000 10.1 ± 1 99
PC-mPEG2000 12.8± 0.5 101

As can be seen from Table 2, the introduction of the shortest mPEG hydrophilic dangling chains,
mPEG550, resulted in the maximum decrease of protein adsorption value as compared to the reference.
However, when increasing the coating hydrophilicity further, i.e., introducing the mPEG1000 or
mPEG2000 chains, the protein adhesion values did not decrease further, with the protein adsorption
value for these coatings very close to the value of the PC-reference coating. Hence, no clear correlation
was found between the reference coatings and the increasing hydrophilicity via the introduction of
mPEG dangling chains with different length. The presence of a mPEG molecular weight threshold
value for which a minimum of protein adsorption value is found was also reported by others when
using FB or other proteins like Bovine Serum Albumin (BSA) [36,37].

Although protein–PEG interactions have been widely studied, they are still far from being
understood, and up to date there is not a clear explanation for this. A possible explanation which has
been put forward for the lower efficiency of high molecular weight PEG relates either to the difficulty
in achieving an optimum chain density at the surface due to possible entanglements (which is crucial
for achieving a minimum protein adsorption value), or to the reduced mobility of the longer PEG
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chains [37,38]. Another possible explanation relies on the solubility of PEG in aqueous solutions
with high salt concentrations, with particularly sensitivity to sodium and potassium phosphate salts,
which are in fact present in the PBS solution used for the FB experiments [39,40]. Hence, our results
showing inefficient protein adsorption reduction when using high molecular weight mPEG chains
can be due to the reduced solubility of the mPEG in the PBS solution that hinders the water–polymer
hydrogen bonding interactions and favors protein adsorption. Since we cannot determine in this work
the accurate surface coverage of the coatings by the dangling chains, we can also not discard, however,
the possibility of entanglements causing a lower chain density for the longest mPEG chains.

3.4. Self-Replenishing Behavior: Surface Hydrophilicity Recovery after Damage

To study the self-replenishing of the surface functionalities that guarantee the extended life-time
of the hydrophilicity and the long-term use of the coatings, a controlled damage was introduced by
a setup previously used for analogous self-replenishing coatings, as described elsewhere [19]. Briefly,
coatings were damaged with sand paper by applying a constant force and moving a specific weight
back and forth on top of the coating for a specific number for 150 cycles. Afterwards the coatings were
re-immersed in water at room temperature and at different recovery times, up to 22 h (Figure 3a).

The thickness of the coatings was re-measured after the damage confirming the removal of
a few micrometers of the most external top coating layers. The decrease in thickness was in the
range of 0.5 ± 0.1 µm for the PC-reference coating in the range of 1.3 ± 0.2 µm for the softer mPEG
containing coatings. The extent of recovery, concerning the initial loss of hydrophilicity, was evaluated
by comparing the initial dynamic water contact angle (CAAdv) of the water-soaked coatings before
(Figure 3a) and after damage, at different times of recovery in water, e.g., 1 h, 2 h, 4 h and 22 h
(Figure 3b) and quantified by calculating the Self-Replenishing Efficiency (Table 2).

The damage experiments were first done on dry and also wet conditions (i.e., coatings immersed
in water); however, only the results from the “dry-damage” could be used reliably, since during
the “wet-damage” the coatings were often detached from the substrate hampering the analyses
afterwards. Note that in real systems, a primer would probably be required to ensure the adhesion of
the hydrophilic coatings to different substrates.

Coatings 2018, 8, x FOR PEER REVIEW  10 of 14 

 

3.4. Self-Replenishing Behavior: Surface Hydrophilicity Recovery after Damage 

To study the self-replenishing of the surface functionalities that guarantee the extended life-time 
of the hydrophilicity and the long-term use of the coatings, a controlled damage was introduced by 
a setup previously used for analogous self-replenishing coatings, as described elsewhere [19]. Briefly, 
coatings were damaged with sand paper by applying a constant force and moving a specific weight 
back and forth on top of the coating for a specific number for 150 cycles. Afterwards the coatings 
were re-immersed in water at room temperature and at different recovery times, up to 22 h  
(Figure 3a). 

The thickness of the coatings was re-measured after the damage confirming the removal of a few 
micrometers of the most external top coating layers. The decrease in thickness was in the range of 0.5 
± 0.1 µm for the PC-reference coating in the range of 1.3 ± 0.2 µm for the softer mPEG containing 
coatings. The extent of recovery, concerning the initial loss of hydrophilicity, was evaluated by 
comparing the initial dynamic water contact angle (CAAdv) of the water-soaked coatings before 
(Figure 3a) and after damage, at different times of recovery in water, e.g., 1 h, 2 h, 4 h and 22 h (Figure 
3b) and quantified by calculating the Self-Replenishing Efficiency (Table 2). 

The damage experiments were first done on dry and also wet conditions (i.e., coatings immersed 
in water); however, only the results from the “dry-damage” could be used reliably, since during the 
“wet-damage” the coatings were often detached from the substrate hampering the analyses 
afterwards. Note that in real systems, a primer would probably be required to ensure the adhesion 
of the hydrophilic coatings to different substrates. 

After the “dry damage” the coatings were immediately immersed in water to re-expose the 
newly created surfaces to water for the replenishing to take place. One of the limitations of this 
procedure is that after the damage and re-immersion in water, the coatings need to absorb water and 
swell; hence, it was not possible to estimate the extent of damage immediately after it takes place, 
and a reliable measurement of the water CAAdv could only be done after one hour of immersion  
(Figure 3). This was the time needed for the coatings to reach a maximum swelling ratio, as estimated 
from the swelling ratio (Wt/W0) profiles (Figure S4, Supplementary Materials) and to minimize the 
effect of the water absorption on CA measurements. 

 
Figure 3. (a) Schematic of the surface damage and recovery of the water-soaked coatings;  
(b) Advancing water contact angle (CAAdv) of the coatings after damage, at different times of recovery 
upon immersion in water. Solid lines represent the initial water CAAdv before damage. Black squares 
and line—PC-reference; red circles and line—PC-mPEG550; green triangles and line—PC-mPEG1000; 
and blue stars and line—PC-mPEG2000 coatings. 

An initial increase in the water CAAdv after damage, i.e., loss of hydrophilicity, as compared to 
the initial water CAAdv of the non-damaged coatings (solid straight lines in Figure 3b), was observed 
for all coatings except for the PC-mPEG2000 (Figure 3b). 

For the PC-reference coating, an increase in CAAdv was detected after damage and one hour of 
recovery in water. This increase in hydrophobicity can be explained by the fact that the damage 

Figure 3. (a) Schematic of the surface damage and recovery of the water-soaked coatings; (b) Advancing
water contact angle (CAAdv) of the coatings after damage, at different times of recovery upon
immersion in water. Solid lines represent the initial water CAAdv before damage. Black squares
and line—PC-reference; red circles and line—PC-mPEG550; green triangles and line—PC-mPEG1000;
and blue stars and line—PC-mPEG2000 coatings.

After the “dry damage” the coatings were immediately immersed in water to re-expose the newly
created surfaces to water for the replenishing to take place. One of the limitations of this procedure is
that after the damage and re-immersion in water, the coatings need to absorb water and swell; hence,
it was not possible to estimate the extent of damage immediately after it takes place, and a reliable
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measurement of the water CAAdv could only be done after one hour of immersion (Figure 3). This was
the time needed for the coatings to reach a maximum swelling ratio, as estimated from the swelling
ratio (Wt/W0) profiles (Figure S4, Supplementary Materials) and to minimize the effect of the water
absorption on CA measurements.

An initial increase in the water CAAdv after damage, i.e., loss of hydrophilicity, as compared to
the initial water CAAdv of the non-damaged coatings (solid straight lines in Figure 3b), was observed
for all coatings except for the PC-mPEG2000 (Figure 3b).

For the PC-reference coating, an increase in CAAdv was detected after damage and one hour
of recovery in water. This increase in hydrophobicity can be explained by the fact that the damage
imposed removes a few micrometers of the initial coatings surface, which may be slightly more
hydrophilic than the bulk, as it may contain residual unreacted hydroxyl groups or more hydrophilic
segments. Hence, when the bulk of the coatings is exposed by the damage, more hydrophobic segments
will be at the new created surfaces increasing the newly measured water CAAdv. Upon re-immersion
in water, the PC-reference coating is not able to recover the initial hydrophilicity, not even after 22 h of
immersion. This was expected since this coating does not contain additional hydrophilic dangling
chains in the bulk, and the surface initially formed during the curing process with eventually more
hydrophilic segments was lost during the damage, i.e., the PC-reference has no reservoir of hydrophilic
components, Figure 3b (black squares).

For the mPEG-containing coatings, a different replenishing behavior was found depending
on the type of PEG used. For PC-mPEG550 and PC-mPEG1000 after damage and one hour
recovery, a significant increase in CAAdv was detected (Figure 3b). After 22 h of immersion in
water, the PC-mPEG550 presented a partial or null CAAdv recovery in water, but the PC-mPEG1000
was able to recover the initial CAAdv. The ability to recover the surface composition results from
the combination of a low Tg, that ensures the proper mobility of the dangling chains towards the
water–coating interface, and the dangling chain length which also endows these mobility and interface
reorientation [41]. These coatings present similar Tg values (Table 1) thus showing that the mPEG
dangling chain length plays a major role on the self-replenishing ability, i.e., only for PC-mPEG1000
the surface hydrophilicity was fully recovered, as demonstrated by the calculated SRE (Table 2).

For PC-mPEG2000 coatings, no significant change of the water CAAdv was detected either after
the damage, or any of the recovery times (Figure 3b). In this case, the combination of a much lower
Tg (Table 1) and longer dangling chains seems to provide very stable hydrophilic coatings which
can recover their hydrophilicity on damaged surfaces really fast (at least on a time-scale shorter
than one hour, hence, not possible to detect with our procedure) upon immersion on water at room
temperature. In fact, the excellent stability shown for all the PC coatings (Figure 2), and in particular for
the PC-mPEG1000 and PC-mPEG2000, already hinted that the surface composition of these coatings is
very stable and/or fully replenishes in time, as the water CA remained constant throughout one year.

4. Conclusions

PC polymers were successfully used in the preparation of cross-linked hydrophilic coatings,
which are colorless and transparent, with very low leachable amounts. The coatings present tunable
hydrophilicity depending on the type (molecular weight) of mPEG dangling chains added to the
cross-linked network, as well as an excellent long-term stability in water, as shown by the unchanged
visual appearance and constant surface hydrophilicity after one year of immersion in water.

The proper selection of the coatings components confers an intrinsic self-replenishing driving
force due to the hydrophobic/hydrophilic balance between the bulk and surface-oriented components.
Once the hydrophilicity was reduced upon surface damage, the hydrophilic dangling chains in the bulk
(i.e., in the reservoir) are exposed at the new wet and damaged surfaces and their reorientation towards
the water coating interface takes place, minimizing the exposure of the more hydrophobic segments of
the PC coatings. The combination of a low Tg and sufficient mPEG dangling chain length ensured the
system mobility and the nearly 100% recovery of the surface hydrophilicity for the PC-mPEG1000 and
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PC-mPEG2000 coatings. Furthermore, these coatings showed an excellent stability in water throughout
a one year evaluation period which may be due to the efficient preparation of cross-linked networks in
which all the components (including the hydrophilic dangling chains) are covalently bonded, as well
as to the self-replenishing processes taking place during the period that the coatings are immersed
in water.

Finally, all the coatings exhibit low protein (Fibrinogen) adhesion on their surfaces, reaching
a real minimum of protein adsorption for the PC-mPEG550, which demonstrates the high potential
of application of these coatings as anti-fouling and self-replenishing protective films. Further
protein adhesion tests and anti-fouling studies should be conducted with different proteins and
aqueous solutions containing various electrolytes and salt concentrations, which could influence
the characteristics of the coatings interfaces leading to different AF behavior under the different
aqueous environments.

Supplementary Materials: The following material is available online at http://www.mdpi.com/2079-6412/8/
5/184/s1. Figure S1: Calibration curve for the Fibrinogen absorption experiments; Figure S2: 1H-NMR spectra
(400 MHz, CDCl3) for PC-mPEG2000 acetone and water extracts, and pure coatings components, tHDI, mPEG2000
and PC polymer; Figure S3: Coatings appearance and weight loss (%) after one year water immersion. PC and
PC-mPEG2000 images after one year immersion in water. Transparent and colorless free standing coatings placed
on top of a logo and Figure S4: Swelling ratio profiles (weight of water swollen coating at different immersion
times (Wt) divided by the initial weight of the dried coating (W0)) for coatings immersed in water for 24 h.
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